
Learning with Retrospection

Xiang Deng, Zhongfei Zhang
Computer Science Department, State University of New York at Binghamton

xdeng7@binghamton.edu, zhongfei@cs.binghamton.edu

Abstract

Deep neural networks have been successfully deployed in
various domains of artificial intelligence, including computer
vision and natural language processing. We observe that the
current standard procedure for training DNNs discards all
the learned information in the past epochs except the current
learned weights. An interesting question is: is this discarded
information indeed useless? We argue that the discarded in-
formation can benefit the subsequent training. In this paper,
we propose learning with retrospection (LWR) which makes
use of the learned information in the past epochs to guide the
subsequent training. LWR is a simple yet effective training
framework to improve accuracies, calibration, and robustness
of DNNs without introducing any additional network parame-
ters or inference cost, but only with a negligible training over-
head. Extensive experiments on several benchmark datasets
demonstrate the superiority of LWR for training DNNs.

Introduction
Deep neural networks (DNNs) have been successfully ap-
plied to a wide range of applications in artificial intelligence,
such as automated vehicle control (Levinson et al. 2011),
biometric recognition (Lawrence et al. 1997), and medical
diagnosis (Miotto et al. 2016). For these applications, clas-
sification is a fundamental and important task. It is appeal-
ing to further improve the classification performance, thus
benefiting these applications and extending the application
horizon to more accuracy-critical or safety-critical domains.

The standard procedure for training DNNs on classifica-
tion is to fit DNN outputs to one-hot labels by using the
cross-entropy loss. In a one-hot label, the probability (confi-
dence score) for the ground-truth class is set to 1 while the
probabilities for the other classes are all 0s, which means
that the labels for different classes are orthogonal. However,
it is observed that the individuals in different classes usually
share visual or semantic similarities, e.g., cats may be visu-
ally similar to tigers or leopards. This indicates that one-hot
labels are not necessarily the optimal target to fit as they
ignore the class similarity information. Thus, besides max-
imizing the probability of the ground-truth class, allowing
for probabilities of the other classes (which may be visu-
ally or semantically similar to the ground-truth) to be pre-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: As seen from the coloration patterns of the two
cats, the cat in the first row is more visually similar to a leop-
ard while the cat in the second row is more visually similar
to a tiger. Instead of assigning them the same one-hot label,
it is reasonable to assign them different soft labels with dif-
ferent probabilities for different classes.

served is helpful for mitigating the risk of over-fitting or
over-confidence. Motivated by this observation, we turn to
soft labels. Two intuitive examples about one-hot and soft
labels are shown in Figure 1. For the two cats in Figure 1,
the one-hot labels set the probability for the cat class to 1 and
those for the other classes to 0, which ignores the class sim-
ilarities. In contrast, soft labels are able to take into account
instance-to-class similarities.

Coinciding with the above idea, many approaches have
benefited from soft labels which assign small probabilities
to non-ground-truth classes. The label smoothing regular-
izer (LSR) (Müller, Kornblith, and Hinton 2019; Szegedy
et al. 2016) which uses soft labels generated by interpolat-
ing one-hot labels and uniform-distribution labels has im-
proved the performances on image classification (Szegedy
et al. 2016; Zoph et al. 2018; Real et al. 2019), speech recog-
nition (Chorowski and Jaitly 2016), and machine translation
(Vaswani et al. 2017), but LSR is unable to capture instance-
to-class similarities, e.g., some cats are more visually simi-
lar to tigers while some other cats are more similar to leop-
ards as illustrated in Figure 1. Knowledge distillation (KD)
(Hinton, Vinyals, and Dean 2015) takes advantage of the
instance-level soft labels generated by a pretrained teacher
network to train a student network, thus improving the stu-
dent performance significantly. However, the training cost
of KD is several times of that of the standard training proce-
dure due to two factors: (1) KD first needs to train a teacher

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7201

network; (2) when KD trains the student network, in each
iteration, each image needs to be processed twice, once by
the teacher network and once by the student network.

Instead of using a manually designed uniform distribution
or a pretrained DNN to generate soft labels, we turn to the
learned instance-to-class similarities in the past epochs. In
the standard training procedure, all the learned information
in the earlier epochs except the weights is discarded and the
training process progresses by using one-hot labels all the
time. Different from the standard training procedure, we pro-
pose to learn with retrospection (LWR) to make use of the
learned information in the past epochs. Specifically, LWR
generates and then updates the soft labels for each image by
taking advantage of the output logits in the past epochs. The
soft labels are then used to guide the training in the subse-
quent epochs, thus mitigating the overconfidence or overfit-
ting issue. LWR is able to improve accuracies, robustness,
and calibration of DNNs without introducing any additional
network parameters, without increasing inference cost, and
even without needing to further tune training hyperparame-
ters (i.e., the learning rate scheme, the mini-batch size, the
total epochs in the standard training procedure are all kept),
but only with a negligible overhead for updating soft labels.

Our main contributions are summarized as follows:

• Different from the current standard training procedure
which discards all the learned information in the past
epochs except the learned weights, we propose to learn
with retrospection (LWR) to make use of the learned
information in the past epochs. LWR uses the learned
instance-to-class similarities as soft labels to supervise the
training in the subsequent epochs, thus alleviating over-
confidence or overfitting.

• We empirically demonstrate that LWR significantly im-
proves accuracies, robustness, and calibration of various
modern networks, and outperforms the state-of-the-art la-
bel smoothing based approaches.

Related Work
Label Smoothing
Szegedy et al. (2016) propose the label smoothing regular-
izer (LSR) that utilizes the weighted average of one-hot la-
bels and the uniform distribution as soft labels, and success-
fully uses it to improve the performance of the Inception
architecture on image classification. Ever since then, many
advanced image classification approaches (Zoph et al. 2018;
Real et al. 2019; Huang et al. 2019) have incorporated LSR
into training procedures. Besides image classification, label
smoothing has also been used in speech recognition to re-
duce the word error rate on the WSJ dataset (Chorowski
and Jaitly 2016). Moreover, in machine translation, Vaswani
et al. (2017) show that label smoothing is able to improve
the BLEU score but with a reduction in perplexity. Müller,
Kornblith, and Hinton (2019) empirically show that LSR
is also able to improve the calibration of DNNs. Pereyra
et al. (2017) propose to smooth the output distribution of
a DNN by penalizing low entropy predictions, which ob-
tains consistent performance improvements across various

tasks. Recently, Yuan et al. (2020) propose a new manu-
ally designed label smoothing regularizer named TF-Reg
which is developed from LSR but outperforms LSR. These
label smoothing techniques can be considered as assigning
the same small probability to the non-ground-truth classes,
thus mitigating the overconfidence issue of DNNs. However,
these approaches cannot fully utilize the advantages of label
smoothing as they do not take into account class similarities.

Knowledge Distillation
KD (Hinton, Vinyals, and Dean 2015) is able to overcome
the disadvantages of the manually designed label smoothing
regularizers by taking advantage of the soft labels generated
by a pretrained teacher network to train a student. However,
the training cost of KD is several times of those of using
manually designed regularizers, since KD needs to first train
a powerful teacher, and does inference twice (i.e., once for
the teacher and once for the student) for each training sample
in each iteration when training the student network. To re-
duce the cost of training a powerful teacher which is usually
larger than the student, many self-distillation approaches in-
cluding but not limited to (Xu and Liu 2019; Zhang et al.
2019; Yang et al. 2019b,a; Furlanello et al. 2018; Bagher-
inezhad et al. 2018; Yun et al. 2020) have been proposed.
Zhang et al. (2019) propose to generate soft labels by adding
additional basic blocks or layers to the shallow layers, which
improves the performance but has a large computation and
memory overhead. Born-again networks (Furlanello et al.
2018) and label-refine networks (Bagherinezhad et al. 2018)
are based on the same idea but from different perspectives.
These two approaches train a network in many generations
and use the network in the (i−1)th generation as the teacher
to train the network in the ith generation. In other words,
these approaches do not pretrain a large teacher, but instead
pretrain the network itself as its own teacher, and this pro-
cess can be repeated many times. They still have a large
training overhead as they need to train a network many
times. SD (Yang et al. 2019b) borrows the idea from (Huang
et al. 2017) by relying on a cyclic learning rate schedule
(Loshchilov and Hutter 2017) to train DNNs in many mini-
generations. Consequently, SD cannot use the optimal train-
ing hyper-parameters (e.g., training epochs and learning rate
schemes) already searched in the standard training proce-
dure for modern network architectures such as ResNet (He
et al. 2016a) and VGG (Simonyan and Zisserman 2014).
Moreover, this cyclic learning rate scheme also causes that
SD cannot update the supervision information frequently.
We also find that SD is prone to severe underconfidence.

Note that in this paper, we aim to propose a framework
to improve the DNN performance with comparable training
and inference costs to the standard training procedure. Thus,
we do not compare the proposed method with those ap-
proaches (e.g., born-again and label-refine networks) whose
training or inference cost is several times of ours.

Framework
In this section, we introduce LWR which trains a DNN with
the assistance of itself in the past. To illustrate the connec-
tion between LWR and the standard training procedure, we

7202

first review the standard process for training DNNs on clas-
sification. Then we make further derivations of the standard
process to show how to train DNNs with retrospection.

Standard Training Procedure
Given a training data set D = (X,Y) = {(xi, yi)}Ni=1 where
xi is an input sample; yi is the corresponding one-hot label;
and N is the total number of training samples in D, a DNN
f with parameters Θ is trained on D. In the standard train-
ing procedure, the cross-entropy loss between DNN outputs
and one-hot labels is minimized by a gradient descent based
optimizer such as SGD with momentum or Adam (Kingma
and Ba 2015). The DNN is trained for many epochs to well
fit the data, where each epoch means going through all the
samples in the training set once. Suppose that the number of
total training epochs and the mini-batch size are M and B,
respectively. The total number of iterations in each epoch is
dNB e. In each iteration, a mini-batch of training samples (x,
y) are sampled from D and then are fed into DNN f :

z = f(Θ,x) (1)

Note that z are the output logits before softmax. Then the
cross-entropy loss between the output logits and the one-hot
labels are computed:

LCE = H(σ(z),y) (2)

where H is cross-entropy and σ(.) denotes softmax. Then
parameters Θ are updated once in this iteration based on the
gradients of LCE with respect to Θ.

From the beginning to the end of the training process,
more and more information is learned with the observation
that the training and validation accuracies are higher and
higher. It indicates that even in the early iterations, there is
still some useful information that has been learned. How-
ever, we notice that all the information learned in the previ-
ous iterations except the values of Θ is discarded in the stan-
dard training process. In light of this, we propose to learn
with retrospection to make use of the learned information in
the previous iterations to assist the subsequent training. An
interesting problem is how to effectively use the learned in-
formation to assist the training in the subsequent iterations.

Learning with Retrospection
We propose LWR which takes advantage of the training log-
its in the previous epochs to generate soft labels to guide the
training in the subsequent epochs. Thus, besides the one-hot
label, each training data sample also has a soft label gener-
ated during the training process.

Making Use of Training Logits Instead of Discarding In
each iteration of the standard training procedure, training
logits z of a mini-batch of samples are only used to com-
pute cross-entropy loss (2) and then are discarded. We argue
that the training logits contain instance-to-class similarities
which may be useful for subsequent training. We take ad-
vantage of the training logits by using the softmax function
with a temperature to generate soft labels:

s = σ(z/τ) =
exp(z/τ)∑
j exp(z[j]/τ)

(3)

Figure 2: Framework of LWR

where τ is a temperature to soften the logits and z[j] are
the logits corresponding to the jth class. As every training
sample is processed once in each epoch, we can obtain the
soft labels for all the training samples in each epoch.

Training DNNs with LWR As shown in Figure 2, we up-
date the soft labels once every k epochs. In the first k epochs,
there are no soft labels and we just minimize the regular
cross-entropy loss (2). After that, the training is supervised
by both one-hot labels and soft labels. We denote the soft
labels generated in the (i × k)th epoch by sik. sik are used
to guide the training from the (i × k + 1)th epoch to the
((i+ 1)× k)th epoch with the following training objective:

LLWR = αH(σ(z),y) + βτ2K(σ(z/τ), sik) (4)

where K(.) denotes KL-divergence; α and β are two bal-
ancing weights. Note that the gradients do not flow through
sik, since they are just the records of the previous epochs.
As the soft labels are more and more accurate as the train-
ing process progresses, β should be larger and larger and α
should be smaller and smaller from the beginning to the end
of the training process. Based on this idea, in most cases, we
simply set α and β to (1− 0.9× i×k

M) and (0.9× i×k
M), re-

spectively, where M is the total number of training epochs.
Thus, when LWR is introduced, almost only two hyperpa-
rameters, i.e., temperature τ and updating interval k, need
to be tuned as LWR can use the training hyperparameters
(i.e., total number of training epochs M , the learning rate
scheme, and mini-batch sizeB) of the standard training pro-
cedure. The training overhead of LWR is the cost of storing
a soft label for each image, which is negligible as these soft
labels do not need to be stored in the GPU memory.

The implementation-level description of LWR is summa-
rized in Algorithm 1.

Why LWR Works
In this part, we provide an analysis of why LWR works.

Benefiting from Label Smoothing LSR smooths one-hot
label y by using a weighted average of the one-hot label and
a uniform distribution, i.e., yLSR = (1− ε)∗y+ ε/C where
ε is a small factor and usually set to 0.1, and C is the to-
tal number of classes. As shown in the existing literature
(Müller, Kornblith, and Hinton 2019), LSR mitigates over-
confidence of DNNs and improves DNN generalization and
calibration. We notice that LSR is a special case of LWR.
The training loss of LSR can be decomposed into two parts:

H(σ(z), yLSR) = (1− ε)H(σ(z), y) + εH(σ(z),
1

C
) (5)

It is observed that (5) shares a similar form to (4), and
K(σ(z/τ), sik) in (4) is equivalent to H(σ(z/τ)), sik) plus

7203

Algorithm 1 LWR

Input: Training data D, DNN f with parameter Θ
Output: Optimal Θ

1: for i = 1, 2, ...,M epochs do
2: if i ≤ k then
3: Update Θ based on (2) by gradient descent
4: if i == k then
5: Generate soft labels by (3)
6: end if
7: else
8: Update Θ based on (4) by gradient descent
9: if i%k == 0 then

10: Update soft labels by (3)
11: end if
12: end if
13: end for

a constant (i.e., the entropy of soft labels sik). When τ is set
to 1 and the learned soft label sik follows a uniform distribu-
tion, LWR is equivalent to LSR. Thus, LWR is an adaptive
version of LSR, suggesting that it should inherit the advan-
tages of LSR, such as better generalization and calibration.

Benefiting from Instance-level Class Similarities One-
hot labels set the probability for the ground-truth class to
1 while the probabilities for the other classes are all set to
0. This may cause overfitting or overconfidence issues es-
pecially when the training samples in different classes share
visual or semantic similarities. Maximizing the ground-truth
probability while preserving small probabilities for the other
classes may mitigate this issue. It is principled to use class
similarities as the soft labels which assign corresponding
probabilities to different classes. Note that class similarities
may not well represent instance-to-class similarities because
different training samples in the same class may be close to
different classification boundaries. For example, some cats
are more visually similar to dogs while some other cats
are more similar to tigers. This kind of instance-level class
similarities is learned gradually during the training process.
Motivated by this observation, LWR takes advantage of the
training logits to generate instance-level soft labels. There-
fore, LWR also benefits from the learned instance-to-class
similarities during the training process.

Experiments
Experimental Setup
Datasets We report the results on several benchmark
datasets, i.e., CIFAR-10 (Krizhevsky and Hinton 2009),
CIFAR-100 (Krizhevsky and Hinton 2009), Tiny ImageNet
1, CUB-200-2011 (Wah et al. 2011), Stanford Dogs (Khosla
et al. 2011), FGVC-Aircraft (Maji et al. 2013), Abalone
(Dua and Graff 2017), Arcene (Dua and Graff 2017), and
Iris (Dua and Graff 2017). CIFAR-10 is a 10-class image
classification dataset, containing 50,000 training images and
10,000 test images. CIFAR-100 has similar images to those

1https://tiny-imagenet.herokuapp.com

in CIFAR-10, but has 100 classes. Tiny ImageNet, i.e., a sub-
set of ImageNet, has 200 classes, containing 100,000 train-
ing images and 10,000 test images. CUB-200-2011, Stan-
ford Dogs, and FGVC-Aircraft are three fine-grained clas-
sification datasets, containing 11,788 images of 200 bird
species, 22,000 images of 120 breeds of dogs, and 10,200
images of 102 different aircraft model variants, respectively.
Abalone, Arcene, and Iris are three tabular datasets which
are randomly drawn from UCI datasets (Dua and Graff
2017). We follow the default training and test splits. We use
the standard data augmentation strategy for image datasets,
i.e., randomly flipping horizontally, padding, and then ran-
domly cropping. More details are presented in the Appendix.

Architectures To check whether LWR is able to work on
different network architectures, we adopt a variety of mod-
ern architectures including ResNet (He et al. 2016a), PreAct
ResNet (He et al. 2016b), VGG (Simonyan and Zisserman
2014), WRN (Zagoruyko and Komodakis 2016), MobileNet
(Sandler et al. 2018), and ShuffleNet (Ma et al. 2018).

Competitors We compare LWR with the standard train-
ing procedure and label smoothing based methods including
cost-comparable self-distillation methods: (1) STD: STD
trains a DNN by minimizing the regular cross-entropy loss
between output logits and one-hot labels; (2) LSR (Müller,
Kornblith, and Hinton 2019; Szegedy et al. 2016): LSR uses
the weighted average of one-hot labels and a uniform distri-
bution as targets to train a DNN. (3) Max-Entropy (Pereyra
et al. 2017): Max-Entropy smooths the DNN output by max-
imizing its entropy. (4) SD (Yang et al. 2019b): SD is a
self-distillation method that relies on a periodic learning rate
scheme to train a DNN. (5) CS-KD (Yun et al. 2020): CS-
KD distills the predictive distribution of different samples
from the same class. (6) TF-Reg (Yuan et al. 2020): TF-Reg
modifies LSR to generate more accurate soft labels.

Hyperparameters Following the standard training proce-
dure for modern DNNs, we have trained all the networks
for 200 epochs with optimizer SGD with momentum 0.9
and weight decay 5e-4 on CIFAR, CUB-200-2011, Stanford
Dogs, and FGVC-Aircraft, 120 epochs for Tiny ImageNet.
More implementation details are reported in Appendix. For
all the competitors, we report the author-reported results or
use author-provided codes and the optimal hyper-parameters
from the original papers if they are publicly available. Oth-
erwise, we use our implementation. We report the test ac-
curacy in the last epoch unless otherwise specified. All the
results below are reported based on 3 runs.

Classification Accuracy
Regular Classification We use CIFAR-100 and Tiny Im-
ageNet datasets for regular classification. The results are re-
ported in Table 1. It is observed that by simply learning from
the past, LWR improves the performances by a large mar-
gin over the standard training procedure (i.e., STD) on both
datasets across various modern DNN architectures, and also
outperforms all the other label smoothing based approaches
significantly, which demonstrates the effectiveness of LWR.

7204

ResNet-56 WRN-16-4 ShuffleV2 VGG-16 PreAct ResNet-18

CIFAR
-100

STD 72.00±0.16 76.43±0.16 71.12±0.39 74.16±0.28 77.31±0.33
LSR 72.05±0.16 76.45±0.10 71.90±0.13 74.75±0.12 78.24±0.16
Max-Entropy 72.03±0.19 76.47±0.15 71.23±0.22 74.11±0.13 77.65±0.35
SD 72.22±0.20 77.00±0.38 68.70±0.51 74.28±0.35 78.31±0.24
CS-KD 72.05±0.19 76.28±0.11 71.43±0.28 74.61±0.12 78.01±0.13
TF-Reg 72.11±0.29 76.52±0.28 72.09±0.34 74.69±0.18 77.36±0.23
LWR (Ours) 74.25±0.29 (↑ 2.25) 77.88±0.27 (↑ 1.45) 73.53±0.33 (↑ 2.41) 75.24±0.09 (↑ 1.08) 79.73±0.32 (↑ 2.42)

Tiny
ImageNet

STD 56.31±0.05 59.48±0.16 60.80±0.25 62.39±0.45 65.57±0.16
LSR 56.57±0.38 59.33±0.16 61.85±0.27 63.82±0.03 64.91±0.08
Max-Entropy 56.80±0.41 59.06±0.19 61.56±0.40 62.99±0.12 65.25±0.16
SD 57.52±0.17. 59.68±0.13 60.79±0.15 63.14±0.16 65.87±0.28
CS-KD 56.21±0.41 59.92±0.29 61.66±0.34 62.87±0.20 64.29±0.25
TF-Reg 56.43±0.19 59.41±0.10 61.55±0.42 62.95±0.06 64.88±0.47
LWR (Ours) 57.95±0.25 (↑ 1.64) 61.22±0.29 (↑ 1.74) 62.06±0.29 (↑1.26) 64.42±0.06 (↑ 2.03) 66.40±0.12 (↑ 0.83)

Table 1: Test Accuracies (%) on CIFAR-100 and Tiny ImageNet. ↑ denotes the absolute improvement over the standard training
procedure (i.e., STD).

ResNet-10 ResNet-18 MobileNetV2 ShuffleNetV2

CUB

STD 58.96±0.12 61.09±0.49 67.20±0.21 61.67±0.85
LSR 59.31±0.21 63.57±0.50 67.97±0.43 62.66±0.11
Max-Entropy 59.00±0.30 61.23±0.37 66.56±0.30 61.10±0.15
SD 59.28±0.34 64.19±0.24 68.15±0.32 63.99±0.29
CS-KD 60.70±0.21 64.57±0.29 67.48±0.32 63.32±0.25
TF-Reg 58.84±0.60 62.04±0.28 67.20±0.43 61.19±0.58
LWR (Ours) 63.14±0.17 (↑ 4.18) 66.47±0.37 (↑ 5.38) 69.00±0.41 (↑ 1.80) 64.37±0.52 (↑ 2.70)

Stanford Dogs

STD 63.91±0.25 66.56±0.28 68.05±0.26 66.08±0.32
LSR 63.36±0.03 67.12±0.86 69.13±0.09 66.90±0.34
Max-Entropy 63.94±0.30 66.42±0.50 67.97±0.30 66.25±0.60
SD 64.65±0.36 68.79±0.06 70.26±0.35 67.30±0.26
CS-KD 64.91±0.26 69.17±0.19 68.73±0.25 66.75±0.31
TF-Reg 63.72±0.44 66.53±0.50 68.36±0.26 66.63±0.26
LWR (Ours) 66.28±0.15 (↑ 2.37) 69.84±0.45 (↑ 3.28) 70.45±0.12 (↑ 2.40) 67.39±0.42 (↑ 1.31)

FGVC-Aircraft

STD 73.89±0.25 79.58±0.25 83.01±0.30 78.00±0.45
LSR 74.52±0.18 80.91±0.28 83.88±0.10 78.40±0.94
Max-Entropy 73.39±0.09 79.59±0.41 82.81±0.45 78.20±0.25
SD 74.98±0.38 80.55±0.80 83.36±0.13 78.09±0.34
CS-KD 74.95±0.40 79.72±0.19 80.62±0.38 77.89±1.55
TF-Reg 73.69±0.38 80.12±0.33 83.39±0.11 78.50±0.31
LWR (Ours) 76.41±0.26 (↑ 2.52) 81.25±0.05 (↑ 1.67) 84.56±0.54 (↑ 1.55) 78.59±0.37 (↑ 0.59)

Table 2: Test Accuracies (%) on fine-grained classification datasets. ↑ denotes the absolute improvement over the STD proce-
dure.

Abalone Arcene Iris

STD 25.75±0.26 83.00±2.16 90.00±2.72
LSR 26.75±0.54 81.00±4.55 92.22±1.57
Max-H 27.15±1.17 79.67±3.77 94.44±1.57
SD 25.79±0.91 81.00±1.63 93.33±2.72
CS-KD 27.70±1.08 83.67±0.94 94.44±1.57
TF-Reg 25.87±0.52 80.00±2.16 90.00±2.72
LWR (Ours) 31.86±0.51 85.33±1.25 95.56±1.57

Table 3: Test Accuracies (%) on Tabular Datasets

Fine-grained Classification We adpot CUB-200-2011,
Stanford Dogs, and FGVC-Aircraft datasets for fine-grained

classification. Table 2 reports the comparison results on
these three fine-grained datasets. LWR obtains much bet-
ter performances than those of the standard training proce-
dure and the other label smoothing based approaches. Over-
all, the superiority of LWR becomes more obvious on fine-
grained datasets. This is not surprising due to the following
facts: (1) fine-grained image classification contains more vi-
sually similar classes; (2) STD uses one-hot labels which are
orthogonal for different classes, ignoring class similarities;
(3) in contrast, LWR takes advantage of soft labels which
contain instance-to-class similarities. This also implies that
the instance-to-class similarity is significantly important for
fine-grained classification.

7205

CIFAR-100 Tiny ImageNet
ShuffleNetV2 Preact ResNet-18 ShuffleNetV2 Preact ResNet-18

STD 12.60±0.16 7.52±0.30 10.12±0.22 11.04±0.11
LSR 3.16±0.47 10.81±0.44 2.89±0.15 8.33±0.43
Max-Entropy 13.87±0.24 8.41±0.14 11.88±0.47 13.43±0.11
SD 28.63±0.38 32.74±0.18 25.34±0.50 31.03±0.21
CS-KD 8.84±0.19 4.69±0.56 5.33±0.31 6.66±0.43
TF-Reg 3.25±0.20 10.76±0.14 8.16±0.43 9.13±0.42
LWR (Ours) 2.87±0.06 (↓ 9.73) 3.53±0.13 (↓ 3.99) 4.30±0.33 (↓ 5.82) 1.58±0.32 (↓ 9.46)

Table 4: ECE (%) Results. For ECE, the lower is better. ↓ denotes the absolute ECE reduction below the STD training procedure.

Figure 3: ShuffleNetV2 on
CIFAR-100

Figure 4: Preact ResNet-18
on CIFAR-100

Figure 5: ShuffleNetV2 on
Tiny ImageNet

Figure 6: Preact ResNet-18
on Tiny ImageNet

Tabular Data Classification To evaluate LWR on non-
image data, we conduct a series of experiments on three
tabular datasets which are randomly drawn from the UCI
dataset. We follow (Zhang et al. 2018) and adopt the neu-
ral network with two hidden, fully-connected layers of 128
units. We train it for 50 epochs with mini-batche size 16
by using Adam (Kingma and Ba 2015) with default hyper-
parameters. As shown in Table 3, LWR improves 6.11%,
2.33%, and 5.56% of the accuracies over the strand train-
ing procedure on the three datasets, respectively, and out-
performs the other approaches significantly, which demon-
strates the applicability of LWR on non-image data.

Calibration
With the deployment of DNNs in high-risk domains, predic-
tive uncertainty of DNNs is of increasing importance. The
predictive confidence of a well-calibrated classifier should
be indicative of the accuracy. Following the existing work
(Guo et al. 2017; Müller, Kornblith, and Hinton 2019), we
use Expected Calibration Error (ECE) and Reliability Dia-
grams to measure the calibration effects. Specifically, ECE
is the expected difference between confidence scores (i.e.,
the winning softmax scores) and accuracies. It is calculated
by partitioning classifier predictions into M bins of equal
size and taking a weighted average of differences between
confidence scores and accuracies in the bins:

ECE =
M∑

m=1

|Bm|
n
|acc (Bm)− conf (Bm)| (6)

where n is the total number of samples;Bm is the set of sam-
ples whose confidence scores fall into bin m; |Bm| denotes
the number of samples in Bm; acc(Bm) is the accuracy of
Bm; and conf(Bm) is the average confidence of Bm.

Table 4 reports the ECE of different approaches. LWR im-
proves the calibration over the standard training procedure
consistently and significantly. As expected, in most cases,
LWR and LSR perform better than the other approaches, and
overall LWR outperforms all the other competitors.

To better understand the overconfidence or underconfi-
dence issue of different approaches, we plot the reliability
diagrams of these approaches. The reliability diagram plots
the expected accuracy as a function of the confidence. Thus,
the identity function implies the optimal calibration. Figure
3, Figure 4, Figure 5, and Figure 6 show the reliability dia-
grams of different approaches on CIFAT-100 and Tiny Ima-
geNet with ShuffleNetV2 and Preact ResNet-18. We plot the
red line (i.e., the identity function) to represent the optimal
calibration. We have the following observations: (1) LWR,
LSR, and TF-Reg are closer to the optimal calibration than
the other approaches, which demonstrates the effectiveness
of LWR on calibration; (2) STD and Max-Entropy are prone
to overconfidence, where the overconfidence of STD has
also been observed by the existing studies (Guo et al. 2017;
Müller, Kornblith, and Hinton 2019); (3) SD suffers from se-
vere underconfidence; (4) The calibration of CS-KD varies
with datasets. Specifically, it is overconfident on CIFAR-100
but well calibrated on Tiny ImageNet.

Robustness

As DNNs have been applied to security-critical tasks such as
autonomous driving and medical diagnosis, the robustness
of DNNs becomes extraordinarily important. Following the
existing study (Zhang et al. 2017), we use CIFRA-10 with
different levels of corrupted labels to evaluate the robustness
of different approaches. Specifically, we use the open-source

7206

Noise Accuracy STD LSR SD CS-KD TF-Reg LWR(Ours)

20% Last 83.81±0.13 84.21±0.41 90.13±0.17 83.62±0.15 83.89±0.69 93.80±0.13 (↑ 9.99)
Best 91.78±0.07 91.77±0.18 90.72±0.21 85.69±0.23 91.85±0.15 94.17±0.04 (↑ 2.39)

40% Last 66.32±0.56 66.93±0.92 83.22±0.74 69.51±0.51 65.77±2.39 89.14±0.30 (↑ 22.82)
Best 88.89±0.06 89.41±0.25 86.57±0.20 84.00±0.68 88.96±0.12 89.43±0.32 (↑ 0.54)

60% Last 45.05±0.71 46.35±1.24 75.01±0.27 49.90±0.45 45.01±1.05 86.19±0.05 (↑ 41.14)
Best 84.38±0.14 84.74±0.06 81.17±0.17 77.39±0.98 84.51±0.06 87.27±0.08 (↑ 2.89)

80% Last 27.08±1.51 26.18±0.49 65.79±0.68 27.82±0.51 26.52±0.26 72.27±0.19 (↑ 45.19)
Best 73.32±0.23 73.04±0.23 71.14±0.33 60.07±1.42 72.12±0.38 78.72±0.10 (↑ 5.40)

Table 5: Robustness Results with Preact ResNet-18 on CIFAR-10 with different levels of noise

k=1 k=5 k=10 k=20 k=50 k=100

τ=5

PreAct ResNet-18 79.50±0.10 79.73±0.22 79.27±0.10 78.67±0.52 78.46±0.51 76.32±0.11
ResNet-56 73.40±0.31 74.25±0.29 73.87±0.15 73.37±0.17 73.53±0.27 72.98±0.23
WRN-16-4 77.88±0.27 77.64±0.39 77.63±0.18 77.60±0.22 77.37±0.29 76.60±0.09
ShuffleNetV2 73.45±0.05 73.53±0.33 73.55±0.30 73.33±0.11 73.20±0.19 72.50±0.03
VGG-16 74.97±0.08 75.05±0.07 74.94±0.16 75.24±0.11 75.24±0.09 74.13±0.27

τ=10

PreAct ResNet-18 79.39±0.30 79.12±0.03 79.60±0.17 78.95±0.11 78.24±0.27 76.50±0.38
ResNet-56 73.66±0.15 73.40±0.30 73.62±0.29 73.65±0.17 73.81±0.19 72.62±0.40
WRN-16-4 77.17±0.14 77.43±0.20 77.23±0.12 77.84±0.13 77.38±0.33 76.64±0.12
ShuffleNetV2 73.29±0.20 72.89±0.37 73.55±0.24 73.16±0.10 73.57±0.34 72.89±0.09
VGG-16 74.78±0.36 74.87±0.32 74.88±0.14 75.14±0.26 75.27±0.28 74.15±0.16

Table 6: Effects of updating interval k and temperature τ in terms of test accuracy (%) on CIFAR-100

implementation 2 of (Zhang et al. 2017) to generate four
CIFAR-10 training sets, where 20%, 40%, 60%, and 80%
of the labels are replaced with random noise, respectively.
All the test labels are kept intact for evaluation.

The results are summarized in Table 5, where we report
the test accuracy in the last epoch (i.e., the 200th epoch) and
the best test accuracy achieved during the training process.
First, we notice that there is a large gap between the last ac-
curacy and the best accuracy for most approaches. The rea-
son is that as the training progresses, the DNN overfits the
noise in the later epochs. (Arpit et al. 2017; Han et al. 2018)
have a similar observation that DNNs first memorize train-
ing data with clean labels and then those with noisy labels.
Especially, when the noise rate is 80%, the DNN trained
with STD overfits a large amount of noise at later epochs,
which leads to an extremely large accuracy gap between the
last epoch and the best epoch. However, LWR significantly
mitigates this issue as LWR makes use of the information
in the past epochs instead of overfitting noise. As expected,
LWR improves the robustness of DNNs significantly.

Effects of Interval k and Temperature τ
Interval k denotes updating soft labels once every k epochs,
and temperature τ controls the softness of the labels. We
check their effects on the performance of LWR. Table 6
summarizes their effects across different DNN architectures
on CIFAR-100. It is not surprising that when interval k
is smaller than a threshold (i.e., the updating frequency is
greater than a number), LWR works reasonably well, and

2https://github.com/pluskid/fitting-random-labels

when k is set to a large number (e.g., 100), the performances
drop significantly. On the other hand, the best performances
of almost all the networks are obtained when τ is set to 5
rather than 10. The reason can be that as seen from (3), set-
ting τ to a large number leads to a flat distribution, which
may weaken the information in the soft labels.

Conclusion and Future Work
It is observed that samples in different classes usually share
some visual or semantic similarities. However, the typically
used one-hot labels cannot capture this kind of information
as they are orthogonal for different classes. On the other
hand, we also observe that the standard training procedure
discards all the information learned in the past epochs except
the weights. Motivated by these observations, we propose
LWR to make use of the learned information in the past to
guide the subsequent training. Specifically, the training log-
its in the past epochs are used to generate soft labels to pro-
vide supervision for the subsequent training. LWR benefits
from label smoothing effects and instance-to-class similari-
ties. To this end, LWR is able to improve accuracies, calibra-
tion, and robustness of DNNs without introducing any net-
work parameters, without any additional inference cost, but
only with a negligible training overhead. Extensive experi-
ments on several datasets have demonstrated the effective-
ness of LWR across various modern network architectures.

We have applied this idea of learning from the past on
classification by proposing LWR. Besides classification, the
idea is expected to generalize to regression. We leave the
question on how to use the past learned information in train-
ing regression tasks to the future work.

7207

References
Arpit, D.; Jastrzebski, S. K.; Ballas, N.; Krueger, D.; Bengio,
E.; Kanwal, M. S.; Maharaj, T.; Fischer, A.; Courville, A. C.;
Bengio, Y.; et al. 2017. A Closer Look at Memorization in
Deep Networks. In ICML.

Bagherinezhad, H.; Horton, M.; Rastegari, M.; and Farhadi,
A. 2018. Label Refinery: Improving ImageNet Clas-
sification through Label Progression. arXiv preprint
arXiv:1805.02641 .

Chorowski, J.; and Jaitly, N. 2016. Towards better decod-
ing and language model integration in sequence to sequence
models. arXiv preprint arXiv:1612.02695 .

Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. URL http://archive.ics.uci.edu/ml. Accessed 6 May
2020.

Furlanello, T.; Lipton, Z. C.; Tschannen, M.; Itti, L.; and
Anandkumar, A. 2018. Born again neural networks. arXiv
preprint arXiv:1805.04770 .

Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017.
On calibration of modern neural networks. arXiv preprint
arXiv:1706.04599 .

Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I.; and Sugiyama, M. 2018. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In
Advances in neural information processing systems, 8527–
8537.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity map-
pings in deep residual networks. In European conference on
computer vision, 630–645. Springer.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J. E.; and
Weinberger, K. Q. 2017. Snapshot ensembles: Train 1, get
m for free. arXiv preprint arXiv:1704.00109 .

Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen,
M.; Lee, H.; Ngiam, J.; Le, Q. V.; Wu, Y.; et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. In Advances in neural information processing
systems, 103–112.

Khosla, A.; Jayadevaprakash, N.; Yao, B.; and Li, F.-F. 2011.
Novel dataset for fine-grained image categorization: Stan-
ford dogs. In Proc. CVPR Workshop on Fine-Grained Visual
Categorization (FGVC), volume 2.

Kingma, D. P.; and Ba, J. 2015. Adam: A method
for stochastic optimization. International Conference for
Learning Representations .

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Citeseer.

Lawrence, S.; Giles, C. L.; Tsoi, A. C.; and Back, A. D.
1997. Face recognition: A convolutional neural-network ap-
proach. IEEE transactions on neural networks 8(1): 98–113.
Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.;
Kammel, S.; Kolter, J. Z.; Langer, D.; Pink, O.; Pratt, V.;
et al. 2011. Towards fully autonomous driving: Systems and
algorithms. In 2011 IEEE Intelligent Vehicles Symposium
(IV), 163–168. IEEE.
Loshchilov, I.; and Hutter, F. 2017. Sgdr: Stochastic gradient
descent with warm restarts. International Conference for
Learning Representations .
Ma, N.; Zhang, X.; Zheng, H.-T.; and Sun, J. 2018. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture
design. In Proceedings of the European conference on com-
puter vision (ECCV), 116–131.
Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; and Vedaldi,
A. 2013. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151 .
Miotto, R.; Li, L.; Kidd, B. A.; and Dudley, J. T. 2016. Deep
patient: an unsupervised representation to predict the future
of patients from the electronic health records. Scientific re-
ports 6(1): 1–10.
Müller, R.; Kornblith, S.; and Hinton, G. E. 2019. When
does label smoothing help? In Advances in Neural Informa-
tion Processing Systems, 4694–4703.
Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, Ł.; and
Hinton, G. 2017. Regularizing neural networks by pe-
nalizing confident output distributions. arXiv preprint
arXiv:1701.06548 .
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelligence,
volume 33, 4780–4789.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818–2826.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset. Technical
report, California Institute of Technology.
Xu, T.-B.; and Liu, C.-L. 2019. Data-distortion guided self-
distillation for deep neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
5565–5572.

7208

Yang, C.; Xie, L.; Qiao, S.; and Yuille, A. L. 2019a. Train-
ing deep neural networks in generations: A more tolerant
teacher educates better students. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 5628–
5635.
Yang, C.; Xie, L.; Su, C.; and Yuille, A. L. 2019b. Snapshot
distillation: Teacher-student optimization in one generation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2859–2868.
Yuan, L.; Tay, F. E.; Li, G.; Wang, T.; and Feng, J. 2020. Re-
visiting Knowledge Distillation via Label Smoothing Regu-
larization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3903–3911.
Yun, S.; Park, J.; Lee, K.; and Shin, J. 2020. Regulariz-
ing class-wise predictions via self-knowledge distillation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 13876–13885.
Zagoruyko, S.; and Komodakis, N. 2016. Wide Residual
Networks. In BMVC.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
O. 2017. Understanding deep learning requires rethinking
generalization. International Conference for Learning Rep-
resentations .
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond empirical risk minimization. Interna-
tional Conference for Learning Representations .
Zhang, L.; Song, J.; Gao, A.; Chen, J.; Bao, C.; and Ma, K.
2019. Be your own teacher: Improve the performance of
convolutional neural networks via self distillation. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, 3713–3722.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 8697–8710.

7209

