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Abstract

Attention mechanism is crucial for sequential learning where
a wide range of applications have been successfully devel-
oped. This mechanism is basically trained to spotlight on the
region of interest in hidden states of sequence data. Most of
the attention methods compute the attention score through re-
lating between a query and a sequence where the discrete-
time state trajectory is represented. Such a discrete-time at-
tention could not directly attend the continuous-time trajec-
tory which is represented via neural differential equation
(NDE) combined with recurrent neural network. This paper
presents a new continuous-time attention method for sequen-
tial learning which is tightly integrated with NDE to construct
an attentive continuous-time state machine. The continuous-
time attention is performed at all times over the hidden states
for different kinds of irregular time signals. The missing in-
formation in sequence data due to sampling loss, especially
in presence of long sequence, can be seamlessly compensated
and attended in learning representation. The experiments on
irregular sequence samples from human activities, dialogue
sentences and medical features show the merits of the pro-
posed continuous-time attention for activity recognition, sen-
timent classification and mortality prediction, respectively.

Introduction
Learning representation of sequence data in spatial or tem-
poral domain is crucial (Chien 2019; Tseng et al. 2017).
The popular examples of sequence data include natural sen-
tences, video streams and medical signals. Most of them are
seen as time-series data although the sequences of spatial
samples in images are also recognized as the sequence data.
An essential solution to sequential learning is based on the
recurrent neural network (RNN) where the hidden states of
previous samples are continuously updated by a recurrent
machine, and seamlessly applied for prediction of next sam-
ple. One critical issue in sequential learning is to character-
ize the dynamics of sampling resolution in sequence data.
Generally, RNNs are feasible to learning representation for
regularly-sampled time-series data, while they are an awk-
ward fit to irregularly-sampled time series. However, irreg-
ular time-series data are very common in real world. For
example, in medical areas, we usually predict the health of
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a patient by using several biomedical signals acquired by
different sensors or diagnosis facilities where the sampling
resolutions in different signals are varied (Lipton, Kale, and
Wetzel 2016; Che et al. 2018; El Naqa et al. 2018; Chuang
et al. 2020). Some other practical applications in presence of
irregular-sampled data (Elman 1990) include financial mar-
keting (Bauer, Schölkopf, and Peters 2016), weather fore-
casting (Shi et al. 2015) and traffic engineering (Wang et al.
2017), to name a few. A key issue in these applications is
the missing data problem which is possibly caused due to
the facility cost or affected by machine anomaly. A naive
way to deal with this issue is to adopt the time difference
of sequence samples as a new feature input for RNN train-
ing. Alternatively, an attractive approach is to construct a
continuous-time machine based on neural differential equa-
tion (NDE) (Chen et al. 2018) where the continuous-time
hidden state space is constructed for learning representa-
tion similarly over the sequence data with unlimited length.
The discrete-time state transitions in RNN are generalized
to the continuous-time state dynamics by combining NDE
with RNN (Rubanova, Chen, and Duvenaud 2019). NDE is
then built as a strong model with rich sequence information
for prediction. NDE is seen as an RNN model for extremely
long sequence. NDE can tackle the weakness of RNN which
is deteriorated when the length of input sequence increases
(Bahdanau, Cho, and Bengio 2015). Nevertheless, the per-
formance of sequential learning is bounded because the rel-
evance or the importance of individual samples to target task
is neglected. This paper presents a continuous-time attention
scheme to strengthen the learning of irregular sampled data.

In general, attention mechanism can be powerful to cap-
ture the relevance information between a query and a doc-
ument or sequence which has been successfully developed
for a wide range of applications based on standard RNN
(Chien and Lin 2018; Chien and Wang 2019; Chien and Lin
2020). The document is formed as a matrix where each row
is a feature vector extracted from sequence data at different
time points. Then, the attention score is computed by using
a query vector and a document matrix. This paper presents a
novel continuous-time attention method for sequential learn-
ing where the attention is performed in continuous-time state
space based on NDE. Accordingly, the document is repre-
sented by a continuous function rather than a matrix. This
function represents the features at any desired time moments
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Figure 1: Illustration for continuous-time attention. The dif-
ficulty is to calculate the dot-product of two continuous
functions and integrate them to obtain context vector c(t̃).
t̃ is time index for query vector q(t̃). {tn}Nn=1 denote the
time points of sequence data {xtn}.

via continuous-time hidden states. The concept of calculat-
ing the continuous-time attention is depicted in Figure 1.
The difficulty in this calculation is that there is no previ-
ous attention method suitable to find attention weights by
using a continuous function for document. This paper tack-
les such a dilemma by representing both attention score and
context vector as continuous-time functions. Attention score
function is exploited to carry out the attention α(t) for the
whole state trajectory while context vector function reflects
the weighted sum of whole continuous-time hidden states
z(t). The merits of the proposed continuous-time attention
are illustrated by the experiments on action recognition and
medical data analysis as well as emotion recognition. We re-
port the results of the so-called attentive neural differential
equation (also denoted by Att-NDE) under different experi-
mental settings by comparing with RNN and NDE.

Related Works
The sequential learning methods with continuous-time state
machine and attention mechanism are first introduced.

Continuous-Time State Machine
Neural differential equation (Chen et al. 2018; Zhang et al.
2021) was proposed to build a continuous-time state ma-
chine for learning representation of sequence data {xtn}
where the time points {tn}Nn=1 are irregularly sampled.
NDE was implemented to learn the dynamics of transfor-
mation so as to characterize the state transition z(t) at
continuous-time t between input samples and output targets
based on an ordinary differential equation (ODE). This prob-
lem was solved by handling an ODE with initial value

dz(t)

dt
= f(z(t), t; θ), z (ti) = z (t0)+

∫ ti

t0

dz(t)

dt
dt (1)

where f is the function represented by neural network with
parameter θ, z(t0) denotes the initial state, and z(ti) denotes
the hidden state at a desirable time point ti. ODE solver is
introduced to deal with the integration as illustrated in Fig-
ure 2. The ODE solver, which is a tool to solve ODE ini-
tial value problem, is continuously applied to carry out the
continuous-time state z(t) at continuous time t in a range
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Figure 2: ODE solver for continuous-time state machine.

ODE function
Neural

Network

ODE Solver

Figure 3: Dynamic of hidden state z(t) in neural ODE.

between t1 and tN . A neural network is introduced to rep-
resent the derivative f for an unknown differential equation.
Figure 3 illustrates the dynamic from z(t) to z(t + 4t) in
a continuous-time state machine by using neural ODE or
simply denoted by NDE. ODE solver is adopted to resolve
the latent dynamic system in time-series data (Rubanova,
Chen, and Duvenaud 2019). This state machine calculates
the continuous-time hidden states z(t) between two discrete
observations xtn−1

and xtn by applying an ODE solver

ẑ(tn) = ODESolver (f, z(tn−1), tn−1, tn, θ) (2)

which is a function of neural network f with parameter θ,
start state z(tn−1), start time tn−1, and end time tn. NDE is
used to update hidden state by using an RNN cell

z(tn) = RNNCell(ẑ(tn),xtn). (3)

Here, the time index tn in brackets in z(tn) means continu-
ous time while that in subscript in xtn means discrete time.

Discrete-Time Attention Mechanism
Traditional attention mechanism was developed to elevate
the performance of sequential learning based on recurrent
neural network (Bahdanau, Cho, and Bengio 2015; Luong,
Pham, and Manning 2015; Su et al. 2018; Cao et al. 2018)
where the discrete-time hidden states {zj} (or {ztn}) from
the time-series observations {xj} were represented by a re-
current machine. The discrete-time attention is then imple-
mented by calculating the context vector ci corresponding
to a query vector qi at each discrete time i by using the at-
tention weights αi,j , which is yielded by a softmax function

ci =
N∑
j=1

αi,jzj , where αi,j =
exp(score(qi, zj))∑N
k=1 exp(score(qi, zk))

.

(4)
The inner product can be used to compute the matching
score between query qi and state zj , i.e. score(qi, zj) =
q>i zj , at discrete times i and j, respectively, where 1 ≤ j ≤
N . Once the context vector ci is calculated, the attended fea-
ture is usually obtained by the addition qi + ci. However,
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discrete-time attention scheme is infeasible to merge with
the continuous-time state machine.

Continuous-Time Attention
This study presents a new sequential learning strategy where
the continuous-time attention mechanism is seamlessly em-
ployed in continuous-time state machine. Figure 4 illus-
trates the conceptual difference between discrete-time at-
tention and continuous-time attention. The curves in the
bottom reflect the state trajectories z(tn) and ztn of ob-
servation sample xtn at different time points {tn}Nn=1 in
discrete-time and continuous-time state machines based on
RNN and NDE, respectively. NDE predicts the continuous-
time hidden states {z(tn−1), z(tn)} between two observa-
tions {xtn−1 ,xtn} which are more meaningful than those of
RNN where only the hidden states for specific time points
{tn−1, tn} are represented. Therefore, discrete-time atten-
tion is defined for finite number of hidden states zj while
continuous-time attention is performed for continuous state
function z(t). In what follows, we generalize the discrete-
time attention to the continuous-time attention. Finding the
context vector c(t̃) corresponding to a query vector q(t̃) us-
ing the summation is now extended to that using the integral.

Continuous-Time Generalization
In (Ramachandran et al. 2019; Cordonnier, Loukas, and
Jaggi 2020), self attention was interpreted as a kind of con-
volution calculation in convolutional neural network. In con-
trast, this work calculates the attention weights based on
the convolution operation which has been well defined in
discrete-time and continuous-time signal processing. First,
in discrete-time processing, the context vector c[ñ] is calcu-
lated by the convolution with attention weight αñ[n]

c[ñ] =

tN∑
n=t1

αñ[n]z[n], where αñ[n] = exp(q[ñ]>z[n]).

(5)
where ñ is the time index for query vector. Note that the
context vector is denoted as a time series c[ñ] with the same
time index as query vector q[ñ] which is defined as q[ñ] ,
qñ · δ[n′] where δ[n′] denotes the delta function. The score
function for finding attention weight is then obtained by

q[ñ]>z[n] =

tN∑
n′=t1

(qñ · δ[n′])>z[n+ n′] = q>ñ z[n]. (6)

Next step is to generalize Eq. (5) to calculate the context
vector using continuous-time convolution

c(t̃) =

∫ tN

t1

αt̃(t)z(t)dt (7)

where the summation is replaced by the integral over
continuous-time state trajectory z(t). t̃ indicates the time in-
dex of query vector. Attention weight is then generalized to

αt̃(t) = exp

(∫ tN

t1

(qt̃ · δ(t′))>z(t+ t′)dt′
)
. (8)

Similar to Eq. (6), the score function is written by∫ tN

t1

(qt̃ · δ(t′))>z(t+ t′)dt′ = q>t̃ z(t). (9)

Model Implementation
In the implementation, the integral operation in continuous-
time attention can be handled through ODE solver. Con-
sidering the ODE property, the solution is implemented by
modeling the dynamics of hidden state, context vector as
well as attention weight using neural networks. ODE solver
is introduced to find the solution to multiple dynamics at
the same time. To do so, we first rewrite Eq. (7) by meeting
the format of ODE solver. Time variable t is required. We
first compute the context vector c(t̃). An additional context
vector function C(t) is defined with the value in time point
tN such that C(tN ) = c(t̃). t is time variable while t̃ is a
fixed time point of a query. This continuous-time function is
particularly calculated by C(t) =

∫ t

t1
αt̃(τ)z(τ)dτ which is

reduced to Eq. (7) when time variable t equals to tN . The
meaning of time variable t is the continuous time that query
vector attends. Next, the context vector function is expressed
to fit the setting of ODE solver by using the start time t1 = 0
and following the Leibniz integral rule in a form of

dC(t)
dt

= αt̃(t)z(t) +

∫ t

0

∂αt̃(τ)z(τ)

∂t
= αt̃(t)z(t)

(10)
Note that the attention weight αt̃(t) defined in Eq. (8) is cal-
culated without performing normalization similar to softmax
function in Eq. (4) for discrete-time attention. However, the
context vector should be normalized by using the summa-
tion of all attention scores along various times. We there-
fore define another continuous function A(t) for attention
score function, which is used to represent the attention score
summing up to the current time t. To apply ODE solver, the
attention score function and its dynamic are expressed by

A(t) =

∫ t

0

αt̃(τ)dτ,
dA(t)

dt
= αt̃(t). (11)

Then, the normalization of context vector is performed via
the division C(t)/A(t). Finally, the solutions to differential
equations of hidden state, context vector and attention score
are simultaneously yielded by[

z(tn)
C(tn)
A(tn)

]
︸ ︷︷ ︸

solutions

=

[
z(tn−1)
C(tn−1)
A(tn−1)

]
+

∫ tn

tn−1

[
f(z(t), t; θ)
αt̃(t)z(t)
αt̃(t)

]
︸ ︷︷ ︸

dynamics

dt

(12)

where the initial conditions are given by z(t1) = xt1 ,
C(t1) = 0 and A(t1) = 0. Figure 5 illustrates how ODE
solver is applied to implement continuous-time attention.
The dynamic functions of z(t), C(t) and A(t) are used to
represent the hidden state trajectory, context vector function
and attention score function, respectively, which are various
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query query...

Figure 4: Comparison between discrete-time attention (left) and continuous-time attention (right). The discrete-time attention
score is calculated by summing the dot-products between query and documents at time points {t1, t2, t3}. But, the continuous-
time attention score is computed by integrating and interpolating via ordinary differential equation over continuous time t.
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Figure 5: ODE solver for continuous-time attention.

continuous-time functions with different markers and col-
ors. ODE solver is seen as a black box with inputs consist-
ing of neural network f , initial values z(t1), C(t1), A(t1)
as well as query q(t̃). This solver is implemented from
start time t1 to end time tN . The current time t is spot-
lighted. Notably, RNNs are continuously applied to update
z(t) once a new sample xtn is observed at time tn. Figure
6 shows the computation of derivatives or dynamics of vari-
ous continuous-time functions inside the proposed attentive
neural differential equation (Att-NDE). The ODE functions
f(z(t), t; θ), αt̃(t)z(t) and αt̃(t) are calculated to solve the
continuous-time functions z(t), C(t) and A(t), respectively.
The dot-product of query and hidden state is used to update
A(t) while the element-wise multiplication of current hid-
den state and derivative of attention score function is used to
update C(t). After finding three derivatives dz(t)

dt , C(t)dt and
A(t)
dt , the values of next time point t + 4t are obtained by

adding the current values with first-order derivatives. Algo-
rithm 1 shows the overall procedure of Att-NDE where the
continuous-time attention is performed by Algorithm 2. Ba-

ODE function

Neural
Network

query

ODE Solver

Figure 6: Dynamics of z(t), C(t) and A(t) in the attentive
neural differential equation.

sically, the continuous-time attention is obtained to attend
hidden states by computing the normalized context vector
between observations at time steps tn−1 and tn. The aug-
mented dynamic function faug is calculated as the gradients
of z(t), C(t) and A(t) as gz , gc and ga, respectively, which
are incorporated into ODE solver to find the corresponding
continuous-time functions between tn−1 and tn. ODE solver
is a kind of integrator to find the integrated dynamics at any
desired time instant t. RNN cell (Dupont, Doucet, and Teh
2019; Chien and Chen 2021; Chien and Ku 2015; Kuo and
Chien 2018) is then used to update hidden state from ẑ(tn)
to z(tn) when query point xtn (or q) is observed. The at-
tended feature z(tn) + C(tn)/A(tn) is then computed and
used to find classification output yn via the classifier layer
OutputNN(·). The classification loss is finally calculated and
optimized to train Att-NDE.

Algorithm 1: Attentive neural differential equation
Input the parameter θ, data points, time stamps
{(xtn , tn)}Nn=1, query xt̃

for each sample xtn at time tn do
{ẑ(tn), C(tn),A(tn)} =

CTA(θ, z(tn−1), C(tn−1),A(tn−1), tn−1, tn,xt̃)
z(tn) = RNNCell(ẑ(tn),xtn)

end
ytN = OutputNN(z(tN ) + C(tN )/A(tN ))
return ytN
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Algorithm 2: Continuous-time attention (CTA)
Input the parameter θ, initial values z(ttn−1), C(tn−1),
A(tn−1), start time tn−1, end time tn, query q

functionfaug(z(t), c(t)),a(t):
gz = f(z(t), t, θ)
ga = q>z(t)
gc = gaz(t)
return {gz,gc, ga}

end function
{ẑ(tn), C(tn),A(tn)} =

ODESolver(faug, z(tn−1), C(ttn−1),A(tn−1), tn−1, tn, θ)
return ẑ(tn), C(tn),A(tn)

Extension to Self Attention
Self attention has been popular in sequential learning tasks
(Vaswani et al. 2017). This paper presents a new self atten-
tion scheme based on the continuous-time state machine.
Attention is performed by treating all of data samples of a
sequence as query and working with the other samples of
the same sequence as key and value. The same sample is
transformed to find query, key and value using individual pa-
rameters. A general context vector ci based on discrete-time
attention is extended from Eq. (4) which is calculated by
dot-product (or matching score) between query Wqzi = qi

and key Wkzj = kj , softmax, and then multiplication with
value Wvzj = vj as

ci =
∑
j

exp(q>i kj)∑
k exp(q>i kk)

· vj . (13)

The continuous-time context vector function and the corre-
sponding dynamic using self attention are modified as

C(t) =

∫ t

0

exp(q(t̃)>k(τ)) · v(τ)dτ

dC(t)
dt

= exp(q(t̃)>k(t)) · v(t).

(14)

The attention score function and its dynamic are extended as

A(t) =

∫ t

0

exp(q(t̃)>k(τ))dτ,
dA(t)

dt
= exp(q(t̃)>k(t))

(15)
The continuous-time functions in numerator and denomina-
tor of Eq. (13) are calculated. Notably, self attention employs
individual transformations to obtain query qi, key kj and
value vj . However, using standard attention, input sample
xi is used as query and state variable zj is shared as key and
value. Discrete-time attention is correspondingly extended
to the continuous-time attention based on Eqs. (14)-(15).

Experiments
A set of experiments are conducted to evaluate the perfor-
mance of continuous-time attention in sequential learning.

Evaluation on Action Recognition
Human activity dataset (Kaluza et al. 2010) was used as
an action recognition task which contained irregular time

series from five individuals with 3D positions of tags to
their belt, chest and ankles. There were 12 observation fea-
tures and eleven different actions including walking, sitting,
lying, etc. For consistent comparison, we used the same
preprocessing method as (Rubanova, Chen, and Duvenaud
2019) and combined similar activities like “lying” and “ly-
ing down”, “sitting” and “sitting down”. Different meth-
ods adopted the same hyperparameter setting as (Rubanova,
Chen, and Duvenaud 2019). Number of training epoch was
200. Learning rate was initialized by 0.01 and decayed after
each iteration by multiplying 0.999. Adamax (Kingma and
Ba 2014) was used. Hidden state size was 15. Relative and
absolute tolerances were 1e-3 and 1e-4 for solver, respec-
tively. A six-layer fully-connected network was configured
as ODE function. One-layer GRU was used as RNN cell.
Classifier was built by three-layer fully-connected network.

It is important to investigate how the continuous-time at-
tention in Att-NDE is working. Figure 7 shows the atten-
tion score functionA calculated by ODE solver in four con-
ditions where different settings of dropping samples from
original sequence are considered. For the setting of drop-
ping three important points which are near to query, it is
found that Att-NDE can still pay attention in that miss-
ing region. High attention region is also extended. Att-NDE
can compensate the missing region via continuous-time at-
tention through the dynamic function. When dropping the
unimportant time points far from the query location, Att-
NDE simply ignores that region and obtains almost the same
attention scores compared with the scores by using full se-
quence. The last setting is the case of dropping a wide range
of samples. Interestingly, Att-NDE even attends the unim-
portant region. This case happens partially because the miss-
ing region is too large to ignore. Attention is needed in this
situation. Next, the continuous-time attention is evaluated by
comparing the predictions using NDE and Att-NDE. Table
1 shows that Att-NDE is robust to obtain comparable results
even when a wide range of samples are missing while NDE
could not preserve the predictions. Such a phenomenon still
happens in case of random dropping. This is because that
the attention mechanism in Att-NDE can capture the history
information to learn a reasonable state trajectory.

Table 2 compares the accuracy and parameter size of dif-
ferent methods. The work in (Rubanova, Chen, and Duve-
naud 2019) was trained by using time-invariant dynamics
dz(t)
dt = f(z(t), θ). Att-NDE carries out the time-variant dy-

namics in Eq. (1). The results of our implementation and that
work are both reported. ∆t implies the implementation by
treating time information as a new augmented feature. Basi-
cally, the discrete-time state machine with attention (RNN +
Att relative to RNN) was degraded. Next, the time-variant
and invariant dynamics with NDE (w/ and w/o time) are
compared. Time-variant dynamics work well. In addition,
we combine NDE with discrete-time attention mechanism to
examine the other two implementations NDE + Att (w/ and
w/o time). Interestingly, adding discrete-time attention does
not help, even degrades the performance of NDE (w/time)
setting. This is because that discrete-time attention could
not property characterize temporal information from irreg-
ular time series. Att-NDE achieves the highest accuracy
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Figure 7: Illustration of how continuous-time attention values (via the darkness of red) are affected by four cases. × denotes
the data samples at the corresponding time points. Red rectangular in time end is the query. The score functions are shown with
different settings containing full sequence (top left), sequence dropped by a slice of time points which are important (top right)
and unimportant (bottom left), and dropped by a wide range of samples (bottom right). Human activity dataset is used.

Model Prediction for two rows of sequence data

NDE 0 0 0 3 3 3 3 3 3 3 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Att-NDE 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

labels 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

NDE 0 0 0 3 3 3 3 3 3 3 3 – – – – – – – – – – 3 2 2 2
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

Att-NDE 1 1 1 1 1 1 1 1 1 1 6 – – – – – – – – – – 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

labels 3 3 1 1 1 1 1 1 1 1 1 – – – – – – – – – – 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

NDE 0 0 – 0 – – 0 0 0 0 0 0 – 0 0 – – 0 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 – 0 1 1 – 6 6 – 6 6 6 – 6 6 6

Att-NDE 1 1 – 1 – – 1 1 1 1 1 1 – 1 1 – – 1 1 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 – 6 6 6 – 6 6 – 6 6 6 – 6 6 1

labels 3 3 – 1 – – 1 1 1 1 1 1 – 1 1 – – 1 1 1 1 6 6 6 6
6 6 6 6 6 6 6 6 6 6 – 6 6 6 – 6 6 – 6 6 6 – 6 6 6

Table 1: Comparison of predictions using different models
and settings. From top to bottom are the predictions for full
sequence, dropping wide range of data, and dropping 10
time points randomly. 0:walking. 1:falling. 2:lying. 3:sitting.
4:standing up. 5:on all fours. 6:sitting on the ground.

even higher than latent ODE (Rubanova, Chen, and Duve-
naud 2019) which was the best among the previous methods.
Number of parameters is comparable for different NDEs.

Evaluation on Emotion Recognition
Multimodal EmotionLines Dataset (MELD) (Poria et al.
2019) contained the dialogue instances collected from
Friends TV series. Conventionally, the dialogue sequences
were treated as regular time series. However, each utter-
ance had different sequence lengths. Representing irregular
time series in a spoken dialogue (Chien and Lieow 2019;
Chien and Hsu 2020) is desirable for dialogue modeling.
MELD had not only text information but also audio and vi-
sual modalities. There were 1433 dialogues and 13708 ut-
terances. Each utterance in a dialogue was labeled by one of
seven emotions including anger, joy, neutral, etc. For prepro-
cessing procedure, the Glove embedding was employed to

Models Accuracy (%) Param

RNN ∆t 78.7 (79.7*) –
RNN ∆t + att 77.6 –
NDE (w/o time) 83.3 (82.9*) 1.13M
NDE (w/ time) 84.3 1.14M
NDE + att (w/o time) 83.5 1.13M
NDE + att (w/ time) 83.3 1.14M
Latent ODE 84.6 (84.6*) 1.70M
Att-NDE 86.8 1.13M

Table 2: Comparison of accuracy and number of parameters
on action recognition using different methods. * means the
result from (Rubanova, Chen, and Duvenaud 2019).

embed all tokens of an utterance, and then compute the av-
erage of those embeddings to represent the utterance. This
study ignored the audio and visual clips, and stamped the
start time of each utterance as time index. Then, the utter-
ances in dialogue could be seen as irregular time series. The
number of epochs was 300 and the learning rate 0.001 was
used. Hidden state size was 50. ODE function was repre-
sented by a five-layer fully-connected network. Other set-
tings were the same as those in the first task. Att-NDE with
self-attention was evaluated.

Figure 8 shows an example of attention score function
A(t). In this example, “Really?!” is served as query and
Att-NDE is used to predict the emotion of this utterance.
Those utterances marked by red were said by the interviewee
and green were said by the interviewer. Att-NDE pays most
of the attention on three utterances, which is “So let’s talk
about ...”, “But there’ll be perhaps ...” and “All right then,
we’ll have ...”. All of them were said by interviewer. This
is reasonable that the emotion of the interviewee would be
affected by the interviewer. Att-NDE also attends on “Good
to know.”, which may not be well attended. It is because that
this one is used to answer two utterances, “So let’s talk about
...” and “But there’ll be perhaps ...”. Namely, Att-NDE pre-
dicts how the interviewee will reply to those two utterances,
which are related to the query. Another example is provided
in Figure 9 where five persons were chatting. In this situa-
tion, person B couldn’t distinguish two girls and made some
mistake. Att-NDE pays the highest attention on utterances
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also I was the point person on my company's transition from 
the KL-5 to GR-6 system.
You must've had your hands full.
That I did. That I did.

So let's talk a little bit about your duties.

My duties?  All right.

Now you'll be heading a whole division, so you'll have a lot of duties.

But there'll be perhaps 30 people under you so you can dump 
a certain amount on them.

Good to know.
We can go into detail
No don't I beg of you!

Really?!
Surprise Surprise
Label Prediction

All right then, we'll have a definite answer for you on Monday, but I think I can 
say with some confidence, you'll fit in well here

Figure 8: An example of dialogue with two persons.

Utterance
Okay! You don't think I thought of that?

Person
B

Utterance
Are you insane? I mean Joey, is going to kill you, he's actually 
going to kill you dead.

Person

A

Person
C

Utterance
How can you not know which one?

Person
D

Utterance
I mean that's unbelievable.

Person
A

Utterance
I mean, was it Gina?

Person
E

Utterance
Which one is Gina?

Person
D

Utterance
Dark, big hair, with the airplane earrings.

Person
A

Utterance
No, no, no, that's Dina.

Utterance
You see you can't tell which one is which either, dwha!!

Person
B

Label
Surprise

Prediction
Anger

Figure 9: An example of dialogue with five persons.

“I mean, was it Gina?” and “Which one is Gina?”. This ex-
ample shows that the other persons still couldn’t distinguish
these two girls. Another two utterances “How can you not
know which one?” and “I mean that’s unbelievable.” are also
attended by our model, which blamed person B. Although
the label is “surprise”, the prediction “anger” is also accept-
able. From the results in two tasks, it is obvious that the
behavior of sequence data is substantially reflected by the
attention scores. For human activity, which is irregular time
series, the attention score function is smoother and more like
continuous function. While MELD, which is seen as regu-
lar time series in literature, is more like discrete function.
Stamping start time as time index may be too naive. Table 3
shows the weighted average of precision and recall (i.e. F1
score) using different methods. Att-NDE with self attention
achieves the best performance in sentiment classification.

HR

Lactate

Na

RespRate

Time

MAP

Figure 10: Different features from irregular samples in Phy-
sioNet. Bold bars indicate the observation time points.

Models F1-score att type

RNN ∆t 0.539 -
NDE 0.551 -
Att-NDE 0.560 att
Att-NDE 0.565 self-att

Table 3: F1-score on MELD.

Model AUC

RNN ∆t 0.783
NDE 0.826
Att-NDE 0.833

Table 4: AUC on
PhysioNet.

Evaluation on Mortality Prediction
PhysioNet (Silva et al. 2012) was collected from the inten-
sive care unit (ICU) containing the first forty eight hours
of patients’ physiological signals like respiration rate, heart
rate (HR), etc. There were four time-invariant features in-
cluding age, gender, height and ICU type. Figure 10 shows
the scenarion of irregular samples. This task is to predict
in-hospital mortality rate. Hyperparameter setting was sim-
ilar to the previous tasks. Number of epochs was 40 and
hidden state size was 20. ODE function was built by a
five-layer fully-connected network. Because positive sam-
ples only have 13.75%, area under the curve (AUC) is used
to evaluate model performance as shown in Table 4. Att-
NDE performs better than RNN and NDE in terms of AUC.

Conclusions
This paper presented the continuous-time attention for se-
quential learning over irregular sequence data. This atten-
tion scheme was derived by merging with neural differen-
tial equation to build continuous-time state machine. This
Att-NDE represented the mapping from observations to tar-
gets where the continuous-time functions of attention score
and context vector were computed. The experimental re-
sults showed that adding continuous-time attention did im-
prove the robustness to missing time samples.The prop-
erty in continuous-time attention was investigated. In future
works, the limitation for Att-NED will be handled. In self at-
tention setting, we basically feed all of query vectors to ODE
solver and solve them individually, which is memory ineffi-
cient. In addition, we will extend our methods to other NDE
methods such as latent ODE (Chen et al. 2018; Rubanova,
Chen, and Duvenaud 2019) or neural stochastic differential
equation (Liu et al. 2019) where stochastic property is pre-
served. The proposed attention is also feasible to other types
of time series (Yildiz, Heinonen, and Lahdesmaki 2019; Jia
and Benson 2019). The time information of each word rather
than each utterance will be used for emotion recognition.
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