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Abstract

Safety validation is important during the development of
safety-critical autonomous systems but can require significant
computational effort. Existing algorithms often start from
scratch each time the system under test changes. We apply
transfer learning to improve the efficiency of reinforcement
learning based safety validation algorithms when applied to
related systems. Knowledge from previous safety validation
tasks is encoded through the action value function and trans-
ferred to future tasks with a learned set of attention weights.
Including a learned state and action value transformation for
each source task can improve performance even when sys-
tems have substantially different failure modes. We conduct
experiments on safety validation tasks in gridworld and au-
tonomous driving scenarios. We show that transfer learning
can improve the initial and final performance of validation
algorithms and reduce the number of training steps.

Introduction
Introducing autonomy into safety-critical domains, such as
autonomous driving, aviation, and medicine, has the poten-
tial to improve both safety and efficiency. The consequences
of operational errors of these systems include loss of prop-
erty or human life, so extensive safety validation and test-
ing is required before deployment. Black-box sampling ap-
proaches have emerged as a scalable safety validation tool
for discovering failures in complex environments. Many al-
gorithms for safety validation have been explored in the lit-
erature (Corso et al. 2020), often with the goal of finding
failures of a system with fewer samples or less computa-
tional effort. There has been little focus on the potential ef-
ficiency of validating many related systems sequentially.

Designing and certifying safety-critical systems generally
involves assessing a sequence of closely related systems.
Safety validation of complex systems often requires signifi-
cant computational effort and existing approaches generally
start from scratch each time the system under test is changed.
The need to frequently perform safety validation on related
systems therefore imposes a large computational burden, but
also an opportunity to improve safety validation efficiency.

To improve the efficiency of safety validation across re-
lated systems, we use knowledge from the validation of pre-
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vious systems to inform the validation of the next system.
We formulate iterative safety validation as a transfer learn-
ing problem by modeling each safety validation task as a
Markov decision process. The previously solved tasks are
used as the set of source tasks, and we transfer knowledge to
future tasks in the form of action value functions. We use
state-dependent attention weights to learn which previous
solutions are applicable to the current problem.

Existing safety validation algorithms use approaches from
optimization (Mathesen et al. 2019), path-planning (Zutshi
et al. 2014), reinforcement-learning (Lee et al. 2020), and
importance sampling (Huang et al. 2017), and often only ad-
dress the validation of a single system. Uesato et al. (2019)
use previous versions of a system to train a failure classifier
that predicts which initial conditions of a system will lead
to failure, but their approach is not applicable to sequential
decision making problems of the type we consider. Wang,
Nair, and Althoff (2020) alternately train an agent and per-
form safety validation on it to improve robustness. On each
iteration, the safety validation algorithm starts with the pa-
rameters from the previous iteration to improve efficiency. In
fact, any parametric safety validation algorithm (Koren et al.
2018; Akazaki et al. 2018; Kim and Kochenderfer 2016)
could simply reuse parameters from previous tasks and then
fine-tune them for better performance. We demonstrate in
our experiments, however, that a fine-tuning approach often
fails to reach the same performance as starting from scratch.

To investigate the effectiveness of transfer learning in the
safety validation setting, we apply existing transfer learn-
ing algorithms to the problem. These include fine-tuning of
past solutions, and the attend, adapt, and transfer (A2T) al-
gorithm (Rajendran et al. 2017). When the systems we wish
to validate have dissimilar behavior, however, we find that
existing approaches can perform poorly. We propose a mod-
ification to A2T that transforms the state and action value
spaces for each source task to increase knowledge trans-
fer between dissimilar tasks. We evaluate the initial per-
formance, the final performance, and the number of train-
ing steps required to reach the same performance as a no-
transfer algorithm. We consider four iterative safety valida-
tion tasks in gridworld and autonomous driving scenarios
and demonstrate that transfer learning has the potential to
significantly improve the performance and sample efficiency
of safety validation algorithms.
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Background
In this section, we introduce Markov decision processes
(MDPs), discuss knowledge sharing between related MDPs,
and formulate safety validation as a sequence of MDPs.

Markov Decision Processes
A Markov decision process (MDP) (Kochenderfer 2015) is
a model for sequential decision making problems defined by
the tuple (S ,A, P ,R, γ). The state space S contains all pos-
sible states of the MDP and the action space A contains the
possible actions of a decision making agent. At each step,
the agent chooses an action and the MDP transitions to a
new state s′ with probability P (s′ | s, a) and receives a re-
ward r = R(s, a, s′) discounted by a factor γ for each step.
An agent’s behavior is controlled by a policy π that maps
states to actions such that a = π(s). The optimal policy π∗
maximizes the action value function Qπ(s, a), which is the
expected sum of discounted rewards by taking action a from
state s, and then following policy π.

There are many approaches to solving for π∗ (Sutton and
Barto 2018) but we focus on deep Q-learning (DQN) (Mnih
et al. 2015). In DQN, the optimal action value function is
approximated by a deep neural network with parameters θ,
Q(s, a; θ) ≈ Q∗(s, a). The Q-network tries to minimize the
loss with respect to a target network with parameters θ−.
The parameters are updated using gradient descent

θ ← θ − α∇θE[L(y(s′; θ−), Q(s, a; θ)] (1)

where α is the learning rate and loss function L can be the
squared error or the Huber loss (Huber 1992). The target is
y(s′; θ−) = r+γmax

a′
Q(s′, a′; θ−) when s′ is not terminal,

and y(s′; θ−) = r when s′ is terminal. The target network
parameters are periodically updated to θ after a specified
number of training steps. During training, the expectation
is computed from samples that are stored in an experience
replay buffer that is prioritized by the temporal difference
error of each sample (Schaul et al. 2016).

Transfer Learning
Transfer learning is concerned with using knowledge gained
by solving one task to improve the learning process in an-
other related task (Taylor and Stone 2009). In reinforce-
ment learning, each task is an MDP and each solution is a
policy. When tasks have different state and action spaces,
we require task mappings that relate the states and ac-
tions between tasks. Task mappings may be provided by
a human (Taylor, Stone, and Liu 2007) or learned from
data (Taylor, Kuhlmann, and Stone 2008). If the state and
action spaces are the same, then tasks can share a vari-
ety of low-level information such as experience samples
(s, a, s′, r), action value functions, policies, or models of
the environment. High-level information, such as a set of
options, shaping rewards or feature encodings, may also be
transferred to improve learning on a new task. One challenge
in transfer learning is negative transfer where knowledge
from one or more source tasks impairs the performance on
the current task. Negative transfer can be mitigated using an
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Figure 2: Model of the safety validation problem.

attention mechanism, or a human oracle that decides which
tasks are relevant (Taylor and Stone 2009).

Transfer learning algorithms can be evaluated against a
no-transfer alternative in a variety of ways (fig. 1). Jumpstart
is the amount of improvement before any training has oc-
curred, final performance is the difference between the best
performances achieved, and steps to threshold is the differ-
ence between the number of training steps required to reach
a specified threshold.

Safety Validation
Safety validation algorithms (fig. 2) search for sequences of
disturbances in an environment that cause an autonomous
system to fail (Kapinski et al. 2016; Corso et al. 2020).
At each step, the autonomous agent under test (or system)
makes an observation o ∈ O of the environment and decides
to take action a ∈ A. An adversary observes the state s ∈ S ,
then applies a disturbance x ∈ X with the goal of causing
the system to arrive in a set of failure states E ⊆ S .

Safety validation can be modeled as an MDP defined by
(S,X , P,R, γ) where S represents the possible states of
both the system and the environment, and X is the space of
possible disturbances controlled by the adversary. The tran-
sition function P (s′ | s, x) includes the action of the system
and the dynamics of the environment. The reward function
depends on the safety validation goal, and in this work we
solve for the most likely failure (Corso et al. 2020) with

R(s, x, s′) = λ log p(x | s) + 1 {s′ ∈ E} (2)

where λ is a small positive constant and p(x | s) is the prob-
ability of x occurring naturally in the environment.

Safety validation MDPs may differ in a variety of ways,
which we can explain using an example based on au-
tonomous driving. If validation is performed on two differ-
ent road geometries (e.g. highway-driving and an intersec-
tion), then the state space and disturbance space may be dif-
ferent. If we fix the road geometry, then the transition model
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may vary if we validate different driving policies. The re-
ward function will vary if the disturbance model changes or
we alter the set of failure states. In this work, we consider
systems with different behavior operating in similar envi-
ronments. We, therefore, assume that the state space, dis-
turbance space, and reward function remain fixed while the
transition model varies between tasks.

Proposed Approach
In this section, we first show how to formulate iterative
safety validation as a sequence of tasks and specify two ways
that knowledge transfer may occur. We then introduce A2T
as our choice of transfer learning algorithm and propose a
modification to it.

Problem Formulation
Suppose we are performing safety validation on a sequence
of related systems and must validate each system before ob-
serving the next one. We model this problem as solving a
sequence of MDPs (or tasks) [T1, T2, . . .] where the ith task
is given by Ti = (S,X , Pi, R, γ). Due to variations in sys-
tem behavior, the transition model Pi is unique to each task,
while S , X , R, and γ are shared across tasks. We wish to
develop a learning algorithm L that solves task i given the
i− 1 previous solutions [K1,K2, . . . ,Ki−1] such that

Ki = L(Ti;K1:i−1). (3)

The previous solutions may take the form of value functions
or policies. The learning procedure is iterative because the
new solutionKi can be added to the set of previous solutions
when solving the next task Ti+1. Since all previous solutions
are used, L must avoid negative transfer by learning which
source task solutions are applicable to the current task.

In the context of safety validation, we hypothesize two
qualitatively distinct ways that the tasks will be related. The
first case is that of a learning system which is improving its
performance from task to task. Each task is therefore more
challenging for the adversary since failures that were present
in previous tasks may no longer exist or may only occur due
to a narrower range of disturbances. In this context, the most
recent solutions are likely to provide the most relevant in-
formation and large parts of those solutions may be directly
applicable to the new task. The second case is that of com-
parable systems where the systems have a similar level of
competency but exhibit different behavior. Disturbance tra-
jectories that lead to failure for one system may not cause
failure in any other systems, although they might share sim-
ilar conceptual failure modes. In this setting, direct transfer
of solutions may be ineffective, and we need to rely on other
types of knowledge.

Choice of Learning Algorithm
To accelerate safety validation we use the attend, adapt, and
transfer (A2T) learning algorithm (Rajendran et al. 2017)
with a minor modification. A2T accelerates learning on a
new task by combining the solutions of k previous tasks us-
ing a learned set of state-dependent attention weights. To
avoid negative transfer, A2T simultaneously learns a solu-
tion from scratch so there are a total of k + 1 solutions and
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Figure 3: A2T network with state and action transformation.

as many attention weights. A2T can be used to estimate opti-
mal policies or optimal value functions and we found it most
straightforward to estimate the optimal action value func-
tion. When Q∗ is estimated by a neural network, called a
Q-network, the input is a vector representing the state and
the output is a vector representing the values of a discrete
set of disturbances. To make this clear, if X ⊆ Rm, then
Q̂(s) ∈ Rm, is a vector that represents the estimates of the
optimal values for each disturbance. The action value func-
tion is estimated by the expression

Q̂(s) = w0(s)Q̂base(s) +
k∑
i=1

wi(s)Q̂i(s) (4)

where Q̂i comes from the ith source task, Q̂base is learned
from scratch and wi(s) is the ith attention weight, normal-
ized so

∑m
i=0 wi(s) = 1.

To handle substantially different system behaviors (as in
the comparable systems setting), we propose a modification
of A2T where we include a learned transformation of the
state and action value function for each of the k previous
solutions. If the state space S ⊆ Rn, then we define a state
transformation as a function gs : Rn → Rn and an action
value transformation as a function gx : Rm → Rm. Applied
to the A2T algorithm, the action value estimate with state
and action space transformations is given by

Q̂(s) = w0(s)Q̂base(s) +
k∑
i=1

wi(s)g
(i)
x (Q̂i(g

(i)
s (s))) (5)

where g(i)s and g(i)x are the state and action value transforma-
tions for the ith source solution. In this work, we use linear
transformations because they are effective and simple.

The A2T algorithm with state and action value transfor-
mations can be encoded as the network architecture shown
in fig. 3. The state is used as input to the base network, the
source solutions, and the attention network. The base net-
work is a Q-network that learns from scratch. The k source
solutions are theQ-networks that represent the optimal solu-
tions of the source tasks. The source solutions are preceded
by a state transformation and followed by an action value
transformation. These transformations have the same output
dimension as input dimension and are initialized to the iden-
tity transformation (with a small amount of noise for break-
ing symmetry). The attention network has k+1 output units
with a softmax layer for normalization. TheQ values of each
source solution and the base network are weighted by the
corresponding attention weights and summed together to get
a final estimate. The network parameters from the base net-
work, attention network, and state and action value transfor-
mations are trained using DQN. If the source solutions are
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Figure 4: Knowledge transfer scenarios.

not differentiable with respect to the state then we would ap-
ply gradient free optimization (Kochenderfer and Wheeler
2019) to the state transformation.

Motivation. Here we provide some intuition for our
choice of transfer learning algorithm and the reason for the
state and action transformations. Suppose we are solving
a sequence of tasks (fig. 4), each is a gridworld where an
agent (blue circle) moves between adjacent squares attempt-
ing to achieve high reward (green squares) while avoiding
states with low reward (red squares). Given the optimal ac-
tion value function for a source MDP (fig. 4a), we wish to
transfer it to two related tasks. In the first transfer prob-
lem (fig. 4b), the reward distribution is locally similar to the
source MDP, and only differs in one state. In this case, a pol-
icy that works well in the source task will also work well in
the new task, especially when the agent is in a state where
the local reward landscape matches up (as depicted). A2T
will work well in this setting because it can quickly learn
attention weights that favor the source policy in most states,
and only require our baseline solution when the agent is near
the top right corner. In the second transfer problem (fig. 4c),
A2T is likely to behave poorly because there are no states in
which the source policy can be directly applied to achieve
high reward. If, however, we could transform the state space
by reflecting it across the diagonal and rotate the actions of
the agent by 90◦, then we could directly apply the source
policy. This is the motivation for applying transformations
both before and after the source solutions.

Experiments
This section describes two safety validation problems: a
gridworld scenario (GW) and an autonomous driving sce-
nario (AD). Each scenario has two transfer learning prob-
lems, one for validating a learning system that improves over
time, and the other for validating a set of comparable sys-
tems with different behaviors. We then describe the experi-
mental setup and how we compute the evaluation metrics.

Gridworld with Adversary
The first safety validation problem we model is a gridworld
with two agents, shown in fig. 5. The system is the agent
in blue who is trying to arrive at one of the squares with
positive reward while avoiding the adversary (orange agent).
Both agents are initialized randomly and can move to any
adjacent or diagonal state that is not a wall (marked as
black). As a safety validation MDP, the state is the grid lo-
cation of both agents and the disturbances are the actions of
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Figure 5: Gridworld with adversary scenario.

Figure 6: Autonomous driving scenario

the adversary: (up, down, left, right, up right, up left, down
right, down left, stay). At each step, the blue agent chooses
an action based on its policy and transitions to the appro-
priate state with probability 0.7 and transitions to a random
feasible state with probability 0.3. Meanwhile, the orange
agent transitions to the state specified by the disturbance x.
The episode ends when the blue agent arrives at a square
with positive reward or when the two agents collide in the
same state, which is a failure of the system. We model each
disturbance as equally likely to happen so we give a reward
of 1 for finding a failure and 0 otherwise.

We design two sets of tasks that correspond to the learn-
ing system and comparable systems settings. For the learn-
ing system, the blue agent is trained using DQN against an
orange agent that behaves randomly. Over 106 training steps,
10 versions of the system policy were stored, each with an
increasing level of performance. Each safety validation task
has the adversary validate an increasingly capable version
of the learning system. For the comparable systems setting,
each task has a different distribution of reward locations,
reward values and location of walls. The system learns an
optimal policy using dynamic programming (Kochenderfer
2015), assuming the adversary behaves randomly. Each sys-
tem is therefore equally competent, but some configurations
of the gridworld are more challenging than others.

Autonomous Vehicle
The second safety validation problem we model is an au-
tonomous vehicle navigating an intersection with a cross-
ing pedestrian, shown in fig. 6. The system is a vehicle
controlled by the intelligent driver model (IDM) (Kesting,
Treiber, and Helbing 2010), a rule-based driving policy that
avoids collisions, and we add a blind spot with a specified di-
rection and angular width. The vehicle tries to reach the end
of the road while yielding to the pedestrian. Both agents are
initialized randomly in a starting range of initial conditions.

As a safety validation MDP, the state is the position and
velocity of the agents and the disturbances are accelerations
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of the pedestrian. The pedestrian can accelerate up, down,
left, or right by 1m/s2 with probability 0.01 or have no ac-
celeration with probability 0.96. The velocity of the pedes-
trian is limited to an absolute value of 3m/s. At each step,
the vehicle chooses an acceleration based on the IDM rules
and the location of the pedestrian. The pedestrian accelera-
tion is specified by the choice of disturbance. Both agents
have their position and velocity updated deterministically
from their current state and acceleration. The episode ter-
minates when the vehicle reaches the end of the road safely
or a collision occurs between the pedestrian and the vehicle.
The reward function is given by eq. (2) where the set E de-
fined by any state where the vehicle and pedestrian overlap.

For the autonomous driving scenario, we also design two
sets of tasks corresponding to a learning system setting and
a comparable systems setting. Since the autonomous vehi-
cle does not use machine learning, we simulate an improve-
ment by progressively shrinking the blind spot of the vehi-
cle. The blind spot remains in the same direction (20◦ from
the horizontal), but reduces in width from 30◦ to 6◦ over
10 iterations. The vehicle therefore has a decreasing rate of
failures over the tasks but there is some overlap in failure
modes between adjacent tasks. For the comparable systems
setting, each system has a blind spot sampled uniformly at
random with a direction in the range [−30◦, 30◦] and an an-
gular width in the range [3◦, 9◦]. From a population of 30
tasks, we selected 9 tasks that differed substantially, to make
the transfer problem as challenging as possible within our
setting. Two tasks differed if the optimal safety validation
policy of one performs poorly on the other.

Experimental Setup
The experimental procedure is as follows. For each task in a
set of tasks, we solve for an optimalQ-network from scratch
using DQN with prioritized replay, double Q-learning (Has-
selt, Guez, and Silver 2016), and the Huber loss. We con-
struct a learning curve during training by periodically stor-
ing the evaluation of the Q-network. For the second task on-
ward, we then solve it using the same learning algorithm
with the following Q-network architectures:

• Fine-tune: Train the last layer of the previousQ-network.

• A2T: A2T architecture with previous Q-networks as the
source solutions.

• A2T+SAVT: A2T architecture augmented with linear
state and action value transformations.

The networks are initialized with Xavier initialization (Glo-
rot and Bengio 2010), while the transformations were ini-
tialized to the identity matrix with uniform random noise in
the range [-1× 10−3, 1× 10−3] added to the parameters to
break symmetry. Additional information on network archi-
tecture and hyperparameters is shown in table 1.

We filter each learning curve using a moving-average fil-
ter with a width of 20 evaluations steps to help remove the
noise due to finite sample evaluation and any outlier evalu-
ation points. For each learning curve we identify the near-
optimal performance as µ− σ, where µ and σ are the mean
and standard deviation of the performance in a window with

Parameter Value

Base network 3 hidden layers, [64, 32, 16] relus
Attention network 1 hidden layer, 16 relus
Training steps 3× 106

Batch size 64
Learning rate α 4× 10−5 (GW), 5× 10−5 (AD)
Target update frequency 2000 (GW), 3000 (AD)
Evaluation 300 episodes every 2000 steps
Exploration policy ε-greedy with ε ∈ [1, 0.1]

Table 1: Network architectures and hyperparameters.

a width of 100 evaluation steps around the point of max-
imum performance. We use near-optimal performance be-
cause it is a more stable measure of how fast the learning
took place than the point of maximum performance.

The jumpstart is the difference in initial performance be-
tween a transfer and no-transfer learning algorithms. It can
be computed from the first entries in the learning curves.
When reporting jumpstart, we only include fine-tuning and
A2T because A2T+SAVT has the same outputs as A2T un-
til the transformations deviate from identity. The final per-
formance is the difference in near-optimal performance be-
tween the transfer and no-transfer learning algorithms. The
steps to threshold metric measures how many training steps
are required for a transfer learning algorithm to reach the
near-optimal performance of the no-transfer algorithm.

The metrics are normalized with reference to the learn-
ing curve of the no-transfer algorithm because the initial and
near-optimal performance varies between tasks. Let y be the
performance (initial or final) of a transfer learning algorithm
and yref be the performance of the no-transfer learning al-
gorithm, then we report the fractional difference in perfor-
mance (y − yref)/|yref |. Let t be the number of training
steps required to reach a threshold for a transfer learning
algorithm and tref be the same quantity for the no-transfer
learning algorithm, then we report the ratio t/tref .

We use the number of training steps rather than the wall
clock time because we assume that the cost of running the
simulator is much larger than the cost of updating the pa-
rameters of the model. This is a good assumption for high-
fidelity simulators that are often used for validating safety-
critical systems. We also assume that the training time of
previous source tasks is a sunk cost and it is not included
in our efficiency metric. This assumption is valid in the case
of iterative safety validation because the new version of the
system must be validated regardless of the approach used.
When using A2T in a real-world setting, we would not solve
each task from scratch and therefore the source solutions
would take the form of A2T networks. A practitioner may
wish to compress the A2T network (Julian, Kochenderfer,
and Owen 2019) into a traditional architecture before it is
used as a source solution. We chose to use the networks
trained from scratch for ease of implementation and to iso-
late the effects of transfer learning from other issues.
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Figure 7: Evaluation metrics for the gridworld scenario with a learning system.
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Figure 8: Evaluation metrics for the gridworld scenario with comparable systems.
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Figure 9: Evaluation metrics for the autonomous driving scenario with a learning system.
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Figure 10: Evaluation metrics for the autonomous driving scenario with comparable systems.
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Results and Discussion
We solved each of the four safety validation tasks using 3
transfer learning algorithms and report the evaluation met-
rics against the task index in figs. 7 to 10. The discussion of
the results is grouped by evaluation metric.

Jumpstart. Figures 7a, 8a, 9a and 10a show the jump-
start of the fine-tune and A2T architectures. Across all four
safety validation problems, the transfer learning algorithms
contributed a significant increase in initial performance. For
most tasks, the A2T architecture had slightly better jump-
start than simply reusing the previous solution, especially in
fig. 8a. The gridworld with comparable systems had substan-
tially different failure modes between tasks and therefore
had the least benefit in jumpstart. The safety validation prob-
lems with learning systems had the jumpstart decrease with
the number of tasks observed, likely due to the increase in
difficulty of the tasks. For the safety validation problems in-
volving comparable systems, however, the jumpstart tended
to increase with the number of source tasks. We hypothesize
that with more source tasks, we are more likely to have a
task that closely matches the current tasks, and can there-
fore immediately have reasonable performance.

Final Performance. Figures 7b, 8b, 9b and 10b show the
final performance of each transfer learning algorithm. The
final safety validation performance can be significantly im-
proved by both A2T approaches, but not through fine-tuning.
In all but fig. 9b, the fine-tuning approach was not able to
match the no-transfer performance given the same number
of iterations. The lack of performance could mean that the
Q-network for one task is not learning a set of features that
is useful for solving other tasks, so updating only the final
layer does not provide enough capacity to solve the prob-
lem. The A2T networks, however, are able to achieve sig-
nificantly improved final performance, which generally in-
creases with the number of source tasks. The A2T network
with state and action value transformations outperforms the
basic A2T network in both safety validation problems with
comparable systems, which are the problems it was designed
for. Both of the safety validation problems with a learning
system show the maximal gain in final performance in the
middle of the sequence of tasks. A lower gain in early tasks
may be due to those tasks being easy to solve, while a lower
gain in the later tasks may be due to only having a few fail-
ure modes to exploit. The middle tasks may be challenging
to solve but may have a diversity of failure modes that the
previous policies can help identify. More experimentation is
needed to fully understand these trends.

Steps to Threshold. Figures 7c, 8c, 9c and 10c show the
number of training steps required to reach the near-optimal
performance of the no-transfer algorithm. In some cases
(and especially for the fine-tune approach), near-optimal
performance is never reached so those data points are omit-
ted from the plots. We observe that the number of training
steps can be reduced by both A2T networks, but in different

conditions. The basic A2T network performs well when val-
idating a learning system because parts of previous solutions
can be used directly. In fig. 7c, the number of training steps
on some tasks could be reduced by 50% and in fig. 9c the
number of training steps is reduced by more than an order of
magnitude in some cases.

The A2T network with state and action transformations
performs slightly worse than the basic A2T network in
fig. 7c and has similar performance in fig. 9c, but signifi-
cantly outperforms the A2T network for many tasks in the
comparable systems setting, which is the setting it was de-
signed for. In fig. 8c, the basic A2T network requires more
steps than the no-transfer algorithm, which negates the util-
ity of the more complex architecture, while the A2T+SAVT
network was able to reduce the number of training steps by
up to 50%. We note that generally, the fine-tune approach
is unable to achieve the same performance as learning from
scratch but when it does reach near-optimal performance, it
requires fewer training steps than learning from scratch.

Summary. From our experiments we conclude that trans-
fer learning can be an effective strategy for improving per-
formance and efficiency of safety validation algorithms.
Transfer through fine-tuning can give a significant increase
in jumpstart but often fails to reach the level of performance
of a Q-network trained from scratch. The A2T networks
also provides an increase in jumpstart as well as an increase
in final performance. The use of a small attention network
allows for quick adaptation to new domains as evidenced
by the reduction in the number of training steps required to
reach near-optimal performance. When the tasks differ sig-
nificantly from each other, however, the basic A2T network
may take longer than the no-transfer algorithm to reach near-
optimal performance. We fix this problem by introducing
state and action value transformations for each source solu-
tion and demonstrate improved training efficiency over the
no-transfer algorithm.

Conclusion
The validation of safety-critical autonomous systems is cru-
cial for their safe deployment. Existing algorithms for vali-
dation often start from scratch each time the system changes.
The nature of system design implies that safety validation
will be performed iteratively on related systems, and should
therefore benefit from past experience. We formulate iter-
ative safety validation as a transfer learning problem and
demonstrate improvements in both efficiency and perfor-
mance of transfer learning algorithms compared to a no-
transfer baseline. We augmented the attend, adapt, and trans-
fer algorithm with state and action value transformations to
allow for more transfer between disparate tasks. We eval-
uated jumpstart, final performance, and steps to threshold
metrics on four iterative safety validation problems in grid-
world and autonomous driving domains. Future work will
include exploring the failure modes discovered by each al-
gorithm to gain insights into how transfer is occurring. These
insights may help us understand under what conditions we
can expect performance and efficiency improvements.
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