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Abstract

Representing graphs as sets of node embeddings in certain
curved Riemannian manifolds has recently gained momentum
in machine learning due to their desirable geometric inductive
biases (e.g., hierarchical structures benefit from hyperbolic
geometry). However, going beyond embedding spaces of con-
stant sectional curvature, while potentially more representa-
tionally powerful, proves to be challenging as one can easily
lose the appeal of computationally tractable tools such as
geodesic distances or Riemannian gradients. Here, we explore
two computationally efficient matrix manifolds, showcasing
how to learn and optimize graph embeddings in these Rieman-
nian spaces. Empirically, we demonstrate consistent improve-
ments over Euclidean geometry while often outperforming
hyperbolic and elliptical embeddings based on various metrics
that capture different graph properties. Our results serve as
new evidence for the benefits of non-Euclidean embeddings
in machine learning pipelines.

1 Introduction
Before representation learning started gravitating around
deep representations (Bengio et al. 2009) in the last decade,
a line of research that sparked interest in the early 2000s
was based on the so called manifold hypothesis (Bengio,
Courville, and Vincent 2013). According to it, real-world
data given in their raw format (e.g., pixels of images) lie on a
low-dimensional manifold embedded in the input space. At
that time, most manifold learning algorithms were based on
locally linear approximations to points on the sought man-
ifold – LLE (Roweis and Saul 2000), Isomap (Tenenbaum,
De Silva, and Langford 2000) – or on spectral methods –
MDS (Hofmann and Buhmann 1995), graph Laplacian eigen-
maps (Belkin and Niyogi 2002).

Back to recent years, two trends are apparent: (i) the use of
graph-structured data and their direct processing by machine
learning algorithms (Bruna et al. 2014; Henaff, Bruna, and
LeCun 2015; Grover and Leskovec 2016), and (ii) the resur-
gence of the manifold hypothesis, but with a different flavor –
being explicit about the assumed manifold and, perhaps, the
inductive bias that it entails: hyperbolic spaces (Nickel and
Kiela 2017; Ganea, Becigneul, and Hofmann 2018), spher-
ical spaces (Wilson et al. 2014), and Cartesian products of
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Figure 1: A dense social network from Facebook (Leskovec
and Mcauley 2012) used in our experiments. It shows the
Ollivier-Ricci curvatures of edges and their averages for
nodes. More such drawings are included in Appendix H.

them (Gu et al. 2018). While for the first two the choice can
be a priori justified – e.g., complex networks are intimately
related to hyperbolic geometry (Krioukov et al. 2010) – the
last one is motivated through the presumed flexibility coming
from its varying curvature. Our work takes that hypothesis
further by exploring the representation properties of several
irreducible spaces1 of non-constant sectional curvature. We
use, in particular, Riemannian manifolds where points are
represented as specific types of matrices and which are at the
sweet spot between semantic richness and tractability.

With no additional qualifiers, graph embedding is a
vaguely specified intermediary step used as part of systems
solving a wide range of graph analytics problems such as
link prediction (Trouillon et al. 2016; Zhang and Chen 2018)
and node classification (Li, Zhu, and Zhang 2016; Wang et al.
2017). What they all have in common is the representation of
certain parts of a graph as points in a continuous space. As a
particular instance of that general task, here we embed nodes
of graphs with structural information only (i.e., undirected
and without node or edge labels), as the one shown in Figure 1
in novel curved spaces, by leveraging the closed-form expres-
sions of the corresponding Riemannian distance between

1Not expressible as Cartesian products of other manifolds, be
they model spaces, as in (Gu et al. 2018), or yet others.
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embedding points; the resulting geodesic distances enter a
differentiable objective function which “compares” them to
the ground-truth metric given through the node-to-node graph
distances. We focus on the representation capabilities of the
considered matrix manifolds relative to the previously studied
spaces by monitoring graph reconstruction metrics.

Our main contributions include (i) the introduction of
two families of matrix manifolds for graph embedding pur-
poses: the non-positively curved spaces of symmetric posi-
tive definite (SPD) matrices, and the compact, non-negatively
curved Grassmann manifolds; (ii) reviving Stochastic Neigh-
bor Embedding (SNE) (Hinton and Roweis 2003) in the
context of Riemannian optimization as a way to unify, on the
one hand, the loss functions based on the reconstruction like-
lihood of local graph neighborhoods and, on the other hand,
the global, all-pairs stress functions used for global metric
recovery; (iii) a generalization of the usual ranking-based
metric to quantify reconstruction fidelity beyond immediate
neighbors; (iv) a comprehensive experimental comparison
of the introduced manifolds against the baselines in terms
of their graph reconstruction capabilities, focusing on the
impact of curvature.

Related Work. Our work is inspired by the emerging field
of geometric deep learning (GDL) through its use of ge-
ometry (Bronstein et al. 2017). That being said, our moti-
vation and approach are different. In GDL, deep networks
transform data in a geometry-aware way, usually as part of
larger discriminative or generative models: e.g., graph neu-
ral networks (Bruna et al. 2014; Henaff, Bruna, and LeCun
2015), hyperbolic neural networks (Ganea, Bécigneul, and
Hofmann 2018; Mathieu et al. 2019), hyperspherical neural
networks (Defferrard, Bresson, and Vandergheynst 2016; Xu
and Durrett 2018), and others (Bachmann, Bécigneul, and
Ganea 2019; Skopek, Ganea, and Bécigneul 2020). We, on
the other hand, embed graph nodes in a simpler, transductive
setting, employing Riemannian optimization (Bonnabel 2013;
Becigneul and Ganea 2019) to directly obtain the correspond-
ing embeddings. The broader aim to which we contribute is
that of understanding the role played by the space curvature
in graph representation learning. In this sense, works such
as those of Sarkar (2011) and Krioukov et al. (2010), who
formally describe the connections between certain types of
graphs (i.e., trees and complex networks, respectively) and
hyperbolic geometry, inspire us: ultimately, we seek similar
results for new classes of graphs and embedding spaces. This
work, mostly an empirical one, is a first step in that direction
for two families of matrix manifolds. It is similar in spirit to
Gu et al. (2018) who empirically show that Cartesian prod-
ucts of model spaces can provide a good inductive bias in
some cases. A non-goal of this work is comparing against all
prior embedding methods that operate in the domain of vec-
tors (e.g., Grover and Leskovec 2016; Hamilton, Ying, and
Leskovec 2017; Donnat et al. 2018). Finally, the manifolds
themselves are not new in the machine learning literature:
recent computer vision applications take into account the
intrinsic geometry of SPD matrices (Dong et al. 2017; Huang
and Van Gool 2017) and Grassmann subspaces (Huang, Wu,

and Van Gool 2018; Zhang et al. 2018) when building dis-
criminative models. It is the study of the implications of their
curvature for graph representations that is novel.

2 Preliminaries & Background
Notation. LetG = (X,E,w) be an undirected graph, with
X the set of nodes, E the set of edges, and w : E → R+

the edge-weighting function. Let m = |X|. We denote
by dG(xi, xj) the shortest path distance between nodes
xi, xj ∈ X , induced by w. The node embeddings are2

Y = {yi}i∈[m] ⊂ M and the geodesic distance function
is dM(yi, yj), withM, the embedding space, a Riemannian
manifold. N (xi) denotes the set of neighbors of node xi.

Riemannian Geometry. A comprehensive account of the
fundamental concepts from Riemannian geometry is included
in Appendix A. Informally, an n-dimensional manifoldM
is a space that locally resembles Rn. Each point x ∈M has
attached a tangent space TxM – a vector space that can be
thought of as a first-order local approximation ofM around
x. The Riemannian metric 〈·, ·〉x is a collection of inner prod-
ucts on these tangent spaces that vary smoothly with x. It
makes possible measuring geodesic distances, angles, and
curvatures. The different notions of curvature quantify the
ways in which a surface is locally curved around a point. The
exponential map is a function expx : TxM→M that can
be seen as “folding” or projecting the tangent space onto the
manifold. Its inverse is called the logarithm map, logx(·).

Learning Framework. The embeddings are learned in a
simple framework in which a loss function L depending on
the embedding points solely via the Riemannian distances
between them is minimized using stochastic Riemannian
optimization. In this respect, the following general property is
useful (Lee 2006): for any point x on a Riemannian manifold
M and any y in a neighborhood of x, we have3

∇Rx d2(x, y) = −2 logx(y). (1)

Hence, as long as L is differentiable with respect to the
(squared) distances, it will also be differentiable with respect
to the embedding points. The specifics of L are deferred
to Section 4.

Model Spaces & Cartesian Products. The model spaces
of Riemannian geometry are manifolds with constant sec-
tional curvature K: (i) Euclidean space (K = 0), (ii) hyper-
bolic space (K < 0), and (iii) elliptical space (K > 0). We
summarize the Riemannian geometric tools of the last two in
Appendix B. They are used as baselines in our experiments.
We also recall that given a set of manifolds {Mi}ki=1, the
product manifoldM =×ki=1Mi has non-constant sectional
curvature and can be used for graph embedding purposes as
long as each factor has efficient closed-form formulas for the
quantities of interest (Gu et al. 2018).

2We use i ∈ [m] as a short-hand for i ∈ {1, 2, . . . ,m}.
3∇R

x denotes the Riemannian gradient at x. See Appendix A.
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Measuring Curvature around Embeddings. Curvature
properties are central to our work since they set apart the
matrix manifolds discussed in Section 3. Recall that any man-
ifold locally resembles Euclidean space. Hence, several ways
of quantifying the actual space curvature between embed-
dings have been proposed; see Appendix C for an overview.
One which we find more convenient for analysis and pre-
sentation purposes, because it yields bounded and easily in-
terpretable values, is based on sums of angles in geodesic
triangles formed by triples x, y, z ∈M,

kθ(x, y, z) = θx,y + θx,z + θy,z, with (2)

θx1,x2
= cos−1

〈u1, u2〉x3

‖u1‖x3
‖u2‖x3

, u{1,2} = logx3
(x{1,2}).

It takes values in the intervals [0, π] and [π, 3π], in hyperbolic
and elliptical spaces, respectively. In practice, we look at
empirical distributions of kθ = (kθ − π)/2π, with values in
[−0.5, 0] and [0, 1], respectively, obtained by sampling triples
(x, y, z) from an embedding set {yi}ki=1.

3 Matrix Manifolds for Graph Embeddings
We propose two families of matrix manifolds that lend them-
selves to computationally tractable Riemannian optimization
in our graph embedding framework.4 They cover negative and
positive curvature ranges, respectively, resembling the rela-
tionship between hyperbolic and hyperspherical spaces. Their
properties are summarized in Table 1. Details and proofs are
included in Appendix D.

Non-positive Curvature: SPD Manifold
The space of n× n real symmetric positive-definite matrices,
S++(n) := {A ∈ S(n) : 〈x,Ax〉 > 0 for all x 6= 0}, is an
n(n+1)

2 -dimensional differentiable manifold – an embedded
submanifold of S(n), the space of n×n symmetric matrices.
Its tangent space can be identified with S(n).

Riemannian Structure. The most common Riemannian
metric endowed to S++(n) is 〈P,Q〉A = TrA−1PA−1Q.
Also called the canonical metric, it is motivated as being
invariant to congruence transformations ΓX(A) = X>AX ,
with X an n × n invertible matrix (Pennec, Fillard, and
Ayache 2006). The induced distance function is5

d(A,B) =

√√√√ n∑
i=1

log2
(
λi(A−1B)

)
. (7)

It is equivalent to the more compact expression (5). It can be
interpreted as measuring how well A and B can be simulta-
neously reduced to the identity matrix (Chossat and Faugeras
2009).

4Counterexamples include the low-rank and the (compact)
Stiefel manifolds, which lack closed-form distance functions.

5We use λi(X) to denote the ith eigenvalue of X in some arbi-
trary but fixed order (or when the order is not important).

Properties. The canonical SPD manifold has non-positive
sectional curvature everywhere (Bhatia 2009). It is also a
high-rank symmetric space (Lang 2012). The high-rank prop-
erty tells us that there are at least planes of the tangent space
on which the sectional curvature vanishes. Contrast this with
the hyperbolic space which is also a symmetric space but
where the only (intrinsic) flats are the geodesics. At the same
time, and still in contrast, the sectional curvatures of the
SPD manifold at each point are not bounded from below.
Moreover, only one degree of freedom can be factored out
of the manifold S++(n): it is isometric to S++∗ (n)× R, with
S++∗ (n) := {A ∈ S++(n) : det(A) = 1}, an irreducible man-
ifold (Dolcetti and Pertici 2018). Hence, S++ achieves a mix
of flat and negatively-curved areas that cannot be obtained
via other Riemannian Cartesian products.

Alternative Metric. A popular function that is commonly
used in lieu of the squared canonical distance is the symmetric
Stein divergence,

S(A,B) := log det
(A+B

2

)
− 1

2
log det(AB). (8)

It has been thoroughly studied in (Sra 2012; Sra and Hosseini
2015) who prove that

√
S is a metric and that S(A,B) shares

many properties of the Riemannian distance function (5) such
as congruence and inversion invariances as well as geodesic
convexity in each argument. It is particularly appealing for
backpropagation-based training due to its computationally
efficient gradients (see below). Hence, we experiment with
it too when matching graph metrics. We note that, although
a valid squared-metric, S does not respect the geometry of
the SPD manifold (in the sense of identity (1), for instance),
but that is not a problem as our approach to embedding only
necessitates a measure of dissimilarity between data points
that is differentiable.

Computational Aspects. We compute gradients via auto-
matic differentiation (Paszke et al. 2017). Nonetheless, notice
that ifA = UDU> is the eigendecomposition of a symmetric
matrix with distinct eigenvalues and L is some loss function
that depends on A only via D, then ∂L

∂A = U ∂L
∂DU

> (Giles
2008). Computing geodesic distances requires the eigenval-
ues of A−1B, though, which may not be symmetric. We
overcome that by using the matrix A−1/2BA−1/2 instead
which is SPD and has the same spectrum. Moreover, for
the 2 × 2 and 3 × 3 cases, we use closed-form eigenvalue
formulas to speed up our implementation.6 For the Stein di-
vergence, the gradients can be computed in closed form as
∇AS(A,B) = 1

2 (A+B)−1 − 1
2A
−1. We additionally note

that many of the required matrix operations can be efficiently
computed via Cholesky decompositions (Appendix D).

Non-negative Curvature: Grassmann Manifold
The orthogonal groupO(n) is the set of n×n real orthogonal
matrices. It is a special case of the compact Stiefel manifold

6This could be done in theory for n 6 4 – a consequence of
the Abel-Ruffini theorem from algebra. However, for n = 4 the
formulas are outperformed by numerical eigenvalue algorithms.
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Property Expression SPD S++(n) Grassmann Gr(k, n)

Dimension dim(M) n(n+ 1)/2 k(n− k)

Tangent space TAM {A ∈ Rn×n : A = A>} {P ∈ Rn×k : A>P = 0}
Projection πA(P ′) (P ′ + P ′>)/2 (Idn−AA>)P ′

Riem. metric 〈P,Q〉A TrA−1PA−1Q (3) TrP>Q (4)

Riem. gradient ∇RA AπA(∇EA)A πA(∇EA)

Geodesic γA;P (t) A exp(tA−1P ) [AV U ] [cos(tΣ) sin(tΣ)]V > with P = UΣV >

Retraction RA(P ) A+ P + 1
2PA

−1P UV > with A+ P = UΣV

Log map logA(B) A log(A−1B) UΣV > with
[

A>B(
Idn−AA>

)
B

]
=

[
V cos(Σ)V >

U sin(Σ)V >

]
Riem. distance d(A,B)

∥∥log(A−1B)
∥∥
F

(5)
√∑k

i=1 θ
2
i with A>B = U diag

(
cos(θi)

)
V > (6)

Table 1: Summary of Riemannian geometric tools for the SPD (Bhatia 2009) and Grassmann (Edelman, Arias, and Smith 1998;
Zhang et al. 2018) manifolds. Notation: A,B – manifold points; P,Q – tangent space points; P ′ – ambient space point; exp(A)
/ log(A) – matrix exponential / logarithm.

V (k, n) := {A ∈ Rn×k : A>A = Idk}, i.e., the set of n×k
“tall-skinny” matrices with orthonormal columns, for k 6 n.
The Grassmannian is defined as the space of k-dimensional
linear subspaces of Rn. It is related to the Stiefel manifold in
that every orthonormal k-frame in Rn spans a k-dimensional
subspace of the n-dimensional Euclidean space. Similarly, ev-
ery such subspace admits infinitely many orthonormal bases.
This suggests the identification of the Grassmann manifold
Gr(k, n) with the quotient space V (k, n)/O(k) (more about
quotient manifolds in Appendix A). In other words, an n× k
orthonormal matrix A ∈ V (k, n) represents the equivalence
class [A] = {AQk : Qk ∈ O(k)} ∼= span(A), which is a
single point on Gr(k, n).

Riemannian Structure. The canonical Riemannian metric
of Gr(k, n) is simply the Frobenius inner product (4). We
refer to (Edelman, Arias, and Smith 1998) for details on how
it arises from its quotient geometry. The closed form formula
for the Riemannian distance, shown in (6), depends on the set
{θi}ki=1 of so-called principal angles between two subspaces.
They can be interpreted as the minimal angles between all
possible bases of the two subspaces (Zhang et al. 2018).

Properties. The Grassmann manifold Gr(k, n) is a com-
pact, non-negatively curved manifold. As shown in (Wong
1968), its sectional curvatures at A ∈ Gr(k, n) satisfy
KA(P,Q) = 1 (for k = 1, n > 2) and 0 6 KA(P,Q) 6 2
(for k > 1, n > k), for all P,Q ∈ TAGr(k, n). Contrast
this with the constant positive curvature of the sphere which
can be made arbitrarily large by making R→ 0.

Computational Aspects. Computing a geodesic distance
requires the SVD decomposition of an k × k, matrix which
can be significantly smaller than the manifold dimension
k(n − k). For k = 2, we use closed-form solutions for sin-

gular values. See Appendix D for details. Otherwise, we
employ standard numerical algorithms. For the gradients, a
result analogous to the one for eigenvalues from earlier (Giles
2008) makes automatic differentiation straight-forward.

4 Decoupling Learning and Evaluation
Recall that our goal is to preserve the graph structure given
through its node-to-node shortest paths by minimizing a loss
which encourages similar relative7 geodesic distances be-
tween node embeddings. Recent related work broadly uses
local or global loss functions that focus on either close neigh-
borhood information or all-pairs interactions, respectively.
The methods that fall under the former emphasize correct
placement of immediate neighbors, such as the one used
in (Nickel and Kiela 2017) for unweighted graphs:

Lneigh(Y ) = −
∑

(i,j)∈E

log
exp

(
− dM(yi, yj)

)∑
k∈N (i)

exp
(
− dM(yi, yk)

) .
(9)

Those that fall under the latter, on the other hand, compare
distances directly via loss functions inspired by generalized
MDS (Bronstein, Bronstein, and Kimmel 2006), e.g.,8

Lstress(Y ) =
∑
i<j

(
dG(xi, xj)− dM(yi, yj)

)2
,

or Ldistortion(Y ) =
∑
i<j

∣∣∣∣d2M(yi, yj)

d2G(xi, xj)
− 1

∣∣∣∣. (10)

7An embedding satisfying dM(yi, yj) = αdG(xi, xj) (for all
i, j ∈ [m]), for α > 0, should be perfect.

8Note that Lstress focuses mostly on distant nodes while Ldistortion
yields larger values when close ones are misrepresented. The latter
is one of several objectives used in (Gu et al. 2018) (as per their
code and private correspondence).
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The two types of objectives yield embeddings with different
properties. It is thus not surprising that each one of them
has been coupled in prior work with a preferred metric quan-
tifying reconstruction fidelity. The likelihood-based one is
evaluated via the popular rank-based mean average precision
(mAP), while the global, stress-like ones yield best scores
when measured by the average distortion (AD) of the refer-
ence metric. See, e.g., (De Sa et al. 2018) for their definitions.

To decouple learning and evaluation, as well as to get both
fairer and more informative comparisons between embed-
dings spaces, we propose to optimize another loss function
that allows explicitly moving in a continuous way on the repre-
sentation scale ranging from “local neighborhoods patching,”
as encouraged by (9), to the global topology matching, as
measured by those from (10). Similarly, we propose a more
fine-grained ranking metric that makes the trade-off clearer.

RSNE – Unifying Two Disparate Regimes. We advocate
training embeddings via a version of the celebrated Stochas-
tic Neighbor Embedding (SNE) (Hinton and Roweis 2003)
adapted to the Riemannian setting. SNE works by attaching
to each node a distribution defined over all other nodes and
based on the distance to them. This is done for both the input
graph distances, yielding the ground truth distribution, and
for the embedding distances, yielding the model distribution.
That is, with j 6= i, we have

pij := p(xj | xi) =
exp

(
− d2G(xi, xj)/T

)
Zpi

and qij := q(yj | yi) =
exp

(
− d2M(yi, yj)

)
Zqi

, (11)

where Zpi and Zqi are the normalizing constants and T is
the input scale parameter. The original SNE formulation uses
M = Rn. In this case, the probabilities are proportional to an
isotropic Gaussian N (yj | yi, T ). As defined above, it is our
(natural) generalization to Riemannian manifolds – RSNE.
The embeddings are then learned by minimizing the sum of
Kullback-Leibler (KL) divergences between pi := p(· | xi)
and qi := q(· | yi): LSNE(Y ) :=

∑m
i=1 DKL

[
pi ‖ qi

]
. For

T → 0, it is easy to show that it recovers the local neigh-
borhood regime from (9). For a large T , the SNE objective
tends towards placing equal emphasis on the relative dis-
tances between all pairs of points, thus behaving similar to
the MDS-like loss functions (10) (Hinton and Roweis 2003,
Section 6). What we have gained is that the temperature pa-
rameter acts as a knob for controlling the optimization goal.

F1@k – Generalizing Ranking Fidelity. We generalize
the ranking fidelity metric in the spirit of mAP@k (e.g., (Gu
et al. 2018)) for nodes that are k hops away from a source
node, with k > 1. Recall that the motivation stems, for one,
from the limitation of mean average precision to immediate
neighbors, and, at the other side of the spectrum, from the sen-
sitivity to absolute values of non-ranking metrics such as the
average distortion. For an unweighted9 graph G, we denote

9We have mostly used unweighted graphs in our experiments,
so here we restrict the treatment as such.

by LG(u; k) the set of nodes that are exactly k hops away
from a source node u (i.e., “on layer k”), and by BG(v;u)
the set of nodes that are closer to node u than another node
v. Then, for an embedding f : G →M, the precision and
recall of a node v in the shortest-path tree rooted at u, with
u 6= v, are given by

P (v;u) :=
|BG(v;u) ∩ BM(f(v); f(u))|

|BM(f(v); f(u))|

and R(v;u) :=
|BG(v;u) ∩ BM(f(v); f(u))|

|BG(v;u)|
. (12)

They follow the conventional definitions. For instance, the
numerator is the number of true positives: the nodes that
appear before v in the shortest-path tree rooted at u and,
at the same time, are embedded closer to u than v is. The
definition of the F1 score of (u, v), denoted by F1(v;u),
follows naturally as the harmonic mean of precision and
recall. Then, the F1@k metric is obtained by averaging the
F1 scores of all nodes that are on layer k > 1, across all
shortest-path trees. That is, with c(k) =

∑
u∈G|LG(u; k)|,

F1(k) :=
1

c(k)

∑
u∈G

∑
v∈LG(u;k)

F1(v;u). (13)

This draws a curve {(k, F1(k))}k∈[d(G)], where d(G) is the
diameter of the graph.

5 Experiments
We restrict our experiments here to evaluating the graph re-
construction capabilities of the proposed matrix manifolds
relative to the constant curvature baseline spaces. A thor-
ough analysis via properties of nearest-neighbor graphs con-
structed from points picked randomly from the manifolds,
inspired by (Krioukov et al. 2010), is included in Appendix
E. It shows that the two matrix manifolds often lead to dis-
tinctive network structures.

Training Details & Evaluation. We start by computing
all-pairs shortest-paths in all input graphs, performing max-
scaling, and serializing them to disk. Then, for each manifold,
we optimize a set of embeddings for several combinations of
optimization settings and loss functions, including both the
newly proposed Riemannian SNE, for several values of T ,
and the ones used in prior work (Section 4). Finally, because
we are ultimately interested in the representation power of
each embedding space, we report the best F1@1, area under
the F1@k curve (AUC), and average distortion (AD), across
those repetitions. This is in line with the experimental frame-
work from prior works (Nickel and Kiela 2017; Gu et al.
2018) with the added benefit of treating the objective func-
tion as a nuisance. Training times are about two times longer
due to the more complex operations involved in computing
pairwise distances. More details are included in Appendix F.

Synthetic Graphs. We begin by showcasing the RSNE
objective and the F1@k metric for several generated grap
(Figure 2). On the 10×10×10 grid and the 1000-nodes cycle
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Figure 2: F1@k curves (left y-axis) and PMFs of node pairs
per hop count (right y-axis) for several synthetic graphs. The
objective was RSNE at high temperature T .

all manifolds perform well. This is because every Rieman-
nian manifold generalizes Euclidean space and Euclidean
geometry suffices for grids and cycles (e.g., a cycle looks
locally like a line). The more discriminative ones are the
two other graphs – a full balanced tree (branching factor
r = 4 and depth h = 5) and a cycle of 10 trees (r = 3 and
h = 4). The best performing embeddings involve a hyper-
bolic component while the SPD ones rank between those and
the non-negatively curved ones (which are indistinguishable).
The results confirm our expectations: (more) negative cur-
vature is useful when embedding trees. Finally, notice that
the high-temperature RSNE regime used here encourages
the recovery of the global structure (high AUC F1@k) more
than the local neighborhoods (low individual F1@k values
for small k).

Non-positive Curvature. We compare the Euclidean, hy-
perbolic, and SPD spaces on several real datasets in Table 2.
We include visualizations of them in Figures 1 and 3. For
the SPD manifold, we experiment with both the canonical
distance function and the (related) S-divergence as model
metrics. When performing Riemannian optimization, we use
the same canonical Riemannian tools (as per Table 1). More
details about the graphs and an analysis of their geometric
properties are attached in Appendix G. Extended results are
included in Appendix H. First of all, we see that the (partial)
negative curvature of the SPD and hyperbolic manifolds is
beneficial: they outperform the flat Euclidean embeddings in
almost all scenarios. This can be explained by the apparent
scale-free nature of the input graphs (Krioukov et al. 2010).
Second, we see that especially when using the S-divergence,
which we attribute to the better-behaved optimization task
thanks to its geodesic convexity and stable gradients (see Sec-
tion 3), the SPD embeddings achieve significant improve-

Graph Dim Manifold F1@1 AUC Avg. Dist.

fa
ce

bo
ok

3

Euc 70.28 95.27 0.193
Hyp 71.08 95.46 0.173
SPD 71.09 95.26 0.170
Stein 75.91 95.59 0.114

6

Euc 79.60 96.41 0.090
Hyp 81.83 96.53 0.089
SPD 79.52 96.37 0.090
Stein 83.95 96.74 0.061

w
eb

-e
du

3

Euc 29.18 87.14 0.245
Hyp 55.60 92.10 0.245
SPD 29.02 88.54 0.246
Stein 48.28 90.87 0.084

6

Euc 49.31 91.19 0.143
Hyp 66.23 95.78 0.143
SPD 42.16 91.90 0.142
Stein 62.81 96.51 0.043

bi
o-

di
se

as
om

e

3

Euc 83.78 91.21 0.145
Hyp 86.21 95.72 0.137
SPD 83.99 91.32 0.140
Stein 86.70 94.54 0.105

6

Euc 93.48 95.84 0.073
Hyp 96.50 98.42 0.071
SPD 93.83 95.93 0.072
Stein 94.86 97.64 0.066
po

w
er

3

Euc 49.34 87.84 0.119
Hyp 60.18 91.28 0.068
SPD 52.48 90.17 0.121
Stein 54.06 90.16 0.076

6

Euc 63.62 92.09 0.061
Hyp 75.02 94.34 0.060
SPD 67.69 91.76 0.062
Stein 70.70 93.32 0.049

Table 2: The results for “S++ vs. H”. The better results are
in bold. The “Stein manifold” is SPD trained with the Stein
divergence (see text). The F1@1 and AUC metrics are multi-
plied by 100.

ments on the average distortion metric and are competitive
and sometimes better on the ranking metrics.

How Do the Embeddings Curve? Since any manifold lo-
cally resembles Euclidean space, it is a priori unclear to what
extent its theoretical curvature is leveraged by the embed-
dings. To shed light on that, we employ the analysis tech-
nique based on sum-of-angles in geodesic triangles from Sec-
tion 2. We recognize in Figure 4 a remarkably consistent
pattern: the better performing embeddings (as per Table 2)
yield more negatively-curved triangles. Notice, for instance,
the collapsed box plot corresponding to the “web-edu” hyper-
bolic embedding (a), i.e., almost all triangles sampled have
sum-of-angles close to 0 . This is explained by its obvious
tree-like structure (Figure 3a). Similarly, the SPD-Stein em-
bedding of “facebook” outperforms the hyperbolic one in
terms of F1@1 and that reflects in the slightly more stretched
box plot (b). Moreover, the pattern applies to the best average-
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(a) “web-edu” (b) “bio-diseasome” (c) “road-minnesota”

Figure 3: The graphs embedded in Tables 2 and 3. The graph “facebook” is shown in Figure 1.
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Figure 4: Distributions of (normalized) sum-of-angles in
geodesic triangles formed by the learned embeddings that
yield the best F1@1 metrics (up) and the best average distor-
tion metrics (down), for all datasets from Table 2, for n = 3.
10000 triples are sampled.

distortion embeddings, where the SPD-Stein embeddings are
the only ones that make non-negligible use of negative cur-
vature and, hence, perform better – the only exception is the
“power” graph (c), for which indeed Table 2 confirms that the
hyperbolic embeddings are slightly better.

Compact Embeddings. We embed several graphs with
traits associated with positive curvature in Grassmann man-
ifolds and compare them to spherical embeddings. Table 3
shows that the former yields non-negligibly lower average
distortion on the “cat-cortex” dissimilarity dataset (Scannell,
Blakemore, and Young 1995) and that the two are on-par
on the “road-minnesota” graph (displayed in Figure 3c – no-
tice its particular structure, characterized by cycles and low
node degrees). As a general pattern, though, we find learning
compact embeddings to be optimization-unfriendly (i.e., the
results are quite sensitive to the optimization settings).

Dim Manifold F1@1 Avg. Dist.
(road-minnesota) (cat-cortex)

2

Euc 79.01 0.288
Hyp 79.46 0.264
Sphere 82.19 0.255
Gr(1, 3) 78.91 0.234

3

Euc 89.58 0.200
Hyp 89.60 0.197
Sphere 89.55 0.195
Gr(1, 4) 90.02 0.168

4

Euc 93.66 0.150
Hyp 93.39 0.153
Sphere 93.65 0.156
Gr(1, 5) 93.89 0.139
Gr(2, 4) 94.01 0.129

Table 3: Some results for “Gr vs. S”. We show the two
metrics on two datasets that are the most discriminative. The
full results, following the Table 2 format, are in Appendix H.

6 Conclusion & Future Work
We proposed to use the SPD and Grassmann manifolds for
learning representations of graphs and showed that they are
competitive against previously considered constant-curvature
spaces on the graph reconstruction task, consistently and
significantly outperforming them in some cases. Our results
suggest that their geometry can accommodate certain graphs
with better precision and less distortion than other embedding
spaces. We thoroughly described their properties, emphasiz-
ing those that set them apart, and worked out the practically
challenging aspects. Moreover, we advocate the Riemannian
SNE objective for learning embeddings as a way to unify
two different families of loss functions used in recent related
works. It allows practitioners to explicitly tune the desired
optimization goal by adjusting the temperature parameter.
Finally, we defined the F1@k metric as a more general way
of quantifying ranking fidelity.

Our work is related to some fundamental research ques-
tions. How does the curvature of a manifold influence the
types of metrics that it can represent? How would a faithful
embedding influence downstream tasks, such as node classi-
fication or link prediction? These are some of the questions
we are excited about and plan to pursue in future work.

7139



Acknowledgements
We would like to thank Andreas Bloch for suggesting the
curvature quantification approach based on the sum of angles
in geodesic triangles. We are grateful to Prof. Thomas Hof-
mann for making this collaboration possible. We thank the
anonymous reviewers for helping us improve this work.

Gary Bécigneul is funded by the Max Planck ETH Center
for Learning Systems.

Broader Impact
Our research deals with a deeply technical question: how
can we leverage geometry to better represent graphs? It is
also part of a nascent area of machine learning that tries
to improve existing methods by bringing forward geometry
tools and theories which have been known in mathematics
for a (relatively) long time. That being said, should it later
materialize into practically useful applications, its impact
can be significant. That is due to the ubiquity of graphs as
models of data and the possibility for our research to improve
graph-based models. To give several examples, our research
can have a broader impact in network analysis (in particular,
social networks), working with biological data (e.g., proteins,
molecules), or learning from knowledge graphs. The impact
of our work can be beneficial, for instance, when having more
faithful graph models can lead to improved recommender sys-
tems or drug discovery. However, we emphasize that current
models might suffer from various other modes of failure
and, thus, are not capable of replacing human expertise and
intervention.
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curvature representations in product spaces. In International
Conference on Learning Representations.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive rep-
resentation learning on large graphs. In Advances in neural
information processing systems, 1024–1034.
Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep convo-
lutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163 .

7140



Hinton, G. E.; and Roweis, S. T. 2003. Stochastic neighbor
embedding. In Advances in neural information processing
systems, 857–864.

Hofmann, T.; and Buhmann, J. 1995. Multidimensional scal-
ing and data clustering. In Advances in neural information
processing systems, 459–466.

Huang, Z.; and Van Gool, L. 2017. A riemannian network
for spd matrix learning. In Thirty-First AAAI Conference on
Artificial Intelligence.

Huang, Z.; Wu, J.; and Van Gool, L. 2018. Building deep
networks on Grassmann manifolds. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; and
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