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Abstract

The behaviors of deep neural networks (DNNs) are notori-
ously resistant to human interpretations. In this paper, we
propose Hypergradient Data Relevance Analysis, or HY-
DRA, which interprets the predictions made by DNNs as
effects of their training data. Existing approaches generally
estimate data contributions around the final model param-
eters and ignore how the training data shape the optimiza-
tion trajectory. By unrolling the hypergradient of test loss
w.r.t. the weights of training data, HYDRA assesses the con-
tribution of training data toward test data points through-
out the training trajectory. In order to accelerate compu-
tation, we remove the Hessian from the calculation and
prove that, under moderate conditions, the approximation er-
ror is bounded. Corroborating this theoretical claim, empir-
ical results indicate the error is indeed small. In addition,
we quantitatively demonstrate that HYDRA outperforms in-
fluence functions in accurately estimating data contribution
and detecting noisy data labels. The source code is available
at https://github.com/cyyever/aaai hydra.

Introduction
What makes neural networks do exactly what they do? This
is a crucial question that lingers in the minds of machine
learning researchers and practitioners. The underpinnings of
deep neural networks (DNNs), including non-convex objec-
tive functions, stochastic optimization, and overparameteri-
zation, may implicitly regularize the network and improve
generalization (e.g., Li and Liang 2018; Arora, Cohen, and
Hazan 2018), but also hinder the interpretation of the net-
work behaviors and the training process. The black-box na-
ture of DNNs can render their predictions untrustworthy in
the eyes of the general public and prohibit wide adoption.
Conversely, good interpretability can enhance the training,
debugging, and auditing of DNNs.

The focus of the current paper is to understand DNNs
by attributing their predictions to the training data. That is,
how training data influence network predictions on test data.
However, as the training data are involved in the entirety of
the complex training process, accurately capturing their in-
fluence on the final network is a challenge.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An illustration of HYDRA and influence func-
tions (IF). After the removal of some training data points,
the training loss shifts from the blue curve to the red curve.
IF estimates the contribution within the convex region near
the old wT . HYDRA tracks the influence of data removal
along the entire optimization process, possibly leading to a
different local optimum.

The pioneering work of Koh and Liang (2017) proposes
influence functions (IF), which measure the contribution of
a training sample zi to a test sample ztest as the change in the
loss of ztest when the weight of training data zi is changed
marginally. This technique enables a number of applications
(e.g. Alaa and van der Schaar 2020), but suffers from two
drawbacks. First, it only measures the contribution around
the final model parameters wT and ignores the possibility
that change in the weights of training data may lead to a local
optimum different from wT with a drastically different test
loss. Second, IF relies on the inverse Hessian on the whole
training data, which is computationally expensive to approx-
imate. Hara, Nitanda, and Maehara (2019) analyze the entire
trajectory but still rely on Hessians.

In this paper, we propose Hypergradient for Data Rele-
vance Analysis (HYDRA) to address the aforementioned
shortcomings. By unrolling the gradient of test loss w.r.t.
the data weights through all training steps, HYDRA ac-
counts for how changes in data weights shape the whole
training process. As the optimization utilizes the gradient
on the same data repeatedly, even marginal changes in the
data weights can accumulate and eventually shift the point
of convergence. Figure 1 illustrates such a scenario where

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7081



the local analysis of IF and the whole-of-trajectory analy-
sis of HYDRA find separate local minima and contribution
values. Further, to simplify computation, we propose an ap-
proximation method that eliminates the cumbersome Hes-
sian or its inverse and establish an analytical upper bound
on the approximation error.

Empirically, we verify that the approximation indeed re-
sults in small error and is closer to the whole-of-trajectory
Hessian-aware measurements than IF. The approximation
method of HYDRA achieves high correlation with the
Hessian-aware measurements, whereas the local analysis of
IF adds 11% to 16% to the approximation error by ignor-
ing the optimization trajectory. In the particular experiment
we conducted, the removal of Hessian reduces wall-clock
running time by a factor of 971 on 2 TitanX Pascal GPUs.
We also compare HYDRA and IF in their ability to iden-
tify data points with erroneous labels and find HYDRA to
provide superior detection performance.

HYDRA: Hypergradient for Data Relevance
Analysis

We first introduce some preliminaries. We aim to learn a
function fw(·) : X → Y parameterized by w. The train-
ing dataset containsN data points and is denoted asDtrain =
{xi,yi}Ni=1, where xi ∈ X and yi ∈ Y for all i. The func-
tion fw is learned by minimizing the empirical risk Ler

train
and the regularizer R(w).

Ltrain(w) = Ler
train(w) + λR(w), (1)

Ler
train(w) =

∑
(xi,yi)∈Dtrain

(
1/N + εi

)
`(xi,w,yi), (2)

where `(xi,w,yi) is the per-sample loss, such as cross en-
tropy, and λ is a regularization coefficient. In this paper, we
adopt the `2 regularizer R(w) = 1

2w
>w. The data weight

εi is set to zero during training; its function will be explained
shortly. See Table ?? for notations used in this paper.

Similar to the training dataset Dtrain, the test dataset with
M data points is defined as Dtest = {xtest

i ,ytest
i }Mi=1 with

Dtrain ∩ Dtest = ∅. The test loss Ltest is a measurement of
model generalizability.

Ltest(wT ) =
1

M

∑
(xtest

i ,ytest
i )∈Dtest

`(xtest
i ,wT ,y

test
i ). (3)

We usually optimize the loss function using vanilla gradi-
ent descent (GD) or GD with momentum. Vanilla GD itera-
tively updates the parameters w as

wt = wt−1 − ηtgt−1, (4)

where ηt is the learning rate. In GD with momentum, we
first update the momentum vt, followed by updating wt.

vt = pvt−1 + gt−1, (5)

wt = wt−1 − ηtvt, (6)
where p is a constant in (0, 1) that determines the strength of
the accumulated momentum. We repeat the optimization for
T steps and arrive at the final network parameters wT . The
stochastic versions of the two algorithms simply replace gt
with the gradients on mini-batches of training data.

Dtrain Training dataset
Dtest Test dataset
N Size of the training dataset
wt Model parameters at step t
εi Marginal weight for the ith training sample
(xi,yi) ith training sample
(xtest
j ,ytest

j ) jth test sample
R(w) Regularization term, 1

2w
>w

λ Regularization coefficient
ηt Learning rate at step t
Ltrain(w) Training loss at model parameterw
Ler

train(w) Empirical risk, Ltrain(w)− λR(w)

Ltest(w) Test loss at model parameter w
gt Model gradient at step t, ∂Ltrain(wt)/∂wt
Ht Model Hessian at step t, ∂2Ltrain(wt)/∂w

2
t

Her
t Empirical-risk Hessian, ∂2Ler

train(wt)/∂w
2
t

∇t,i Shorthand for dwt/dεi

Table 1: Frequently Used Notations

Measuring Data Contribution
Recall that every training sample (xi,yi) is associated with
the data weight 1/N + εi in the training loss (Equation (2)).
Thus, we can remove the ith sample from the training by set-
ting εi to −1/N . The resulting change in the test loss can be
estimated with a first-order Taylor expansion. We define the
contribution of the ith training data point on model perfor-
mance, C(i), as the estimated change (which becomes exact
when N →∞)

C(i) := − 1

N

dLtest(wT )

dεi

∣∣∣
εi=0

. (7)

If the removal of the data sample (xi,yi) from the training
data causes test loss to increase, the sample would have a
positive contribution. Otherwise, the sample hurts general-
ization performance and makes a negative contribution.

We can measure the contribution to any portion of the test
set by simply replacing Ltest in Equation (7) with the loss on
the data points in question. For example, the contribution by
the ith training sample on model performance regarding the
jth test sample, C(i, j), is computed as:

C(i, j) := − 1

N

d`(xtest
j ,ytest

j ,wT )

dεi

∣∣∣
εi=0

. (8)

In Eq. 7, Ltest does not directly depend on εi and only
through w, we can write the total derivative as

dLtest(wT )

dεi
=
∂Ltest(wT )

∂wT

dwT
dεi

=
∂Ltest(wT )

∂wT
∇T,i. (9)

∂Ltest(wT )
∂wT

can be computed exactly using backpropagation.
However, computing ∇T,i = dwT

dεi
is not so straightforward

as εi is involved in the entire optimization process. Below,
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Algorithm 1: Hypergradient Computation
Input : training sample (xi,yi), training dataset

size N , batch size B, iteration number T ,
learning rate η, momentum p,
regularization coefficient λ

Output:∇T,i: the hypergradient of (xi,yi) over
the entire T training iterations

1 /* Initialization */
2 ∇0,i ← 0

3 dv0
dεi
← 0

4 /* Training */
5 for t← 1 to T do
6 if current batch contains (xi,yi) then
7 dvt

dεi
← pdvt−1

dεi
+ λ∇t−1,i

8 else
9 dvt

dεi
← pdvt−1

dεi
+ λ∇t−1,i + N

B gt,i
10 end if
11 ∇t,i ← ∇t−1,i − ηt dvtdεi
12 end for
13 return ∇T,i

we give recurrence equations for∇T,i in whole-batch gradi-
ent descent.

In vanilla gradient descent, ∇t,i can be computed recur-
rently as a function of∇t−1,i as follows:

∇t,i = ∇t−1,i − ηt(Ht−1∇t−1,i +
∂gt−1
∂εi

)

= ∇t−1,i − ηtHer
t−1∇t−1,i − ηtλ∇t−1,i − ηtgt−1,i,

(10)

where gt,i denotes the gradient of sample i. Note that since
gt is a function of wt, we have dgt

dεi
= ∂gt

∂wt
∇t,, which in-

volves the Hessian.
Similarly, for gradient descent with momentum,
dvt
dεi

= p
dvt−1
dεi

+Her
t−1∇t−1,i + λ∇t−1,i + gt−1,i. (11)

∇t,i = ∇t−1,i − ηt
dvt
dεi

, (12)

In both cases we have the initial conditions

∇0,i = 0 and
dv0
dεi

= 0. (13)

By recurrently computing ∇t,i through the entire optimiza-
tion trajectory, HYDRA holistically measures the contribu-
tion of ith data point to the neural network. The algorithm for
computing∇T,i, which is essential for deriving the values of
C(i) and C(i, j) is shown in Algorithm 1.

Fast Approximation
We propose a fast approximation technique, which sets the
Hessian Her

t−1 in Equation (10) and Equation (11) to zero
with an analytical bound on the approximation error. Algo-
rithm 1 shows the mini-batch version of the algorithm. Al-
though the Hessian-vector product can be approximated in

O(|w|) time using a method akin to finite difference (Pearl-
mutter 1994), the computation is slow as it requires (usu-
ally two) additional backpropagations and is susceptible to
truncation and discretization errors just like finite difference.
Consequently, removing the Hessian provides desirable sim-
plification to the computation.

In the data contribution Equation (9), the term dLtest(wT )
dwT

can always be computed exactly, so this approximation only
affects the ∇t,i term. With the moderate conditions below,
we can show that applying the proposed approximation re-
sults in bounded difference between the true∇t,i and its ap-
proximation ∇:t,i. Additionally, if we let the learning rate
decay exponentially, the difference vanishes after sufficient
training iterations.

Condition 1. The training loss Ltrain(x,y,w) is twice dif-
ferentiable.

Condition 2. The optimization process converges. That is,

lim
t→∞

wt = ŵ. (14)

Condition 3. The empirical risk function Ler
train has

Lipschitz-continuous gradients with Lipschitz constant L.
Formally,∥∥∥∥∂Ler

train(w1)

∂w1
− ∂Ler

train(w1)

∂w2

∥∥∥∥ ≤ L‖w1 −w2‖ , ∀w1,w2

(15)

Condition 4. The learning rate sequence ηt is non-
increasing and lower-bounded by 0. That is,

ηt ≥ ηt+1 > 0, ∀t. (16)

Condition 5. The product of the learning rate ηt and weight
decay coefficient λ satisfy 0 < ηtλ < 1, ∀t.
Condition 6. The contribution measure sequence∇t,i does
not diverge as t → ∞ and is bounded by a constant Mw.
More formally,

lim
t→∞

∥∥∇t,i∥∥ < Mw, ∀i. (17)

Theorem 1. Under the above conditions and vanilla GD,
the norm of the approximation error is bounded by∥∥∥∇t,i −∇:t,i

∥∥∥ < LMw
η1
ηtλ

. (18)

Theorem 2. Under the above conditions, vanilla GD, and
an exponential decay schedule for the learning rate η, the
approximation error diminishes when t tends to infinity

lim
t→∞

∥∥∥∇t,i −∇:t,i

∥∥∥ = 0. (19)

We can also relax the Lipschitz-continuity constraint and
derive similar results. The proof details are in the supple-
mental material. In the experiments, we empirically verify
these theoretical results and show the approximation indeed
leads to small errors.
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Time and Space Complexity
It takes O(|w|) time and space to compute the parame-
ter gradients. Using the approach in Pearlmutter (1994),
Hessian-vector products can be computed in O(|w|) time
and space. We also need O(|w|) extra space to store pre-
vious ∇t−1,i, dvt−1

dεi
and gt−1,i. Therefore, we need a total

of O(T |w|) time and O(|w|) space to trace a single training
sample. Tracing all training samples simultaneously requires
O(T |w||Dtrain|) time and O(|w||Dtrain|) space.

Related Work
Influence Functions. As a precursor to our work, Koh and
Liang (2017) measures the influence of a training data point
zi = (xi,yi) on a test data point ztest = (xtest,ytest) as
IF(zi, ztest)

IF(zi, ztest) := −∂`(x
test,ytest,wT )

∂wT

>

H−1T
∂`(xi,yi,wT )

∂wT
.

(20)
The difficulty of Equation (20) lies in computing the inverse
of Hessian H−1T , for which the naive approach is infeasi-
ble due to the size of modern DNNs. Koh & Liang intro-
duced two methods for this purpose. First, when H is posi-
tive definite, we find H−1v as the vector φ that minimizes
φ>Hφ + v>φ using conjugate gradient. When H is not
positive definite or is singular, we increment its diagonal by
a small damping factor.

The second method to find H−1v is to iterate the follow-
ing until convergence,

H−1v ← v +
(
I − ∂2`(xd,yd,wT )

∂w2
T

)
H−1v, (21)

where the data (xd,yd) is randomly sampled in each itera-
tion and the initial H−1v is set to v. A scaling factor is ap-
plied to theH−1k−1v term to ensure that the largest eigenvalue
ofH−1 is less than one. In practice, we use the Monte-Carlo
expectation from multiple runs. Both methods adopt the ap-
proximate Hessian-vector product (Pearlmutter 1994).

Although these techniques render the time and space com-
plexity manageable, dealing with the inverse Hessian is still
tedious and slow. Numerical considerations such as damping
and scaling factors require careful treatment. Errors can be
introduced by the variance of the Monte-Carlo expectation
and the errors in the Hessian-vector product. In comparison,
HYDRA offers a simplified method that removes the Hes-
sian and a theoretical upper bound for the introduced error.

Interpreting DNNs. A DNN prediction can be interpreted
by the training data that have the most influence on the pre-
diction. The work of Cook and Weisberg (1980) on linear
regression is one of the earliest technique along this line
of thought. Sharchilev et al. (2018) study tree ensembles.
Koh et al. (2019) extend influence functions to the effects
of groups of data points. Chen et al. (2020) investigate the
influence of data used in the pretraining on the finetuning
task. Noting the outliers and mislabled data often have out-
size influence, Barshan, Brunet, and Dziugaite (2020) pro-
pose RelatIF to accurately measure local influence. Other

data-based interpretations utilize kernel functions (Yeh et al.
2018; Khanna et al. 2018), Shapley values (Jia et al. 2019a,b;
Ghorbani and Zou 2019), and network layers that iden-
tify prototypes and object parts (Branson et al. 2014; Kim,
Khanna, and Koyejo 2016; Zhang, Wu, and Zhu 2018; Chen
et al. 2019).

Similar to our work, Hara, Nitanda, and Maehara (2019)
estimate the change of model parameters after the removal
of a point by extrapolating via the Hessians along the train-
ing trajectory. In comparison, HYDRA directly estimates
the data contribution instead of the model parameters and
disregards the unwieldy Hessian, which Hara, Nitanda, and
Maehara (2019) crucially depend on. Several research works
(Litany and Freedman 2019; Yoon, Arik, and Pfister 2019;
Shu et al. 2019) optimize the weights of individual training
data points. The weights can serve as data valuation based
on the entire validation set, but cannot directly explain indi-
vidual model predictions.

Neural networks can be interpreted from other perspec-
tives. Network weights can be visualized (Zeiler and Fergus
2014; Bau et al. 2018; Fong and Vedaldi 2018); behaviors of
a complex network can be approximated with simple mod-
els that are easy to understand (Ribeiro, Singh, and Guestrin
2016; Zhou, Zhou, and Hooker 2018; Lakkaraju et al. 2017;
Chen et al. 2019; Ahern et al. 2019). In addition, model pre-
dictions can be explained by identifying important features
in the input (Simonyan, Vedaldi, and Zisserman 2013; Sprin-
genberg et al. 2014; Smilkov et al. 2017; Selvaraju et al.
2017; Sundararajan, Taly, and Yan 2017; Du et al. 2018).

Hypergradient-based Optimization. Hypergradient is
the gradient of the validation loss or test loss w.r.t. the hy-
perparameters (Bengio 1999; Domke 2012; Franceschi et al.
2017, 2018; Lorraine, Vicol, and Duvenaud 2020). With hy-
perparameters ε, model parameters w, and validation loss
Lval, the hyperparameter optimization problem can be de-
fined as the bi-level optimization

ε∗ = argmin
ε
Lval(ε,w

∗(ε)),

s.t. w∗(ε) = argmin
w

Ltrain(ε,w).
(22)

Note we writew∗(ε) to underscore the fact that ε influences
the optimization ofw∗. Thus, in order to compute the gradi-
ent of Lval(ε,w

∗(ε)) w.r.t. ε, we must find the total deriva-
tive dw∗(ε)/dε, which may be computed by unrolling w∗
throughout the training trajectory or for only a few steps as
an approximation.

Hypergradient enables gradient-based optimization of hy-
perparameters, such as learning rates (Donini et al. 2020;
Metz et al. 2019), network architectures (Liu, Simonyan, and
Yang 2019), or data augmentation (Lin et al. 2019). Maclau-
rin, Duvenaud, and Adams (2015) and Wang et al. (2018)
distill a large training dataset into 10-100 data points. Bo-
hdal, Yang, and Hospedales (2020) distill data labels instead
of input features. Mehra and Hamm (2019) use penalty func-
tions to avoid hypergradient in the bi-level optimization.

A key difference between HYDRA and works on
hypergradient-based optimization is that we use the hyper-
gradient ∇t,i to assign credit to training data rather than to
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure 2: Inter-class contribution shown as heatmaps. Rows represent classes of training data and columns represent classes of
test data.

Training
Sample

True vs. Pre-
dicted Labels

Model
Conf.

Contribution
to Test Data

5 / 5 0.66 −1.0× 10−4

8 / 8 0.73 4.8× 10−5

Coat/Pullover 0.66 0.93× 10−3

Deer/Deer 0.97 −1.01× 10−5

Table 2: Training samples with extreme influence on the test
data, their ground-truth and predicted labels, model confi-
dence, and contribution on the test set. A positive contribu-
tion means the training sample reduces overall test loss.

optimize ε. As a result, HYDRA is less vulnerable to ac-
cumulated inaccuracies in the hypergradient estimates over
time. We take advantage of this by omitting the Hessian with
bounded error.

Experimental Evaluation

Datasets and Networks

We use three image recognition datasets in our experiments:
MNIST (Lecun et al. 1998), Fashion-MNIST (Xiao, Rasul,
and Vollgraf 2017), and CIFAR-10 (Krizhevsky 2009). We
choose two networks, LeNet-5 (Lecun et al. 1998) of 61,706
trainable parameters and DenseNet-40 (Huang et al. 2017)
of 176,122 trainable parameters. Details of the datasets and
networks are in the supplemental material.

Manual Inspection
In the first experiment, we verify that HYDRA provides re-
sults that agree with our intuition. We compute the mean and
standard deviation of the contributions of all training data
points onDtest, which yields (−3.17×10−9, 1.19×10−6) for
MNIST, (−4.9858×10−7, 0.1×10−3) for Fashion-MNIST,
and (−1.8676 × 10−7, 3.206 × 10−6) for CIFAR-10. The
mean values are very close to zero, and the standard devia-
tions are substantially greater than the mean. This is consis-
tent with our expectation as the contribution of single data
point in a large dataset is likely rather small. The standard
deviations indicate that some data points have extreme con-
tribution values, which we examine below.

Influential Examples. ?? shows data points from the
three datasets with extreme contributions. The first two rows
are examples from MNIST. The third and fourth examples
are from Fashion-MNIST and CIFAR-10, respectively. The
first image is labeled as 5 but closely resembles 6. The sec-
ond is labeled as 8 and has an unusual upper half. Their
average contribution to all test data points is 4-5 orders of
magnitudes higher than the average (≈ 10−9). Due to their
unusual appearances, these data points stand out from the
rest of the training data and hence exert large influence on
the model. Similarly, the two other examples have atypical
appearances in their category and have large influences on
the networks’ predictions. Due to space considerations, we
leave more examples to the supplemental material.

Inter-class Contribution. Next, we inspect the contribu-
tion from the training data of one class to the test data of
another class. By the class label, we partition the training
dataset into C subsets S1, . . . ,SC , where C is the number
of classes. Similarly, we partition the test set into C subsets
T1, . . . , TC . The contribution C(Si, Tj) from a training class
Si to a test class Tj is the average contribution over all pos-
sible pairs of samples

C(Si, Tj) :=
1

|Si|
∣∣Tj∣∣ ∑k∈Si

∑
k′∈Tj

C(k, k′). (23)

We plot the inter-class contribution matrices for MNIST,
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Fashion-MNIST, and CIFAR-10 in Figure 2. The rows rep-
resent training data classes and the columns represent test
data classes. As normalization, we divide every matrix entry
by
√

column sum× row sum.
In all three datasets, the maximum contribution values

for each row and column appear on the diagonal, indicat-
ing that training data always produce the most reduction in
test loss for their own class. In MNIST, we observe symmet-
rically low contribution between the digit pairs (3,5), (2, 7),
and (4,9). As the two classes in each pair have similar ap-
pearances, there is competition between them. Lowering the
test loss of one class will likely increase the test loss of the
other class. Similar symmetry exists for the pairs (Pullover,
Coat), (T-shirt, Shirt), and (Sneaker, Ankle boot) in Fashion-
MNIST, and between Automobile and Truck in CIFAR-10.
We find these to be consistent with intuition.

Approximation Error
Theorems 1 and 2 show that, under moderate conditions,
the error from disregarding the Hessian term is bounded.
In order to test this hypothesis, we track the contribution
of 500 samples from Fashion-MNIST, including 1% from
every class, through the training trajectory using both the
Hessian-aware method and the approximation of HYDRA.
We train LeNet-5 for 200 epochs with the same hyperpa-
rameters as before and record the average `2 norm of the
approximation error

∥∥∥∇t,i −∇:t,i

∥∥∥
2

every 4 epochs. Figure
3 shows the results. We observe that the error stabilizes to
0.74 after about 70 epochs, which agrees with the theoreti-
cal result that the approximation error is bounded.

We further benchmark HYDRA’s approximation method
and influence functions (Koh and Liang 2017) against the
Hessian-aware method. While we recognize that it is diffi-
cult to establish any ground truth for data contribution val-
ues, both influence functions and HYDRA may be consid-
ered as approximations of the Hessian-aware method. There-
fore, we take the Hessian-aware data contribution values as
the gold standard. In the experiments below, we compute the
data contribution from influence functions using the Monte
Carlo expectation method (Equation 21) starting from epoch
100, when the optimization is close to convergence.

We adopt two evaluation metrics used by Koh et al.
(2019). First, we measure the percentage of data points
where HYDRA and influence functions erroneously flip the
sign of the contribution (Figure 4). That is, a data point mak-
ing a positive contribution is mistakenly assigned negative
contribution and vice versa. The error rate of HYDRA con-
verges after 100 epochs to an average of 0.014 with a stan-
dard deviation of 0.002. The error rate of influence func-
tions is 0.130 on average with a standard deviation of 0.013.
Second, we rank the data points by their contribution and
compute Spearman’s rank correlation against the Hessian-
aware method (Figure 5). After 100 epochs, the correlation
of HYDRA converges to 0.986 with a standard deviation of
0.002, whereas influence functions show substantially lower
correlation with a mean of 0.820 that fluctuate more wildly
(standard deviation = 0.024).

In summary, the experimental comparison shows that HY-

Figure 3: HYDRA’s hypergradient approximation error∥∥∥∇t,i −∇:t,i

∥∥∥ averaged over 500 Fashion-MNIST data
points.

Figure 4: Sign error rates of HYDRA’s approximation and
influence functions on Fashion-MNIST

DRA’s approximation to be not only more accurate but also
an order of magnitude more stable than influence functions.
This demonstrates that accounting for the entire trajectory
is important in accurately estimating data influence. In these
experiments, ignoring the optimization trajectory increases
the error in the estimated contributions by 11.6% to 16.6%.

Speedup By Approximation

We find that removing the Hessian reduces the total running
time by about 971 folds in a simple experiment. Specifically,
tracking 20000 data points on a DenseNet-40 network for 1
epoch using Hessian-vector products took about 49 hours
on a server with 2 Nvidia 2080Ti GPUs, an AMD Ryzen 7
3800X 8-Core CPU, and 32 GB RAM. In contrast, the pro-
posed fast approximation method reduced the training time
to about 3 minutes.
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Figure 5: Spearman’s rank correlation with the ground truth
for HYDRA’s approximation technique and influence func-
tions on Fashion-MNIST

Dataset
Wrong
Labels Method

Final
Accuracy

MNIST 80%
No Filtering 72.93%

Inf. Func. 90.07%
HYDRA 98.31%

Fashion-MNIST 80%
No Filtering 78.52%

Inf. Func. 63.20%
HYDRA 86.72%

CIFAR-10 80%
No Filtering 31.36%

Inf. Func. 42.12%
HYDRA 72.01%

Table 3: Classification accuracy when different methods are
used to clean the dataset with a known proportion of label
noise.

Debugging Training Data
In this section, we investigate if HYDRA can help debug
datasets with erroneous labels. In the first experiment (Ta-
ble ??), we compare the ability of different methods to clean
noisy data. We create synthetic datasets with a known pro-
portion r% of data points having randomly permuted, erro-
neous labels. We use either HYDRA or influence functions
to estimate the data contribution and discard the least use-
ful r% of training data. The network is retrained on the re-
maining training data. As deep neural networks are known
to be robust against noise (Rolnick et al. 2018), we adopt
large error rates. The supplemental material contains de-
tailed settings and additional experiments. HYDRA demon-
strates clear performance advantages over influence func-
tions, which gradually increases as we go from the easy
MNIST dataset to the most difficult CIFAR-10.

In the second experiment, we aim to detect data points
with erroneous labels unsupervisedly by clustering the data

Dataset Method

Overlap
Correct
Labels

Random
Labels

MNIST
HYDRA 97.13% 97.16%
Inf. Func. 71.89% 67.19%

Fashion-MNIST
HYDRA 78.06% 77.73%
Inf. Func. 41.26% 33.22%

Table 4: The overlap between automatically identified clus-
ters of training data and the gold-standard clusters of cor-
rectly labeled and randomly labeled data.

points using their contribution to test data points. We create
synthetic data by randomly selecting 50% of training data
and uniformly assigning incorrect labels to them. After the
models are trained, for each training data point, we com-
pute a 1000-dimensional feature vector, which consists of
its contributions to 1000 randomly sampled validation sam-
ples. This feature vector is then discretized to {+1,−1}1000
based on the signs of the values.

After that, we cluster the training data points using the
discrete feature vectors, in the hope that the clustering can
separate the correctly labeled from the incorrectly labeled.
We perform the clustering separately for each class of train-
ing data points and calculate the average performance. As
the performance metric, we calculate the Jaccard index, or
the intersection over union, between the identified clusters
and the ground-truth partition. Higher Jaccard indices indi-
cate better clusters. We repeat this for every class label and
report the average.

?? reports the average Jaccard indices over 10 classes.
We observe that Fashion-MNIST poses a much more dif-
ficult challenge to the unsupervised task than MNIST and
causes both methods to obtain lower performance. On both
datasets, HYDRA outperforms influence functions; the per-
formance gaps range from 25.25% to 44.51%. We attribute
the superior performance of HYDRA to the accuracy of the
estimated data contribution values.

Conclusions

We propose HYDRA, a technique for estimating the contri-
bution of training data by differentiating the test loss against
training data weights through time. To simplify computa-
tion, we provide a Hessian-free approximation to the exact
derivative and establish an analytical upper bound for the ap-
proximation error. In the experiments, we compare HYDRA
to influence functions (Koh and Liang 2017), and confirm
that HYDRA provide more accurate estimates for data con-
tribution, which facilitates the identification of label noise in
the training data. With HYDRA, the AI research commu-
nity can be equipped with an effective and computationally
efficient tool to intepret the influence of training samples to
DNN predictions.
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Broader Impact
The deployment of machine learning in critical areas such as
law enforcement and human resources has raised concerns
regarding potential bias and prejudice of such algorithms
(Frazier et al. 2019; Poyiadzi et al. 2020). In many cases, the
apparent bias is not due to algorithmic design but to existing
stereotypes inadvertently captured by training data (Mehrabi
et al. 2019; Bryant and Howard 2019). Therefore, the abil-
ity to trace an algorithmic prediction back to training data
samples could help in mitigating and eventually eliminating
model bias in machine learning. We caution that the elimina-
tion of bias requires systemic efforts that extend well beyond
pure algorithmic research. Having said that, we believe this
work could play a positive role in that direction.
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