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Abstract

Allowing effective inference of latent vectors while training
GANs can greatly increase their applicability in various
downstream tasks. Recent approaches, such as ALI and
BiGAN frameworks, develop methods of inference of
latent variables in GANs by adversarially training an
image generator along with an encoder to match two joint
distributions of image and latent vector pairs. We generalize
these approaches to incorporate multiple layers of feedback
on reconstructions, self-supervision, and other forms of
supervision based on prior or learned knowledge about
the desired solutions. We achieve this by modifying the
discriminator’s objective to correctly identify more than
two joint distributions of tuples of an arbitrary number
of random variables consisting of images, latent vectors,
and other variables generated through auxiliary tasks, such
as reconstruction and inpainting or as outputs of suitable
pre-trained models. We design a non-saturating maximiza-
tion objective for the generator-encoder pair and prove
that the resulting adversarial game corresponds to a global
optimum that simultaneously matches all the distributions.
Within our proposed framework, we introduce a novel
set of techniques for providing self-supervised feedback
to the model based on properties, such as patch-level
correspondence and cycle consistency of reconstructions.
Through comprehensive experiments, we demonstrate the
efficacy, scalability, and flexibility of the proposed approach
for a variety of tasks. The appendix of the paper can be
found at the following link: https://drive.google.com/file/
d/1i99e682CqYWMEDXlnqkqrctGLVA9viiz/view?usp=
sharing

Introduction
Recent advances in deep generative models have enabled
modeling of complex high-dimensional datasets. In particu-
lar, Generative Adversarial Networks (GANs) (Goodfellow
et al. 2017) and Variational Autoencoders (VAEs) (Kingma
and Welling 2013) are broad classes of current state-of-the-
art deep generative approaches, providing complementary
benefits. VAE based approaches aim to learn an explicit
inference function through an encoder neural network that
maps from the data distribution to a latent space distribution.
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On the other hand, GAN based adversarial learning tech-
niques do not perform inference and directly learn a genera-
tive model to construct high-quality data, which are usually
much more realistic than those generated by VAEs. How-
ever, due to the absence of an efficient inference mechanism
it is not possible to learn rich unsupervised feature represen-
tations from data.

To address the above issues, recent approaches, in par-
ticular, Adversarially Learned Inference (ALI) and Bidi-
rectional GAN (BiGAN) (Dumoulin et al. 2017; Donahue,
Krähenbühl, and Darrell 2017) have attempted to integrate
an inference mechanism within the GAN framework by
training a discriminator to discriminate not only in the data
space (x vsG(z)), but discriminate joint samples of data and
encodings ((x,E(x))) from joint samples of the generations
and latent variables ((G(z), z)). Here, E(·) denotes the en-
coder andG(·) denotes the generator. We argue that general-
izing such adversarial joint distribution matching to multiple
distributions and arbitrary number of random variables can
unlock a much larger potential for representation learning
and generative modeling that has not yet been explored by
previous approaches (Dumoulin et al. 2017; Li et al. 2017a;
Donahue, Krähenbühl, and Darrell 2017). Unlike other gen-
erative models such as VAEs, as we show, GANs can be gen-
eralized to match more than two joint distributions of tuples
of an arbitrary number of random variables. We demonstrate
that this allows integration of self-supervised learning and
learned or prior knowledge about the properties of desired
solutions.

Unlike previous approaches relying on pixel-level recon-
struction objectives (Kingma and Welling 2013; Li et al.
2017a; Ulyanov, Vedaldi, and Lempitsky 2018) which are
known to be one of the causes of blurriness (Li et al.
2017a; Zhao, Song, and Ermon 2017), we propose an ap-
proach for incorporating multiple layers of reconstructive
feedback within the adversarial joint distribution matching
framework. Our approach allows incorporation of such task-
specific self-supervised feedback and knowledge of equiv-
ariance of reconstructions to dataset-dependent transforma-
tions within the framework of adversarial joint distribu-
tion matching, without requiring careful tuning of weigh-
ing terms for different objectives. In particular, we con-
sider a discriminator that classifies joint samples of an ar-
bitrary number of random variables into an arbitrary num-
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(a) Chain of reconstructive feedback. The images denote real reconstructions from GALI-4. (b) Different tuple types

Figure 1: (a) The two sequences generated by recursively applying the encoder and the generator to images and latent vectors
respectively. The top sequence starts from a latent vector drawn from the fixed prior while the bottom sequence starts from
a real image. The images correspond to actual reconstructions from the proposed GALI approach. In particular, GALI-4 (i.e.
GALI with n = 4 as described in ”The Proposed Approach” was used to generate the reconstructions. In the figure G denotes
the generator, E the encoder (the same set of G and E parameters are shared across each use), z the latent vector, and x the
input image. (b) Illustration of the different tuple types that can be input to the discriminator to provide different types of
feedbacks via distribution matching. Here, M denotes an external pre-trained neural network and M(x) denotes the features
corresponding to image x through model M . The multi-class discriminator D outputs one of the k classes.

ber of classes. Each class essentially represents a distri-
bution over tuples of image and latent vectors, defined by
recursively computing the encodings and their reconstruc-
tions. This provides multiple layers of information for each
real image or sampled vector while allowing the generator-
encoder pair to gain explicit feedback on the quality and rel-
evance of different types of reconstructions. Fig. 1 illustrates
this process through a diagram. In the rest of the paper, we
refer to our proposed framework as Generalized Adversar-
ially Learned Inference (GALI).

While Adversarially Learned Inference (ALI) can be gen-
eralized to multi-class classification within the framework
of minimax likelihood based objective, the resulting train-
ing procedure is still susceptible to vanishing gradients for
the generator-encoder. We illustrate this problem and devise
an alternative objective that extends the non saturating GAN
objective to multiple distributions. We develop a general-
ized framework for distribution matching with the following
main contributions:

1. We introduce a scalable approach for incorporating mul-
tiple layers of knowledge-based, reconstructive and self-
supervised feedback in adversarially learned inference with-
out relying on fixed pixel or feature level similarity metrics.
2. We propose a non-saturating objective for training a gen-
erator network when the corresponding discriminator per-
forms multi-class classification. We further prove that our
proposed objective has the same global optima as the mini-
max objective which matches all the distributions simulta-
neously.
3. We demonstrate how the proposed approach can incor-
porate pre-trained models and can naturally be adapted for
particular tasks such as image inpainting by incorporating
suitably designed auxiliary tasks within the framework of
adversarial joint distribution matching.

Preliminaries
The following minimax objective serves as the basic frame-
work for optimization in the ALI/BiGAN framework.

min
G,E

max
D

V (D,E,G) (1)

where
V (D,E,G) := Ex∼pX

[
Ez∼pE(·|x) [logD(x, z)]︸ ︷︷ ︸

logD(x,E(x))

]
+ Ez∼pZ

[
Ex∼pG(·|z) [log (1−D(x, z))]︸ ︷︷ ︸

log(1−D(G(z),z))

]
.

Here, the generator G and encoder E can either be both
deterministic, such that G : ΩZ → ΩX with pG(x|z) =
δ (x−G(z)) and E : ΩX → ΩZ with pE(z|x) =
δ (z− E(x)) or the encoder can be stochastic. Determinis-
tic models were used in the BiGAN (Donahue, Krähenbühl,
and Darrell 2017) approach, while a stochastic encoder was
used in ALI (Dumoulin et al. 2017). For all our experi-
ments and discussions, we use a stochastic encoder follow-
ing ALI (Dumoulin et al. 2017) but denote samples from
pE(z|x) as E(x) for notational convenience. Under the as-
sumption of an optimal discriminator, minimization of the
generator-encoder pair’s objective is equivalent to minimiza-
tion of the Jensen-Shannon (JS) divergence (Lin 1991) be-
tween the two joint distributions. Thus, achieving the global
minimum of the objective is equivalent to the two joint dis-
tributions becoming equal.

The Proposed Approach
The proposed approach is based on the two sequences in
Fig. 1 : the top sequence starts from a real latent variable
and its corresponding generation and contains all the sub-
sequent reconstructions and their encodings while the bot-
tom sequence starts from a real image and contains its corre-
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sponding set of reconstructions and encodings. Ideally, with
perfect reconstructions, we wish all images and latent vec-
tors within a sequence to be identical to other images and
latent vectors respectively. We argue that the optimization
objective presented in the previous section is the simplest
case of a general family of objectives where the discrimina-
tor tries to classify n classes of tuples of size m, of images
and latent vectors with the variables within a tuple all be-
longing to one of the sequences in Fig 1 while the generator
tries to fool it to incorrectly classify. By including additional
latent vectors and images, we allow the generator-encoder
pair to receive multiple layers of reconstructive feedback on
each latent vector and each generated image while modi-
fying the discriminator to an n-way classifier encourages it
to perform increasingly fine grained discrimination between
different image-latent variable tuples. We experimentally
demonstrate results for (n = 4,m = 2),(n = 8,m = 2),
and (n = 8,m = 4). Our goal is to design an objective
where the discriminator is tasked with discriminating against
each of the joint distributions specified by the tuples, and
the generator and encoder try to modify the joint distribu-
tions such that distributions of all the classes of tuples are
indistinguishable from each other. We analyse different al-
ternatives for the same in the subsequent sections.

Multiclass Classifier Discriminator
We first consider the expected log-likelihood based mini-
max objective for the case of n = 4 classes and tuples of
size m = 2. We choose the set of pairs (classes) to be:
(x, E(x)), (G(z), z), (x, E(G(E(x)))), (G(E(G(z))), z).
The discriminator is modified to perform multi-class
classification with the output probabilities of input (im-
age, latent vector) (xin, zin) for the ith class denoted by
Di(xin, zin). So, the output of D(xin, zin) is a vector
[D1(xin, zin), ...Di(xin, zin), ..] where Di(xin, zin) de-
notes the output probability for the ith class. The minimax
objective with a multi-class classifier discriminator, follow-
ing a straightforward generalization of ALI in Eq. (1) thus
becomes:

min
G,E

max
D

V (D,E,G) (2)

where
V (D,E,G) := Ex∼pX

[
log (D1(x, E(x)))

]
+ Ez∼pZ

[
log (D2(G(z), z))

]
+ Ex∼pX

[
log (D3(x, E(G(E(x)))))

]
+ Ez∼pZ

[
log (D4(G(E(G(z))), z))

]
.

(3)

Although the above adversarial game captures the multiple
layers of reconstructive feedback described in Fig. 1, it is
insufficient for stable training due to vanishing gradients in
generator-encoder pair’s training. Consider the gradients for
the parameters of the generator and the encoder with the
above objective. Since the gradient of the softmax activation
function w.r.t the logits vanishes whenever one of the logits
dominates the rest, when the discriminator is able to classify
accurately, the gradients of the generator-encoder’s objective
nearly vanish and the generator-encoder pair does not re-
ceive any feedback. The inability to produce realistic images

due to vanishing gradients is also demonstrated empirically
in Figure 5 (Appendix). In order to remedy this, we pro-
vide an alternate training objective for the generator-encoder
based on products of the likelihoods. We first describe how
the vanishing gradients problem cannot be avoided by using
an objective based on misclassification likelihood.

Misclassification Likelihood At first it might seem that
a natural way to alleviate the vanishing gradient problem
is to replace each log likelihood term log (Di(xin, zin))
in the mini-max generator-encoder minimization objec-
tive with the corresponding misclassification log-likelihood
log (1−Di(xin, zin)) for the given class to construct
a maximization objective. This is the approach used
while designing the non-saturating objectives for standard
GANs (Arjovsky and Bottou 2017), ALI, and BiGAN
frameworks (Dumoulin et al. 2017; Donahue, Krähenbühl,
and Darrell 2017). However, in the multiclass classification
framework, the value and the corresponding gradients for
the misclassification objective can vanish even when the dis-
criminator learns to accurately reject many of the incorrect
classes as long as it has a low output probability for the true
class. For example, for the 4 classes considered above, the
discriminator may learn to accurately reject classes 3 and 4
for a pair belonging to class 1 but might still have a high mis-
classification likelihood if it incorrectly identifies the pair as
belonging to class 2. As such an objective does not optimize
the individual probabilities for the incorrect classes, the gra-
dient for the generator-encoder pair would provide no feed-
back for causing an increase in the output probabilities for
the remaining classes (3 and 4).

Product of Terms In light of the above, we desire to ob-
tain an objective such that instead of just encouraging the
generator-encoder to cause lower discriminator output prob-
ability for the right class, the generator-encoder’s gradient
for the modified objective enforces each of the wrong classes
to have high output probabilities. With this goal, we propose
the product of terms objective that explicitly encourages all
the distributions to match. The proposed objective for the 4
classes considered above is given below:
max
G,E

[Ex∼pX
[log (D2(x, E(x))D3(x, E(x))D4(x, E(x)))]

+ Ez∼pZ
[log (D1(G(z), z)D3(G(z), z)D4(G(z), z))]

+ Ex∼pX
[log (D1(x, E(G(E(x))))D2(x, E(G(E(x)))))

D4(x, E(G(E(x))))]

+ Ez∼pZ
[log (D1(G(E(G(z))), z)D2(G(E(G(z))), z))

D3(G(E(G(z))), z)]]
(4)

Since the vanishing gradients problem only arises in the
generator-encoder, we use the same objective as 3 for
the discriminator. In Eq. 4, each of the terms of the
form log (Di(xin, zin)Dj(xin, zin)Dk(xin, zin)) can be
further split as log (Di(xin, zin)) + log (Dj(xin, zin)) +
log (Dk(xin, zin)). The above objective encourages the pa-
rameters of the generator and encoder to ensure that none
of the incorrect classes are easily rejected by the discrimi-
nator. This is because the generator-encoder pair is explic-

7187



itly trained to cause an increase in the discriminator output
probabilities for all the wrong classes. Moreover, the objec-
tive does not lead to vanishing gradients as discarding any
of these classes as being true incurs a large penalty in terms
of the objective and its gradient. In the next subsection and
the appendix we show that the Product of Terms objective
has a global optimum which matches all the joint distribu-
tions corresponding to the different classes of tuples simul-
taneously. We further demonstrate the effectiveness of this
objective through experiments.

The Optimal Discriminator
The optimal discriminator D∗ for the discriminator’s
objective in Eq. (3), can be described as D∗ :=
arg maxD V (D,E,G), for any E and G. Following the
derivation in the appendix, we obtain the following func-
tional form of D∗: D∗i (xin, zin) = pi(xin,zin)∑4

j=1 pj(xin,zin)
.

Here, Di corresponds to the output proba-
bility of the ith class among the four classes:
(x, E(x)), (G(z), z), (x, E(G(E(x)))), (G(E(G(z))), z).
pi is the joint probability density of the corresponding xin

and zin in each of the (xin, zin) pairs above.

The Optimal Generator-Encoder for the Product of
Terms Objective
Following the derivation provided in the appendix and sub-
stituting the optimal discriminator found above (D∗ =
arg maxD V (D,E,G)) in the Product of Terms ob-
jective (Eq. 4) for the generator-encoder leads to the
maximization objective: C(G,E) ≤ − log

(
49
)
−

JSD 1
4 ,

1
4 ,

1
4 ,

1
4
(p1, p2, p3, p4). where JSD 1

4 ,
1
4 ,

1
4 ,

1
4

denotes
the generalized Jensen–Shannon divergence (Lin 1991)
with equal weights assigned to each distribution as described
in the appendix. Since the JSD for the four distributions is
non negative and vanishes if and only if p1 = p2 = p3 =
p4, the global optimum for the product of terms objective
is given by: p(x,E(x)) = p(G(z),z) = p(x,E(G(E(x)))) =
p(G(E(G(z))),z) This is the same as the optima of the orig-
inal generalized objective in Eq. (2) (appendix). However,
our proposed objective matches all the distributions simulta-
neously without suffering from vanishing gradients.

Extension to Arbitrary Number and Size of Tuples
The analysis presented above can be extended to accommo-
date any number n of tuples of arbitrary size m from the
two chains in 1. We demonstrate this for the case of n = 8
and m = 4 for the SVHN dataset. We start with one tu-
ple from each chain: (x, E(x), G(E(x)), E(G(E(x)))) and
(G(z), z, G(E(G(z))), E(G(z))) and construct additional
tuples by permuting within the images and latent vectors for
both of these tuples to give a total of 4 × 2 tuples. These
classes of 4-tuples allow the discriminator to directly dis-
criminate between an image and its reconstruction in both
image and latent space. The number of pairs n to be consid-
ered and the size of tuples is limited only by computational
cost, although intuitively we expect to see diminishing re-
turns in terms of performance when increasing n beyond a

Figure 2: Sections from reconstructions of real images corre-
sponding to missing patches are combined with the original
real images to form a set of mixed images.

point as matching the distributions for two random variables
enforces the matching of the subsequent chains.

Self-Supervised Feedback Using Mixed Images
For tasks such as image inpainting and translation, an
important desideratum for a reconstructed image is its
consistency with parts of original image. We demonstrate
that such task specific feedback can be incorporated into the
GALI framework through self-supervised learning tasks.
We experiment with incorporating one such task into the
reconstructive chain of Fig. 1, namely ensuring consistency
and quality of mixed images constructed by combining the
inpainted sections of reconstructions of real images with the
other parts of the corresponding original real images. During
training, we mask randomly sampled regions of the images
input to the encoder, as shown in Fig. 2. Our analysis of the
optimal solutions proves that the multi-class classifier based
approach can be used to match any number of distributions
of (image, latent variable) pairs, as long as each such pair
is generated using the real data distribution, fixed prior for
the noise or any operation on these such that the output’s
distribution depends only on generator-encoder parameters.
Since the set of mixed images and their encodings satisfy
these constraints, introducing them into the set of (image,
latent vector) pairs used in the objective leads to matching
of the distribution of mixed images with the real image
distribution as well as the matching of correspondence
between the encodings and reconstructions. Thus, this type
of feedback introduces an additional constraint on the model
to ensure the consistency of the inpainted patch with the
original image. We show this empirically in the experiments
section. The self-supervision based model is constructed
by introducing 4 additional classes of (image,latent-vector)
pairs into the GALI-4 model so that the discriminator is
trained to perform an 8-way classification. These additional
classes depend on a distribution of masks that are applied
to the images. For our experiments, we sample a mask
M for CelebA 64X64 images as follows: first, the height
w and the width h of the mask are both independently
drawn uniformly from the set 1, · · · , 64. Subsequently, the
x (horizontal) and y (vertical) indices (index origin = 0)
of the bottom-left corner of the mask are drawn uniformly
from the set 0, · · · , 63− h+ 1 and 0, · · · , 63− w + 1.
The above procedure thus defines a probability distri-
bution over masks P (M) For every image input to the
encoder, a new mask M is sampled independently. Thus
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the four classes of distributions considered in GALI-4 are
modified to classes whose samples are constructed as :
(x, E(M1(x))), (G(z), z), (x, E(M2(G(E(M1(x)))))),
(G((E(M3(G(z))), z) where M1, M2, and M3 are
independently drawn from P (M). For a sampled
real image and its corresponding mask M1, a mixed
image Mix(x,M1) is constructed by replacing the
masked region of x by the corresponding region of
G(E(M1(x))). The additional 4 pairs then corre-
spond to (Mix(x,M1), E(M1(x))), (Mix(x,M1) ,
E(M2(G(E(M1(x)))))), (x, E(M4(Mix(x,M1))) and
(G(E(M1(x)))), E(M4(Mix(x,M1)))

Incorporation of Learned Knowledge
Matching the real and generated data distributions should
also result in the matching of the corresponding joint
distributions of any of the extractable properties such
as attributes, labels, perceptual features or segmenta-
tion masks. We argue that utilizing these outputs during
training can impose additional constraints and provide
additional information to the model similar to the recon-
structive and self-supervised feedbacks discussed above.
We demonstrate that our approach offers a principled
way for incorporating these properties by introducing
the final or hidden layer outputs of pretrained models
as additional random variables in the tuples. For each
class of tuples, these outputs could correspond to input
any input image within the same chain as other images
and latent variables in the tuple. For experiments and
subsequent discussions, we consider the four classes of
tuples from the objective in 4 and augment each with
the respective outputs from a pre-trained model M to ob-
tain the tuple classes (x, E(x),M(x)),(G(z), z,M(G(z))),
(x, E(G(E(x))),M(G(E(x))), (G(E(G(z))), z,M(G(z))).
While feature level reconstructive feedback can be provided
through L1 or L2 reconstruction objectives on the output
features, our approach explicitly matches the joint distribu-
tion of these features with images and latent vectors of all
classes (real, fake, reconstructed, etc.) Unlike, L1 and L2

based reconstruction terms which directly affect only the
generator-encoder, our approach distributes the feedback
from the pretrained model across all the components of
the model including the discriminator. Moreover, as we
demonstrate in the ablation study included in the appendix,
by jointly providing reconstructive feedback on images,
encodings and pretrained model activations, our model
with learned knowledge outperforms the model based on
L2 reconstruction of features on all metrics. Our approach
can also be applied to any arbitrary type of model outputs
such as segmentation masks, translations or labels without
blurriness effects.

Related Work
A number of VAE-GAN hybrids have been proposed in the
recent years. A unified perspective based on Lagrangian dual
functions for these hybrids was provided by (Zhao, Song,
and Ermon 2018). Adversarial autoencoders (Makhzani
et al. 2016) use GANs to match the aggregated posterior
of the latent variables with the prior distribution instead

of the KL-divergence minimization term in VAEs. VAE-
GAN. (Larsen et al. 2016) replaced the pixel-wise recon-
struction error term with an error based on the features in-
ferred by the discriminator. AVB (Mescheder, Nowozin, and
Geiger 2017) proposed using an auxiliary discriminator to
approximately train a VAE model. Adversarial Generator-
Encoder Networks (Ulyanov, Vedaldi, and Lempitsky 2018)
constructed an adversarial game directly between the gen-
erator and encoder without any discriminator to match the
distributions in image and latent space. The model still re-
lied on L2 reconstruction to enforce cycle consistency. Un-
like the above approaches, BIGAN(Donahue, Krähenbühl,
and Darrell 2017), ALI(Dumoulin et al. 2017) and our mod-
els do not rely on any reconstruction error term. Although
a recent work BigBiGAN (Donahue and Simonyan 2019)
demonstrated how the ALI/BiGAN framework alone can al-
low achieving competitive representation learning, we em-
phasize that embedding more information through multi-
ple layers of feedback would further improve the inference.
Some recent approaches (Gan et al. 2017; Li et al. 2017b;
Pu et al. 2018; ?) propose different frameworks for ad-
versarially matching multiple joint distributions for domain
transformation, conditional generation, and graphical mod-
els. We hypothesize that the use of our proposed product of
terms objective and the proposed different types of feedback
should lead to further improvements in these tasks similar to
the improvements demonstrated for ALI in the experiments.

ALICE (Li et al. 2017a) illustrated how the ALI objective
with stochasticity in both the generator and the encoder can
easily result in an optimal solution where cycle consistency
is violated (x 6= x̃) due to the non-identifiability of solutions.
The analysis however does not apply to our approach as our
optimal solution explicitly matches additional joint distribu-
tions which involve reconstructions and their corresponding
encodings.

In augmented BiGAN (Kumar, Sattiger, and Fletcher
2017), instead of generalizing the discriminator to perform
multiclass classification, the fake distribution is divided into
two sources (one of generated images and latent vectors and
the other of encodings of real images and their reconstruc-
tions) and a weighted average of the likelihood of these two
parts is used for the dicriminator and generator’s objective.
Unlike our optimal solution which matches all the distribu-
tions simultaneously, the augmented BiGAN’s optimal solu-
tion matches the (real image, encoding) distribution with the
average of the two “fake” distributions. This solution causes
a trade-off between good reconstructions and good genera-
tion, which is avoided in our method since all the distribu-
tions are enforced to match simultaneously.

Experiments
Through experiments on two benchmark datasets,
SVHN (Netzer et al. 2011) and CelebA (Liu et al.
2015), we aim to assess the reconstruction quality, meaning-
fulness of the learned representations for use in downstream
tasks and generation, effects of extending the approach
to more classes of tuples and larger tuple size, the ability
of the proposed approach to incorporate knowledge from
pretrained models trained for a different task, and its
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MODEL PIXEL-MSE FEATURE-MSE

ALI 0.023± 0.0024 0.0857± 0.0075

ALICE 0.0096± 0.00067 0.0736± 0.0058

GALI-4 0.0132± 0.0011 0.0717± 0.0067

GALI-8 0.0095± 0.0016 0.066± 0.0060

GALI-PT 0.0093± 0.00099 0.041± 0.0046

MODEL PIXEL-MSE FEATURE-MSE

ALI 0.074± 0.004 0.307± 0.018

ALICE 0.042± 0.002 0.248± 0.013

GALI-4 0.036± 0.002 0.201± 0.012

GALI-PT 0.032± 0.0019 0.131± 0.008

Table 1: Pixel-wise Mean-Squared Error (MSE) and Feature
level Mean Squared Error (MSE) on the test set for SVHN
(left table) and CelebA (right table). Lower is better.

adaptability to specific tasks such as inpainting. We will
make the experimental code publicly available.

Notation and Setup
For all the experiments,following the description in the sec-
tion “The Proposed Approach”, GALI-4 is the proposed
GALI model with 4 terms, GALI-8 is the proposed GALI
model with 8 terms and GALI-PT is the GALI-4 model aug-
mented with a pretrained network M .

For all our proposed models and both ALI (Dumoulin
et al. 2017) and ALICE (Li et al. 2017a) (ALI + L2 re-
construction error) baselines, we borrow the architectures
from (Dumoulin et al. 2017) with the discriminator using
spectral normalization (Miyato et al. 2018) instead of batch
normalization and dropout (Srivastava 2013). As shown in
Table 3 and Figure 3, our baseline obtains similar represen-
tation learning scores and reconstruction quality as reported
in ALI (Dumoulin et al. 2017). All the architectural details
and hyper-parameters considered are further described in the
appendix.
Reconstruction Quality
We evaluate the reconstruction quality on test images us-
ing both pixel level and semantic similarity metrics. For
pixel level similarity, we report the average pixel wise
mean squared error on test datasets for SVHN and CelebA.
For semantic similarity, we use the mean squared error
of the features from pre-trained multi-digit classification
model (Goodfellow et al. 2014) trained on SVHN and a pre-
trained attribute classification model for SVHN and CelebA
datasets respectively. Further details of these models are pro-
vided in the appendix.

The test set reconstruction errors on SHVN and CelebA
(64×64) datasets for the proposed models, the ALI baseline,
and the ALICE baseline are shown in Table 1. As reported
in (Li et al. 2017a), the improvements in reconstructions for
ALICE are obtained at the cost of blurriness in images. The
blurriness is visible in the reconstructions shown in Fig. 3a
and Fig. 3b and quantitatively verified through the higher

Model Misc rate (%)

VAE (Kingma and Welling 2013) 36.02
DCGAN + L2-SVM 22.18
SDGM (Hayashi and Uchida 2019) 16.61
NC (Belghazi, Oquab, and Lopez-Paz 2019) 17.12
ALI (Dumoulin et al. 2017) 19.11 ± 0.50
ALI (baseline) 19.05 ± 0.53
ALICE (Li et al. 2017a) 18.89 ± 0.52
GALI-4 16.58 ± 0.38
GALI-8 15.82 ± 0.43
GALI-PT (supervised) 11.43 ± 0.30

Table 2: Missclassification rate of GALI-4 and various base-
lines on the test set of SVHN dataset demonstrating the use-
fulness of learned representations. The results for baselines
are from (Dumoulin et al. 2017). Lower is better.

FID score of ALICE in Table 3 as well as the higher values
of the feature level MSE for both datasets. Moreover, we
observe that the introduction of L2 reconstruction error does
not lead to significant gains in the usefulness of the learned
representations for downstream tasks. Our models achieve
significant improvements in the quality of reconstructions
and representations over the ALI baseline without succumb-
ing to the above drawbacks.

Representation Learning
In Table 2, we evaluate the representation learning capabil-
ities of the encoder by training a linear SVM model on fea-
tures corresponding to 1000 labelled images from the train-
ing set. Following (Dumoulin et al. 2017), the feature vec-
tors are obtained by concatenating the last three hidden lay-
ers of the encoder as well as its output.The hyperparame-
ters of the SVM model are selected using a held-out valida-
tion set. We report the average test set misclassification rate
for 100 different SVMs trained on different random 1000-
example training sets. We also report the misclassification
rate for other semi-supervised learning approaches for com-
parison.

Image Generation Quality
It is important to ensure that improved reconstructions do
not come at the cost of poor generation quality. Such a trade-
off is possible when the encoder-generator pair learns to en-
code pixel level information. It is instead desired that varia-
tions in the latent space of the generator correspond to varia-
tions in explanatory factors of variation of the data. We eval-
uate our model’s image generation ability using the Frechet
Inception Distance (FID) metric (Heusel et al. 2017) on the
CelebA dataset in Table 3. We provide visualizations of the
generated samples in the appendix.

Image Inpainting
In Fig. 4, we evaluate our mixed images based model on an
image inpainting task for the CelebA dataset through com-
parisons with ALI and ALICE baselines trained with the
same procedure of masking out inputs. The ALICE based
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(a) SVHN dataset. (b) CelebA dataset.

Figure 3: Top to bottom: Original images, images reconstructed by ALI, ALICE, GALI-4, GALI-8, and GALI-PT for (a) and
ALI, ALICE, GALI-4, and GALI-PT for (b).

MODEL FID

ALI 24.49
ALICE 36.91
GALI-4 23.11
GALI-PT 10.13

MODEL PIXEL-MSE FEATURE-MSE

ALI 0.060± 0.0080 0.38± 0.016

ALICE 0.047± 0.0069 0.32± 0.015

GALI-4 0.046± 0.0066 0.285± 0.012

GALI-MIX 0.031± 0.0050 0.164± 0.010

Table 3: Top: FID scores on CelebA demonstrating im-
age generation quality of GALI-4, GALI-pretrain and
the baselines. Lower is better.
Bottom: Pixel-wise Mean-Squared Error (MSE) and
Feature level Mean Squared Error (MSE) on the
image-inpainting task for CelebA. Lower is better.

model leads to blurriness whereas ALI suffers from poor
consistency with the original images. Our approach allevi-
ates both these issues. Quantitative comparisons for this task
are also described in Fig. 4. Similar to the evaluation of
reconstruction quality, we quantitatively evaluate image in
painting capabilities of the models using both pixel and fea-
ture level metric. In Table 3(bottom), pixel-level MSE de-
notes the average pixel wise squared difference of the in-
painted region with the original image, while the feature
level MSE is calculated as the average squared difference
between the feature vectors of the inpainted image and the
original image for each model. The feature vectors are cal-
culated using the same pretrained classifier as used for the
reconstruction quality. In the table, we denote our proposed
mixed images based model as GALI-mix while ALI and AL-
ICE denote models obtained by utilizing the same distribu-
tion over masks as GALI-mix while feeding images to the
encoder in the respective baselines. GALI-4 similarly de-
notes the GALI-4 model augmented with masked inputs.
Results for GALI-4 without self-supervision are included as
part of an ablation study in the appendix.

Figure 4: Top to bottom: Original images, incomplete input
images with the blackened region denoting an applied ran-
dom occlusion mask, inpainted images from ALI , ALICE
and GALI-4 with mixed images.
Utilization of Pretrained Models
For SVHN, the pretrained model M outputs features from
the pre-trained multi-digit classification model used for the
feature-level MSE above while for CelebA, M outputs the
features from the pretrained inception net (Szegedy et al.
2017) used for calculating the FID scores. We emphasize
that our goal is to demonstrate the ability of our approach
to incorporate learned knowledge from other models. These
approaches however do not correspond to truly unsupervised
settings as the pretrained models utilize supervision in the
form of labelled SVHN digits and imagenet labels for SVHN
and CelebA datasets respectively. This leads to expected yet
significant improvements in metrics based on the output fea-
tures of or the same training tasks as the pre-trained models
such as misclassification rate and feature-MSE for SVHN
and FID for CelebA. The above results demonstrate that the
improvements further carry over to other independent met-
rics such as feature and pixel-MSE for CelebA and pixel-
MSE for SVHN, indicating significant improvements in the
overall reconstruction and image generation quality.

Conclusion
In this paper, we proposed a novel framework for incorporat-
ing different types of generalized feedbacks in adversarially
learned inference along with a non-saturating objective for
adversarially matching multiple distributions. Through ex-
periments on two benchmark datasets, SVHN and CelebA,
we demonstrated the efficacy of the proposed framework in
terms of improvements in reconstruction quality, represen-
tation learning, image generation, and image inpainting as
compared to previous approaches.
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