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Abstract

Neural architecture search has attracted wide attentions in both
academia and industry. To accelerate it, researchers proposed
weight-sharing methods which first train a super-network to
reuse computation among different operators, from which ex-
ponentially many sub-networks can be sampled and efficiently
evaluated. These methods enjoy great advantages in terms of
computational costs, but the sampled sub-networks are not
guaranteed to be estimated precisely unless an individual train-
ing process is taken. This paper attributes such inaccuracy to
the inevitable mismatch between assembled network layers,
so that there is a random error term added to each estima-
tion. We alleviate this issue by training a graph convolutional
network to fit the performance of sampled sub-networks so
that the impact of random errors becomes minimal. With this
strategy, we achieve a higher rank correlation coefficient in
the selected set of candidates, which consequently leads to
better performance of the final architecture. In addition, our ap-
proach also enjoys the flexibility of being used under different
hardware constraints, since the graph convolutional network
has provided an efficient lookup table of the performance of
architectures in the entire search space.

Neural architecture search (NAS) is an emerging research
field of automated machine learning (AutoML), with the
goal being exploring deep networks that have not been in-
vestigated by manual designs. Early NAS approaches (Zoph
and Le 2017; Real et al. 2017) mostly sampled architectures
from a large search space and evaluated them using an in-
dividual training-from-scratch process. Despite their ability
in finding powerful architectures, the search process is often
computationally expensive, e.g., hundreds or even thousands
of GPU-days are required even if efficient sampling strategies
were used (Liu et al. 2018; Real et al. 2018).

To alleviate the computational burden, researchers started
to consider reusing computation among differently sampled
architectures (Cai et al. 2018). Going one step forward, an
efficient framework named weight-sharing NAS (Pham et al.
2018; Liu, Simonyan, and Yang 2018; Xie et al. 2020) was
proposed in which the search space is formulated into a
super-network, an over-parameterized architecture which
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contains the parameters of all architectures (often referred to
as sub-networks) that can appear. With the super-network
being pre-trained, each sampled sub-network can be esti-
mated with reduced costs, so that the overall search process
is largely accelerated, e.g., by 4–5 orders of magnitudes if dif-
ferentiable search is used (Chen et al. 2019; Xu et al. 2020).

One of the most important concerns of weight-sharing
NAS lies in the accuracy of sub-network sampling. In other
words, there is no guarantee if the estimated accuracy of the
sub-networks can reflect the real performance of the corre-
sponding architectures. In particular, given a search space, S ,
and two architectures, M1 and M2, we can either evaluate
them by training them from scratch or train a super-network
and then sample them from it. Then, how often will the rel-
ative performance (i.e., whether M1 is better than M2) be
consistent under the two evaluation methods? We perform ex-
periments by sampling 8 architectures with similar hardware
complexity from a search space containing 19 cells, each
of which has 6 possibilities. The result is disappointing: the
Kendall-τ coefficient between two rankings is merely 0.2143
(0 being random permutation). With such a low correlation,
it is hard to guarantee that weight-sharing NAS can find a
high-quality architecture in the search space.

To solve this problem, we make an assumption that the
inaccuracy mostly comes from the randomness during train-
ing the super-network. We take a single-path training pro-
cess (Guo et al. 2019; Chu et al. 2019b) as an example: in
each training iteration, only one operator in each cell gets
updated while others remain unchanged. For a candidate ar-
chitecture being evaluated, its performance will potentially
be high if it is closely related to one of the recently trained
sub-networks. Therefore, for an arbitrary architecture, M,
we formulate the relationship between the real performance,
z?M, and the estimated one, zM, into a linear formula1 of
zM = a× z?M + εM + b, where a and b are constants and εM
is a zero-mean random variable associated to M. The goal is
to alleviate the impact of εM, since the remaining part will

1A higher-order function may better fit the data distribution, but
it also increases the risk of over-fitting. More importantly, we found
no cues in NAS that suggests a higher-order relationship between
the true and sampled accuracy, so using a linear assumption is a
relatively safe choice.
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not change the relative ranking of the sampled architectures.
Next, we assume that z?M, though difficult (or expensive) to

obtain, is a learnable function with respect to M. Hence, we
sample a set of training data, {(M, zM)}, and train a graph
convolutional network f(·) by minimizing the average error
of |zM − f(M)|. We expect that f(·), by seeing large amount
of training pairs, (M, zM), can minimize of the random noise,
i.e., f(M) ≈ a× z?M + b. Hence, f(M) serves as an estima-
tion of the performance of M which is almost free to compute
(f(·) is very light-weighted) meanwhile being more reliable
than zM since it produces the same ranking as z?M.

We perform experiments on the search space defined by
FairNAS (Chu et al. 2019b) which has 19 cells and 6 choices
for each cell. Starting with the same super-network, our ap-
proach partitions the search space into three subspaces (with
7, 6, and 6 cells, respectively) due to the limitation of CPU
memory (it is difficult to support more than 67 nodes in a
graph). The iterative optimization takes 9 GPU-hours beyond
super-network training which is faster than that of FairNAS
which sampled 12.8K sub-networks directly. Our approach
achieves a top-1 accuracy of 75.5% on ImageNet with 383M
multi-add operations, or 75.6% with 393M multi-add oper-
ations, which consistently surpass the counterpart that uses
random sampling. In addition, the graph convolutional net-
work makes it easier to formulate the network performance in
the entire search space into a lookup table, based on which a
wide range of hardware constraints can be integrated towards
more demands of architecture search.

Related Work
Neural architecture search aims to automate the network de-
sign process and discover architectures that perform better
than hand-crafted ones (Elsken, Metzen, and Hutter 2019).
In a general NAS pipeline, architectures are sampled from
a pre-defined search space and evaluated on a specific task,
e.g., image classification. To reduce the number of sampled
architectures and accelerate the search process, heuristic algo-
rithms including evolutionary algorithms (EA) and reinforce-
ment learning (RL) are adopted to guide the sampling process.
Recently, some EA-based (Xie and Yuille 2017; Zoph and
Le 2017; Real et al. 2018) and RL-based (Zoph et al. 2018;
Liu et al. 2018; Tan et al. 2019) approaches have achieved
state-of-the-art performance on a variety of computer vision
and natural language processing tasks. However, these ap-
proaches share a common evaluation scheme that optimizes
each sampled architecture from scratch, which results in a
critical drawback of heavy computational overhead even on
CIFAR10, a small proxy dataset.

To alleviate the computational burden, researchers
proposed an efficient solution which trains an over-
parameterized super-network to cover all architectures in
the search space and reuses or shares network weights among
multiple architectures. This was named one-shot NAS (Brock
et al. 2017) or weight-sharing NAS (Pham et al. 2018).
ENAS (Pham et al. 2018) proposed to share weights among
child models and apply reinforcement learning to improve
the efficiency of computations, which dramatically reduce the
search time to less than half a day with a single GPU. Pushing
one-shot NAS to a continuous parameter space, DARTS (Liu,

Simonyan, and Yang 2018) and its variants (Xu et al. 2020;
Chen et al. 2019; Dong and Yang 2019; Xie et al. 2018; Bi
et al. 2020) adopted a differentiable framework that assigned
a set of architectural parameters aside from the parameters of
the super-network and iteratively optimized them by gradient
descent, where the importance of different candidates is de-
termined by the value of these architectural parameters. The
reduction in computational burden facilitated architecture
search on large-scale proxy datasets, e.g., ImageNet (Deng
et al. 2009), with acceptable search cost. For example, Prox-
ylessNAS (Cai, Zhu, and Han 2018) and FBNet (Wu et al.
2019) successfully searched architecture directly on Ima-
geNet with differentiable schemes.

Despite the great success in accelerating NAS, one-shot
or weight-sharing methods still suffer from a severe prob-
lem named ranking inconsistency, which refers to the fact
that the estimation of a sub-network can be different when
it is sampled from the super-network and when it is trained
from scratch. Single-path one-shot NAS (Guo et al. 2019)
used a uniformly sampling method to guarantee that all can-
didates are fully and equally trained, which is believed to be
effective on alleviating the inconsistency. FairNAS (Chu et al.
2019a) paved one step further and proposed to train the super-
network with a strict constraint on fairness and demonstrated
a stronger correlation between the one-shot and stand-alone
evaluation results.

Our Approach
Our work is based on the pipeline of weight-sharing NAS.
Under this pipeline, L × O sets of parameters are trained
to simulate the behavior of OL architectures, where each
architecture consists ofL layers and each layer is chosen from
O candidates. Although this scheme demonstrates superior
efficiency, there is no guarantee that the performance of sub-
networks can be accurately estimated in this way. We will
delve deep into this problem in the following parts. More
details about weight-sharing NAS for classification can be
found in the Arxiv version (Chen et al. 2020).

Inaccuracy of Sub-network Sampling
Throughout this paper, we work on the search space defined
by FairNAS (Chu et al. 2019b) which has 19 inverted residual
cells (Sandler et al. 2018), each of which has 6 options dif-
fering from each other in the expansion ratio and kernel size.
On the ImageNet dataset with 1,000 classes, we randomly
sample 100 classes and use the corresponding subset to opti-
mize the super-network. 90% of the training data is used to
update the model parameters, and the remaining 10% is used
for evaluating each of the sampled sub-networks. Here, we
follow (Guo et al. 2019; Chu et al. 2019b) to directly feed
each testing image into the sampled sub-network and obtain
the classification accuracy. Evaluating each sub-network on
the validation subset (around 13K images) takes an average
of 4.48 seconds on an NVIDIA Tesla-V100 GPU.

The first and foremost observation is that the performance
of sub-networks cannot be accurately evaluated in this man-
ner. To show this, we randomly sample 8 architectures with
a similar complexity (i.e., 400M multi-adds), and evaluate
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ID FLOPs Acc? Acc150 Acc160
01 400M 85.78% 81.59% 81.20%
02 401M 85.76% 81.56% 81.41%
03 401M 85.59% 81.73% 81.55%
04 400M 85.48% 81.95% 81.67%
05 403M 85.32% 81.70% 81.37%
06 399M 85.28% 81.64% 81.15%
07 402M 84.98% 81.60% 81.58%
08 400M 84.60% 81.53% 81.46%
τ N/A − 0.2143 −0.1429
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Figure 1: The inconsistency between the performance of sub-networks by sampled from the super-network and trained from
scratch. We choose 8 architectures with similar FLOPs and use the super-networks after 150 and 160 epochs of training. Left:
the table summarizing all classification accuracy over 100 classes, in which τ indicate the Kendall-τ coefficient between the
ranking and the ground-truth. Right: visualizing the results on a 2D plane, which the horizontal and vertical axes denote the
ground-truth and sampled accuracy, respectively.

their performance in two different ways, namely, sampling
the corresponding sub-network from the well-trained super-
network, or training the sub-network from scratch. Results
are summarized in Figure 1. One can see that the ranking
of the sampled accuracy can be very different from that of
the ground-truth accuracy, i.e., when each architecture under-
goes a complete training process from scratch. That being
said, the architecture with the highest sub-network sampling
accuracy may not be the optimal solution. As a side note,
FairNAS (Chu et al. 2019b) advocated for that sub-network
sampling is good at performance estimation, but we point
out that the seemingly accurate prediction was mostly due to
the large difference between the sampled architectures (they
sampled 13 architectures with FLOPs varying significantly,
unlike the 8 architectures sampled by our work that are all
close to 400M FLOPs).

We explain this phenomenon by noting that the single-path
strategy of super-network training is highly random. Let M0

be an architecture to be evaluated using sub-network sam-
pling. Since each layer of M0 shares the training process
with other operators, it is probable that each layer of M0

gets updated in different training iterations. In this situation,
when M0 is sampled as a sub-network, its layers may not
‘cooperate’ well with each other. In particular, if a layer does
not get updated for a long time, its parameters are relatively
‘outdated’ and thus may incur a low recognition accuracy of
M0. On the other hand, if all layers of another architecture,
M1, happen to be updated sufficiently in the last few iter-
ations, the recognition accuracy of M1 is potentially high.
Nevertheless, this does not mean that M1 is better than M0.

In this paper, we introduce a simple model to formulate
the above randomness introduced by sub-network sampling.
Let z?M be the ground-truth accuracy of M, e.g., when M
is trained individually, and zM be the accuracy obtained by
sub-network sampling. Note that zM is related to the super-

network, S, but we omit S for simplicity. Our key assumption
is that zM can be written in a linear function of z?M added by
a random perturbation:

zM = a× z?M + b+ εM. (1)

Here, a is a linear coefficient indicating the systematic error
between z?M and zM, and b is a constant bias between z?M and
zM. Most often, a is slightly smaller than 1.0 because the
super-network is not sufficiently optimized compared to a
complete training process. εM is a random variable associated
to M. According to the above analysis, it is mostly determined
by how the layers of M are updated in the final iterations, so
it is totally random and unavailable unless z?M is tested. As
shown in Figure 1, the intensity of εM can be large – for two
architectures, M1 and M2, it is possible that the difference
between εM1

and εM2
is even larger than a ×

∣∣z?M1
− z?M2

∣∣,
which may alter the relative ranking between the two models.

Further Analysis on the Key Assumption
We perform a toy experiment to demonstrate the influence
of the random error term. We adopt a small search space
that contains 6 cells, each of which has 6 choices, i.e., a
search space with 66 = 46,656 candidate architectures. The
super-network is firstly trained for 150 epochs to guarantee a
sufficient convergence degree and we denote the parameters
of this super-network as θ150. 10,000 candidate architectures
(about 20% of the whole search space) are randomly sampled
from the search space and evaluated with θ150 on the stand-
alone validating set by sub-network sampling. We mark the
selected architectures and their corresponding evaluation ac-
curacy as {(Mm, zMm

)}10000m=1 . After this process, the super-
network is further trained for a few more iterations2 with
the same training data, which results with a set of slightly

2Here, we train the super-network for 12 iterations, i.e., about
one-tenth of a full epoch.
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modified parameters, denoted as θ′
150. A similar process is

performed with θ′
150 to obtain a set of new evaluation results,{(

Mm, z
′
Mm

)}10000
m=1

.
After acquiring these two set of evaluation results, we

calculate the Kendall-τ coefficient between them and the re-
sult is astonishing. The Kendall-τ coefficient is only 0.5470,
which implies a big change on the ranking of selected archi-
tectures. This phenomenon strongly support our assumption
that the random error term does matter and it can even alter
the ranking of two architectures.

Alleviating Noise with Graph Convolutional
Networks
In what follows, we train a model to estimate a× z?M + b ≡
zM − εM, i.e., eliminating the noise, εM, from zM. Note that
εM is not predictable, but we assume that it is a zero-mean
noise, i.e.,

∑
M∈S εM = 0, otherwise we can adjust the value

of the bias, b, to achieve this goal. Then, we collect a number
of pairs, (Mm, zMm

), and train a function, f(M;η), to fit zM,
where η are learnable parameters. Since M is a structural
data (the encoded architecture), we naturally choose a graph
convolutional network (GCN) (Kipf and Welling 2017) to be
the form of f(·)3. The objective is written as:

η? = argmin
η

E[|f(M;η)− zM|1 |M ∈ S]. (2)

Under the assumption that εM is completely irrelevant to
M (i.e., for any η and an arbitrary set of architectures, the
correlation coefficient between the f(M;η) and εM values
is 0), we can derive that the optimal solution of Eqn (2)
is f(M) ≡ a× z?M + b ≡ zM − εM. In other words, the
best M’s that maximize f(M) and z?M are the same, i.e., the
optimal architecture, M?.

The overall pipeline of using GCN for NAS is illstrated
in Algorithm 1. Since the search space is very large, we can-
not include all 619 architectures in one graph, so we start
with an initialized model, M0, and apply an iterative pro-
cess, each round of which updates a subset of layers of the
current architecture. The idea that gradually optimizes the
architecture is similar to that explored in PNAS (Liu et al.
2018). Thanks to the stable property of GCN, the choice of
M0 barely impacts the final architecture. In this paper, we
choose the ‘standard’ network in which all cells have a kernel
size of 3 and an expansion ratio of 6, i.e., the architecture is
similar to MobileNet-v2 (Sandler et al. 2018).

Let there be T rounds of iteration in the search process.
The t-th round, t = 0, 1, . . . , T − 1, allows a subset of layers,
Lt, to be searched, and keeps all others fixed. The optimal
sub-architecture found in this process will replace the cor-
responding layers, advancing Mt to Mt+1, and the iterative
process continues. Denote the subset of architectures that
can appear in the t-th round by St ⊂ S . We construct a
graph, Gt = (Vt, Et), where Vt denotes the set of nodes (each
node corresponds to a sub-network) and Et denotes the set
of edges connecting nodes. For simplicity, we use the most

3We could replace the GCN with a MLP or an LSTM here,
but previous literature has proved that GCN is one of the optimal
choices (Shi et al. 2020).

Algorithm 1: Applying GCN for Weight-sharing
NAS

Input : Search space S , dataset D, cell index set L;
Output : Optimal architecture M?;

1 Split D into Dtrain ∪ Dval, train the super-network S
on Dtrain;

2 Initialize M0 as a default architecture, t← 0;
3 repeat
4 Sample a subset of active cells, Lt, determine the

subspace St;
5 Construct a graph Gt = (Vt, Et), in which

Vt ≡ St;
6 Sample M architectures from St and evaluate the

performance to fill up part of Gt;
7 Train a GCN on Gt, use the GCN to find top-K

architectures in St;
8 Evaluate all K architectures to find the best one,

M?
t ;

9 Mt+1 ←M?
t , t← t+ 1;

10 until t = T or convergence;
Return : Mt.

straightforward way of graph construction, i.e., Vt ≡ St, and
there exists a connection between two nodes if and only if
the corresponding sub-networks have a Hamming distance
of 1. We observe in experiments that introducing more edges
(e.g., using a Hamming threshold of 2) does not improve
GCN prediction accuracy but considerably increases training
complexity.

Note that our work is related to prior ones focusing on
predicting network performance without actually training
them from scratch (Luo et al. 2018; Friede et al. 2019). These
approaches achieved promising results on some NAS bench-
marks (Ying et al. 2019; Dong and Yang 2020), demonstrat-
ing that one can find top-ranked architectures by sampling a
very small portion of the entire space. However, they lack the
guarantee that the architectures in training, in particular those
with very different topologies, have potential relationship to
each other so that the trained model is indeed learning useful
knowledge. Our work adds two assumptions that makes the
prediction more reliable: (i) a well-trained super-network is
provided so that the sampled sub-networks share the same set
of network weights; (ii) only sub-networks with 1-cell differ-
ence are related to each other. There are also other methods
apply GCN to predictor-based NAS (Shi et al. 2020; Wen
et al. 2020; Ning et al. 2020). They mostly denotes one single
architecture as a graph, while our method regards each single
architecture as a vertex in the graph which represents the
whole search space.

Below we describe the details of our approach. Step 0
is performed only once, and Steps 1–3 can be iteratively
executed until convergence or a pre-defined number of rounds
is achieved.
• Step 0: Super-network Training

We train the super-network in a single-path, one-shot pro-
cess. During each iteration, a mini-batch is sampled from the
training set, and a sub-network is constructed by randomly
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Figure 2: A typical process of how GCN assists to find the best architecture (best viewed in color). More detailed descriptions
can be found in Section 10.

choosing a cell (building block) for each layer. Following
FairNAS (Chu et al. 2019b), the candidate cells in each layer
are always sampled with equal probability, regardless of the
current status and how these cells contribute to network ac-
curacy. This strategy is believed to improve the ‘fairness’ of
sampling, i.e., in the probabilistic viewpoint, all sub-networks
have the equal chance of being sampled and optimized. Thus,
the relative ranking among sub-networks is believed to be
more accurate.

The length of the training stage is not very important, as we
will show in the experimental section that the fitting degree
of the super-network does not heavily impact the searched
architecture. 150 epochs is often sufficient for super-network
training, which takes around 13 hours on eight GPUs.
• Step 1: Sub-network Sampling

In the t-th round of iteration, given the set of layer in-
dices to be searched, Lt, we define a subspace of S, de-
noted by St. Let Vt = St, from which a small subset of
sub-networks are uniformly sampled and evaluated. Let the
number of sampled architectures be M , and the collected
architecture-performance pairs be {(Mm, zMm

)}Mm=1. Due
to the potentially heavy computational overhead, M is often
much smaller than the total number of sub-networks, |Vt|.
• Step 2: Training the GCN

One of the key factors of GCN is named the adjacent
matrix, A, which defines how two nodes (i.e., sub-networks)
with an edge connection relate to each other and the way that
we use the accuracy of one to predict that of another. For

simplicity, we simply define A to be the similarity matrix,
i.e., the weight of each edge is determined by the similarity
between two nodes it connects. The last factor of GCN is the
feature representation of each node (sub-network). We simply
follow the Gray coding scheme to encode each sub-network
into a fixed-dimensional vector. More details about the graph
construction can be found in the Arxiv version.

We follow a standard training procedure described in (Kipf
and Welling 2017) to train the GCN, yet we modify the
classification head of the network (applied to node features)
into a regression module to predict sub-network accuracy.
After GCN training is complete, we can predict the accuracy
of each sub-network with its feature vector and the similarity
matrix, A, with a negligible cost.
• Step 3: Updating the Optimal Architecture

After the optimization is finished, the GCN provides a
lookup table that requires negligible costs in estimating the
performance of each sub-network in the space of St. As we
elaborate previously, although GCN is good at depicting the
property of the overall search space, its prediction in each
single sub-network is not always accurate. So, we enumerate
over the search space, find a number of sub-networks with
the best performance, and perform sub-network evaluation
again to determine the best of them. Experiments show that
this re-verification step, with negligible costs, brings a con-
sistent accuracy gain of 0.1%–0.2%. Finally, the searched
one is used to replace the corresponding layers of Mt and
Mt becomes Mt+1. If the search process does not terminate,
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then we go back to Step 1 and repeat data collection, GCN
training, and architecture update.

It is possible that the optimal sub-network found in St
does not lead to global optimality. To improve flexibility,
we preserve K top-ranked sub-networks and feed them into
the next round. To achieve this goal, the searched layers in
this (t-th) round are not allowed to be searched in the next
(t+ 1-st) round, i.e., Lt ∩ Lt+1 = ∅. Hence, the next round
can sample each of the K preserved sub-architectures as an
entire – in other words, the cells in Lt form a ‘super-cell’ in
the next round, and each preserved architecture is a choice in
the super-cell. We will see in experiments that this strategy
improves the stability of search, i.e., the chance of finding
high-quality architectures is increased.

Experiments
All experiments are conducted on ILSVRC2012 (Rus-
sakovsky et al. 2015). Additional hyper-parameter settings
and implementation details can be found in the Arxiv version.

A Typical Search Procedure: How GCN Works?
Figure 2 shows a complete search process. The search starts
with an initial model, in which all cells have a kernel size
of 3 and an expansion ratio of 6, denoted by K3E6. After
searching in the first subspace containing 7 cells, 6 top-ranked
sub-architectures are preserved and sent into the next stage
as a super-cell. This process continues two more times until
the final architecture is obtained.

From this example, we provide some intermediate statis-
tics to show how GCN assists in the architecture search pro-
cess. In the first subspace, 2,000 sub-networks are sampled,
with the best one (denoted by M̃0) reporting an accuracy
of 81.25% (over the sampled 100 classes). However, after
GCN is trained and 100 best sub-networks are chosen from
its prediction, M̃0 does not appear in these 100 sub-networks.
Yet, when these 100 sub-networks are sent into sub-network
sampling, the best one (M?

0) reports an accuracy of 81.11%
which is slightly lower than that of M̃0. But, this does not
mean that M̃0 is indeed better – it is the noise introduced by
sub-network sampling that surpasses the difference between
their actual performance. To verify this, we perform another
NAS process that does not involve using GCN for prediction
but simply preserves the top-ranked architectures from sub-
network sampling. This strategy reports a final accuracy (over
1,000 classes) of 75.2% (with 438M multi-adds), which is
inferior to that (75.5%) with GCN applied.

Two more evidences verify the effectiveness of GCN.
On the one hand, GCN is able to fit the data collected by
sub-network sampling. In three search segments, using 200
left-out architecture-performance pairs for validation, the
Kendall-τ coefficient (ranged in [−1, 1] with 0 implying ran-
dom guess) is always higher than 0.5, i.e., the relative ranking
of more than 75% pairs is consistent between sub-network
sampling and GCN prediction. On the other hand, GCN pre-
diction actually works better than sub-network sampling. We
choose 8 architectures from the third subspace and evaluate
their real performance by training them from scratch. The

Kendall-τ coefficient between the real performance and sub-
network sampling is 0.2143 (still close to random guess), but
the coefficient is improved to 0.6429 by GCN.

Furthermore, we perform linear regression on Acc150,
Acc160 and the GCN-predicted one, AccGCN , and re-plot
corresponding dots and curves in the Arxiv version to show
the results that GCN helps to improve the ranking consistency.
The regression scores4 of Accreg150, Accreg160 and AccregGCN are
0.07, 0.04 0.62, respectively. The large difference on regres-
sion scores between the super-network-evaluated accuracy
and the GCN-predicted one is a proof that the random error
term in our key assumption is largely suppressed.

Comparison to the State-of-the-Arts
The performance comparison on ImageNet classification
with state-of-the-art architectures is listed in Table ??. For
a fair comparison, we do not list architectures that are ei-
ther trained with additional data augmentations (e.g., Au-
toAugment (Cubuk et al. 2019)) or equipped with extra ar-
chitecture modifications (e.g., MobileNet-v3 (Howard et al.
2019) introduced H-Swish and reported a top-1 accuracy of
75.2%). With a comparable amount of multi-add operations,
the performance of our approach is on par with state-of-the-
art methods that searched on a chain-styled search space.
Our searched architecture enjoys a superior test accuracy
than FairNAS (Chu et al. 2019b) due to a better fitting to the
search space, which is explained in Section 10. Compared
to those architectures searched on the DARTS-based search
space, our discovered architecture achieves comparable per-
formance while enjoys a smaller model size and multi-adds
count. Notably, with nearly 20M less multi-adds, the perfor-
mance of our searched architecture is comparable to that of
MnasNet-A3, which was searched by sampling and evaluat-
ing architectures by training-from-scratch and cost thousands
of GPU-days.

Diagnostic Studies
Relationship to the Overall Quality of the
Super-network
The length of one-shot training is worth discussion. For ex-
ample, training the super-network throughout 150 epochs
achieves a 86.17% training accuracy, and increasing the num-
ber of epochs to 450 improves the accuracy to 94.67%, which
potentially leads to a higher quality of sub-networks. How-
ever, such improvement does not necessarily cause the final
architecture to be better, implying that the architecture-related
random noise, εM, is still a major concern.

The Number of Sampled Architectures
The number of architectures sampled for each round is a
critical factor related to the search cost since the graph con-
struction and GCN training only take a few minutes. We have
tested two different settings of M = 2,000 and M = 5,000.
The results are listed in Table ?? and no obvious difference
is observed on both Kendall-τ coefficients and the evaluation

4The regression score is a criterion to measure the determination
of prediction. Larger regression score is better.
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Architecture Test Acc. (%) Params ×+ Search Cost Search
top-1 top-5 (M) (M) (GPU-days) Method

Inception-v1 (Szegedy et al. 2015) 69.8 89.9 6.6 1448 - manual
NASNet-A (Zoph et al. 2018) 74.0 91.6 5.3 564 1800 RL
AmoebaNet-C (Real et al. 2018) 75.7 92.4 6.4 570 3150 EA
DARTS (second order) (Liu, Simonyan, and Yang 2018) 73.3 91.3 4.7 574 4.0 GB
P-DARTS (CIFAR10) (Chen et al. 2019) 75.6 92.6 4.9 557 0.3 GB
PC-DARTS (ImageNet) (Xu et al. 2020) 75.8 92.7 5.3 597 3.8 GB
MnasNet-A3† (Tan et al. 2019) 76.7 93.3 5.2 403 1667‡ RL
ProxylessNAS (GPU) (Cai, Zhu, and Han 2018) 75.1 92.5 7.1 465 8.3 GB
FFairNAS-A (Chu et al. 2019b) 75.3 92.4 4.6 388 12 EA
One-Shot-NAS-GCN (ours) 75.5 92.7 4.4 383 4.7 GCN
One-Shot-NAS-GCN† (ours) 76.6 93.1 4.6 384 4.7 GCN

Table 1: Comparison with state-of-the-art architectures on ImageNet (mobile setting). †: SE module included, ‡: estimated
by (Cai, Zhu, and Han 2018), GB: gradient-based, BO: Bayesian Optimization.

# Archs Sim. τ1 τ2 τ3 Test Acc. (%)
2,000 A 0.76 0.58 0.51 75.48
2,000 M 0.74 0.60 0.52 75.47
5,000 A 0.74 0.60 0.50 75.47
5,000 M 0.75 0.62 0.53 75.45

Table 2: Results for different number of architectures sampled
for each round and similarity type. τt denotes the Kendall-τ
coefficient of the t-th round. A: Assigned; M: Measured.

accuracy of the discovered architectures. It takes around 9
hours on a single GPU to finish the search process when
M = 2,000, while the search cost is increased to about 21
GPU-hours when we use the M = 5,000 setting. Thus, we
adopt the former setting for most of the experiments.

The Similarity Measurement in GCN
We have compared the influence of the way to define the
similarity matrix and demonstrate the results in Table ??. Due
to the fact that both types of similarity definitions involve
approximation, there is no obvious difference between them.

Preserving 1 vs. 6 Candidates
Preserving multiple candidates from the previous round is
important because more candidates can increase the probabil-
ity that the most promising sub-architectures are included in
the final searched architecture. We conduct experiments to
validate it. We run the search process for 3 times for both the
settings of preserving 1 candidate and 6 candidates from the
previous round. The classification accuracy of the former set-
ting is 75.34%± 0.08%, while the latter is 75.47%± 0.01%,
which supports our previous analysis.

Flexible NAS with Hardware Constraints
Thanks to the prediction ability of the trained GCN, we can
easily build a lookup table that contains the predicted perfor-
mance of all sub-networks in the search space (or subspace),
upon which architectures that satisfy different hardware con-
straints can be selected. Without such a lookup table, the

target architecture must be included in the explored archi-
tectures, which is rigid and inconvenient when multiple ar-
chitectures with different constraints are required. We pick
multiple architectures with different multi-adds levels by fil-
tering out the top-ranked architectures that meet the target
constraint and selecting the top-1 according to the sampling
and re-evaluation ranking. The selected architectures achieve
75.6%, 75.5% and 75.4% top-1 accuracies with 393M, 383M
and 360M multi-adds, respectively. Under target hardware
constraints, our searched architectures keep comparable per-
formance with state-of-the-art architectures under similar
constraints. In addition, one can freely generalize our ap-
proach to other types of hardware constraints, e.g., network
latency.

Conclusions

This paper introduces a novel idea that uses graph convolu-
tional network to assist weight-sharing neural architecture
search. The most important opinion is that there is an in-
evitable random noise between a well-trained super-network
and the sub-networks sampled from it, and GCN, by aver-
aging over the entire search space, can eliminate the error
systematically and avoid the architecture search from falling
into local minima. Experiments demonstrate the effectiveness
and efficiency of our approach, in particular in the scenarios
with additional hardware constraints.

Our research paves the way of projecting the architectures
in the search space into another low-dimensional space. This
is a new direction which may provide new insights to neural
architecture search, but currently, there are still some impor-
tant issues that remain uncovered. For example, it is well
known that fine-tuning each sampled sub-network can im-
prove the accuracy of estimation, but it requires considerable
computation – this is a tradeoff between accuracy and effi-
ciency. We can perform fine-tuning on a small number of
sub-networks and assign the remaining ones to be evaluated
by sub-network evaluation. The property of GCN in such a
heterogeneous graph is worth investigating, which, as well
as other topic, will be left for future work.
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