
Distributed Ranking with Communications: Approximation Analysis and
Applications

Hong Chen,1 Yingjie Wang,2 Yulong Wang,2∗ Feng Zheng3∗

1College of Science, Huazhong Agricultural University, China
2College of Informatics, Huazhong Agricultural University, China

3Department of Computer Science and Engineering, Southern University of Science and Technology, China
chenh@mail.hzau.edu.cn, yjaywang@126.com, wangyulong6251@gmail.com, zhengf@sustech.edu.cn

Abstract

Learning theory of distributed algorithms has recently at-
tracted enormous attention in the machine learning commu-
nity. However, most of existing works focus on learning prob-
lem with pointwise loss and does not consider the commu-
nication among local processors. In this paper, we propose a
new distributed pairwise ranking with communication (called
DLSRank-C) based on the Newton-Raphson iteration, and es-
tablish its learning rate analysis in probability. Theoretical
and empirical assessments demonstrate the effectiveness of
DLSRank-C under mild conditions.

Introduction
Distributed learning under divide and conquer strategy has
attracted increasing attention recently, since data are often
stored in multiple servers for many applications (Zhang,
Duchi, and Wainwright 2015; Hsieh, Si, and Dhillon 2014;
Xu et al. 2016; Guo, Lin, and Shi 2019). In kernel methods,
the distributed learning system depends on three key ingre-
dients including local kernel machines, communication, and
synthesization (Lin, Wang, and Zhou 2020). Each local ker-
nel machine tackles the data subset with the computation
feasibility. The communication strategy aims to exchange
some important information among subsets, e.g., gradients
(Zeng and Yin 2018) and local predictor (Huang and Huo
2019). Based on the above building blocks, the global ma-
chine is constructed by the average over local estimators
(Lin, Wang, and Zhou 2020; Li, Liu, and Wang 2019).

Usually, the communication strategy for distributed learn-
ing systems is useful to enlarge the number of local ma-
chines to reach fast learning rate (i.e., the speed of conver-
gence in the generalization errors). In particular, the com-
munication strategy based on Newton-Raphson iteration is
incorporated into the framework of distributed algorithms,
e.g., linear ridge regression (Huang and Huo 2019) and ker-
nel ridge regression (Lin, Wang, and Zhou 2020; Li, Liu,
and Wang 2019). However, the existing works are limited
to the regression problem with the pointwise loss, e.g., the
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least squared loss. It is natural and important to further in-
vestigate theory foundations of distributed pairwise learn-
ing with communication, e.g., learning under MEE principle
(Hu et al. 2013), pairwise ranking (Cortes, Mohri, and Ras-
togi 2007; Agarwal and Niyogi 2009; Chen 2012; Kriukova,
Pereverzyev, and Tkachenko 2016; Kriukova et al. 2016).
Indeed, there are some efforts to characterize the general-
ization bounds of MEE-based distributed algorithms in (Hu,
Wu, and Zhou 2020; Guo, Hu, and Wu 2020) and the dis-
tributed least square ranking (DLSRank) (Chen, Li, and Pan
2019). However, both of them do not consider the commu-
nication strategy among local processors and the weighted
average can not improve the approximation ability of each
local machine (Lin, Wang, and Zhou 2020). To improve
the approximation of distributed pairwise learning, we intro-
duce an efficient communication strategy and synthesization
method to the ranking problem.

Following the operator representation of ranking in
(Chen 2012; Chen et al. 2013; Kriukova, Pereverzyev, and
Tkachenko 2016) and the communication strategy in (Lin,
Wang, and Zhou 2020; Li, Liu, and Wang 2019), we formu-
late a distributed ranking algorithm, called distributed least
square ranking with communication (DLSRank-C). Under
this communication strategy, the proposed distributed algo-
rithm can better utilize the exchangeable information of lo-
cal machines to improve the approximation stability of fi-
nal predictor. Learning theory analysis supports the motiva-
tion of algorithmic design, where the faster learning rates
can be obtained with the help of communication strategy
than the previous distributed ranking in (Chen, Li, and Pan
2019). Our main tools to achieve this goal are the opera-
tor representation for the solution of distributed least square
ranking (Chen 2012; Kriukova, Pereverzyev, and Tkachenko
2016), the operator decomposition and approximation strat-
egy (Lin, Guo, and Zhou 2017; Chang, Lin, and Zhou 2017;
Guo, Shi, and Wu 2017), and the Newton-Raphson iteration
(Lin, Wang, and Zhou 2020). Furthermore, this paper estab-
lish the learning rates of DLSRank-C in probability, which
is different from the related result in expectation (Chen,
Li, and Pan 2019). The probability version usually is desir-
able crucial to characterize the generalization performance
of DLSRank-C in a single trial (Lin, Wang, and Zhou 2020).
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Distributed Ranking with Communication
In this section, we employ the communication strategy for
DLSRank to improve its approximation ability.

Distributed Least Square Ranking (DLSRank)
Let Z := (X ,Y) ⊂ Rp+1 be a compact metric space, where
X ⊂ Rp and Y ⊂ [−M,M ] for some positive constant M .
Assume that observations D := {(xi, yi)}ni=1 are indepen-
dently drawn from an intrinsic Borel probability measure ρ
onZ . The primary purpose of least squares ranking is to find
a function: f : X → R, by means of empirical observations,
such that the ranking risk

E(f) =

∫
Z

∫
Z

(y−y′− (f(x)−f(x′)))2dρ(x, y)dρ(x′, y′)

(1)
as small as possible. As illustrated in (Chen 2012; Chen et al.
2013; Kriukova, Pereverzyev, and Tkachenko 2016; Hu et al.
2013), the optimal score predictor under the criterion (1) is
the regression function defined by

fρ(x) =

∫
Y
ydρ(y|X = x),x ∈ X ,

where ρ(y|X = x) denotes the conditional distribution for
given input x.

This section recalls the distributed least squares ranking.
Let D = ∪mj=1Dj and each subset Dj := {(xji , y

j
j )}
|Dj |
i=1 be

stored in the j-th local machine for 1 ≤ j ≤ m. Here, |D|
denotes the cardinality of D with |D| =

∑m
j=1 |Dj |. The

hypothesis space used here is the reproducing kernel Hilbert
space (RKHS) (HK , ‖ · ‖K) associated with a mercer kernel
K : X ×X → R (Aronszajn 1950; Cucker and Zhou 2007).

The DLSRank, with a regularized parameter λ > 0, is
defined by

f̄0
D,λ =

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

fDj ,λ, (2)

where the least squares ranking (LSRank)

fDj ,λ = arg min
f∈HK

{EDj (f) + λ‖f‖2K} (3)

and

EDj (f) =
1

|Dj |2

|Dj |∑
i,k=1

(yji − y
j
k − (f(xji )− f(xjk)))2.

The learning rates of (2) have been investigated in (Chen,
Li, and Pan 2019) with the help of operator approximation
(Smale and Zhou 2007; Lin, Guo, and Zhou 2017; Chang,
Lin, and Zhou 2017). However, the learning performance of
DLSRank degrades when m increases, since the weighted
averaging in (2) cannot improve the approximation ability
of DLSRank in each local machine (Huang and Huo 2019;
Lin, Wang, and Zhou 2020). Therefore, it is necessary to
incorporate some communication strategies for improving
its approximation ability.

Distributed Least Squares Ranking with
Communication (DLSRank-C)
In this section, we state the DLSRank with communication
based on Newton-Raphson iteration (Huang and Huo 2019;
Lin, Wang, and Zhou 2020).

The following operators have been used for learning
theory analysis, see, e.g., (Smale and Zhou 2005, 2007;
Rosasco, Belkin, and Vito 2010; Sun and Wu 2009). Let
SD : HK → R|D| be the sampling operator defined by
SDf := (f(x))(x,y)∈D and let STD : R|D| → HK be its
scaled adjoint operator defined by

STDc :=
1

|D|

|D|∑
i=1

ciKxi , c = (c1, · · · , c|D|)T ∈ R|D|,

where Kx = K(x, ·). The ranking integral operator LK ,
introduced in (Chen 2012), is given by

LKf =

∫
X

∫
X
f(x)(Kx −Kx′)dρX (x)dρX (x′),

where ρX is the margin distribution of ρ with respect to X .
The empirical ranking operator is denoted as

LK,Df := STDWDSDf =
1

|D|2
∑

(x,y)(x′,y′)∈D

f(x)(Kx −Kx′),

where

WD = I|D| −
1

|D|
1|D|1

T
|D| =

1

|D|
(|D|I− 1D1

T
D),

I|D| is the |D|-order identity matrix and 1|D| =

(1, · · · , 1)T ∈ R|D|.
As stated in (Chen 2012; Kriukova, Pereverzyev, and

Tkachenko 2016; Chen, Li, and Pan 2019), for given obser-
vations D, the representations of LSRank (3) and DLSRank
(2) are

fD,λ = (LK,D +
λ

2
I|D|)−1STDWDYD

and

f̄0
D,λ =

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj+
λ

2
I|Dj |)

−1STDjWDjYDj ,

where YD = (y)(x,y)∈D ∈ R|D| and YDj = (y)(x,y)∈Dj ∈
R|Dj |. By direct computation, we deduce that, ∀f ∈ HK ,

fD,λ = f − (LK,D +
λ

2
I|D|)−1[(LK,D +

λ

2
I|D|)f −STDWDYD]

(4)
and

f̄0
D,λ = f −

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj +
λ

2
I|Dj |)

−1

[(LK,Dj +
λ

2
I|Dj |)f − S

T
DjWDjYDj ].

(5)
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Following the proof of Lemma 2 in (Chen 2012), we know
that the gradient of regularized risk (3) overHK on f is

GDj ,λ,f =
4

|Dj |2
∑

(x,y),(x′,y′)∈Dj

(yKx′ − yKx

+ f(x)Kx − f(x)Kx′) + 2λf

= 4(LK,Dj +
λ

2
I|Dj |)f − 4STDjWDjYDj

and its HessianHDj ,λ = 4(LK,Dj + λ
2 I|Dj |). Then, both (4)

and (5) can be regarded as the well-known Newton-Raphson
iteration. Inspired by the recent works in (Lin, Wang, and
Zhou 2020; Li, Liu, and Wang 2019), we propose a dis-
tributed least-squares ranking with communication strategy
based on Newton-Raphson iteration, which is formed as

f̄ lD,λ = f̄ l−1
D,λ −

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj +
λ

2
I|Dj |)

−1

[
(LK,D +

λ

2
I|D|)f̄ l−1

D,λ − S
T
DWDYD

]
= f̄ l−1

D,λ −
m∑
j=1

|Dj |2∑m
k=1 |Dk|2

H−1
Dj ,λ

GD,λ,f̄ l−1
D,λ

, (6)

where l denote the l-th iteration and

GD,λ,f̄ l−1
D,λ

=

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

GDj ,λ,f̄ l−1
D,λ

is the global gradient that is achieved via communicating the
local gradients.

Approximation Analysis
In this section, we aim to provide the theoretical analysis on
the approximation ability of f̄0

D,λ and f̄ lD,λ in probability.
Define a stepping-stone function as

fλ = arg min
f∈HK

{E(f) + λ‖f‖2K}.

The following inequalities, established in Lemma 2 and
Proposition 2 of (Chen, Li, and Pan 2019), are used for our
error analysis.
Lemma 1 For fDj ,λ defined in (3) and fρ ∈ HK , there
holds

‖fDj ,λ − fλ‖K ≤ Tj1 + Tj2‖fλ‖K ,
where

Tj1 = ‖(LK,Dj +
λ

2
I|Dj |)

−1(STDjWDjYDj − LKfρ)‖K
and

Tj2 = ‖(LK,Dj +
λ

2
I|Dj |)

−1(LK,Dj − LK)‖K .

Lemma 2 For any 0 < δ < 1, with confidence at least 1−δ,
there hold

Tj1 ≤
48κM log(2/δ)

λ
√
|Dj |

+
1

λ|Dj |
‖LKfρ‖K

and
Tj2 ≤

54κ

λ
√
|Dj |

(log(2/δ) + 1),

where κ = supx∈X K(x,x), ∀x ∈ X .

Theorem 1 Assume that L−rK fρ ∈ HK with 0 < r ≤ 1,
where LrK is the r-th power of LK . For f̄0

D,λ defined in (5),
there holds

‖f̄0
D,λ − fρ‖K ≤ C0 log(2/δ)(

m∑
j=1

|Dj |
3
2∑m

k=1 |Dk|2
)

r
1+r

with confidence at least 1−δ, whereC0 is a positive constant
that depends on M , κ and λ.
Proof: According to the definition of f̄0

D,λ, we get

f̄0
D,λ − fλ =

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(fDj ,λ − fλ). (7)

Combining the above equality with Lemmas 1 and 2, we
obtain
‖f̄0
D,λ − fλ‖K

≤
m∑
j=1

|Dj |2∑m
k=1 |Dk|2

{48κM log(2/δ)

λ
√
|Dj |

+
1

λ|Dj |
‖LKfρ‖K

+
54κ

λ
√
|Dj |

(log(2/δ) + 1)‖fλ‖K
}

≤ C1 log(2/δ)λ−1
m∑
j=1

|Dj |
3
2∑m

k=1 |Dk|2

(8)

with confidence at least 1− δ.
According to Proposition 5 in (Chen 2012), we have
‖fλ − fρ‖K ≤ ‖L−rK fρ‖Kλr, r ∈ (0, 1]. (9)

Based on above two inequalities (8) and (9), we deduce
that, with confidence at least 1− δ,
‖f̄0
D,λ − fρ‖K

≤ ‖f̄0
D,λ − fλ‖K + ‖fλ − fρ‖K

≤ C1 log(2/δ)λ−1
m∑
j=1

|Dj |
3
2∑m

k=1 |Dk|2
+ ‖L−rK fρ‖Kλr.

By taking λ1+r = O(
∑m
j=1

|Dj |
3
2∑m

k=1 |Dk|2
), we get the desired

result. �

Remark 1 When m = 1, the learning rate
O(log(2/δ)|D|

−r
2+2r ) is consistent with the conver-

gence analysis for DLSRank in (Chen, Li, and Pan 2019).
When |D1| = · · · = |Dm| = |D|

m , the learning rate is
O(log(2/δ)( m|D| )

r
2(1+r) ). The consistency of DLSRank can

be guaranteed as lim|D|→∞
m
|D| = 0.

Now we establish the convergence analysis of DLSRank-
C. The error decomposition is crucial for our analysis.
Lemma 3 Let fD,λ and f lD,λ be defined in (4) and (6) re-
spectively. We have

‖f̄ lD,λ − fD,λ‖K

≤
[ 4

λ

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

‖LK − LK,Dj‖K
]l
‖f̄0
D,λ − fD,λ‖K .
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Proof: Recall that

f̄ lD,λ = f̄ l−1
D,λ −

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj +
λ

2
I|Dj |)

−1

[(LK,D +
λ

2
I)f̄ l−1

D,λ − S
T
DWDYD]

and
fD,λ = f̄ l−1

D,λ

− (LK,D +
λ

2
I)−1[(LK,D +

λ

2
I)f̄ l−1

D,λ − S
T
DWDYD].

Then, we have

fD,λ − f̄ lD,λ

=

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

[(LK,Dj +
λ

2
I|Dj |)

−1 − (LK,D +
λ

2
)−1]

[(LK,D +
λ

2
I)f̄ l−1

D,λ − S
T
DWDYD]

=

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj +
λ

2
I|Dj |)

−1(LK,D − LK,Dj )

(LK,D +
λ

2
)−1[(LK,D +

λ

2
I)f̄ l−1

D,λ − S
T
DWDYD]

=

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj +
λ

2
I|Dj |)

−1

(LK,D − LK)(f̄ l−1
D,λ − fD,λ)

+

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(LK,Dj +
λ

2
I|Dj |)

−1

(LK − LK,Dj )(f̄
l−1
D,λ − fD,λ).

Moreover,

‖f̄ lD,λ − fD,λ‖K

≤ 2

λ

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

(‖LK,D − LK‖

+ ‖LK − LK,Dj‖)‖f̄ l−1
D,λ − fρ,λ‖K

≤ (
4

λ

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

‖LK − LK,Dj‖)‖f̄ l−1
D,λ − fD,λ‖K

≤ (
4

λ

m∑
j=1

|Dj |2∑m
k=1 |Dk|2

‖LK − LK,Dj‖)l‖f̄0
D,λ − fD,λ‖K .

(10)

�

The following characterization for operator approxima-
tion has been stated in (Chen 2012; Kriukova, Pereverzyev,
and Tkachenko 2016).
Lemma 4 For the training set Dj drawn independently
from ρ, and any δ ∈ (0, 1), we have

‖LK − LK,Dj‖ ≤
24κ2√
|Dj |

log(2/δ) +
2κ2

|Dj |
with confidence at least 1− δ.

It is a position to present the learning rate of DLSRank-C.

Theorem 2 Assume that L−rK fρ ∈ HK with 0 < r ≤ 1 and
taking λ = |D|−

1
2r+2 . For any δ ∈ (0, 1), with confidence at

least 1− δ, we have

‖f̄ lD,λ − fρ‖K
≤ C(log(2/δ))l+1 max{(m 1

2 |D|−
r

2+2r )l+1, |D|−
r

2r+2 },

where C is a positive constant that depends on κ, M and λ.
Proof: In terms of Lemmas 3-4 and |Dj | = |D|/m, ∀j =
1, · · · ,m, we deduce that

‖f̄ lD,λ − fD,λ‖K ≤ C̃(log(
2

δ
))l(

m

λ2|D| )
l/2‖f̄0

D,λ − fD,λ‖K

≤ C̃(log(
2

δ
))l(

m

λ2|D| )
l/2[‖f̄0

D,λ − fλ‖K

+ ‖fD,λ − fλ‖K ].

From the proofs of Theorem 1, we know that, with confi-
dence 1− δ,

‖f̄0
D,λ − fλ‖K ≤ 48κM log(2/δ)(

m

λ2|D|
)

1
2

and

‖fD,λ − fλ‖K ≤ 48κM log(2/δ)(
m

λ2|D|
)

1
2 .

Combining above inequalities, we get with confidence 1− δ

‖f̄ lD,λ − fD,λ‖K ≤ C̃(log(2/δ))l+1(
m

λ2|D|
)
l+1
2 . (11)

As shown in Theorem 1, there holds

‖fD,λ − fρ‖K ≤ C2 log(2/δ)|D|−
r

2r+2 (12)

with confidence at least 1− δ. By considering the inequality

‖f̄ lD,λ − fρ‖ ≤ ‖f̄ lD,λ − fD,λ‖K + ‖fD,λ − fρ‖

with (11) and (12), we get the desired result. �

Remark 2 When m ≤ |D|
rl

(1+r)(1+l) , the learning rate
is O(|D|

−r
2+2r ), which is faster than Theorem 1 for DL-

SRank, e.g., O(( |D|m )
−r

2r+2 ). When m ≥ |D|
rl

(1+r)(1+l)

and lim|D|→∞m
1
2 |D|

−r
2r+2 = 0, the learning rate is

O(m
l+1
2 |D|

−r(l+1)
2+2r ). Thus, the derived rate is faster than

DLSRank in Theorem 1 if m ≥ |D|
rl

(r+1)(l+1)−r . It is clear
that DLSRank-C is always faster than DLSRank for any m
when l→∞.

Remark 3 It should be noticed that our analysis roots in the
operator approximation techniques, which is essentially dif-
ferent from the learning theory analysis for pairiwise rank-
ing via capacity-based concentration estimation (Agarwal
et al. 2005; Clémencon, Lugosi, and Vayatis 2008; Rudin
and Schapire 2009; Rudin 2009; Rejchel 2012) and algo-
rithmic stability (Cossock and Zhang 2008; Agarwal and
Niyogi 2009; Chen et al. 2014).
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Step 1 Step 2 Step 3 Step 4 Step 5
Training Flow (INDV) O( |D|

3

m3 +m |D|
2

m2 r + |D|) O( |D|
2

m ) O(m|D|) O( |D|
2

m ) O(m|D|)
Training Flow (TOT) O( |D|

2r
m + |D|3

m3 + l|D|2
m + lm|D|)

Testing Flow (INDV) |D′||D|r
m +m|D′| |D|2

m2 + |D′||D|
m m|D′| |D′||D|

m + |D|2
m2 +m|D′| −

Testing Flow (TOT) O( r|D||D
′|

m +ml|D′|+ l|D|2
m2 + l|D||D′|

m )

Table 1: Computational complexities of training flow and testing flow. INDV refers to the complexity of computing each
individual step, and TOT refers to the total complexities of training (or testing) flow.

Training and Testing Flows for DLSRank-C
In practice, it is difficult to implement DLSRank-C directly
because Equation 6, involving operator representations of
GDj ,λ and f l−1

D,λ, cannot be calculated directly without the
given data Dj , j = 1, .... Consequently, we employ an
efficient strategy, inspired by (Lin, Wang, and Zhou 2020),
to learn DLSRank-C with the help of input data. We give
some necessary notations for the training and testing flows.

Notations: The training set D = ∪mj=1Dj =

∪mj=1{x
j
i , y

j
i }
|Dj |
i=1 and test set D′ = {x′i, y′i}

|D′|
i=1 are in-

dependently drawn from an unknown distribution ρ. Let
Dj(x) = {xj : (xj , yj) ∈ Dj} and the kernel matrix
KDk,Dj = (K(a,b))a∈Dk(x),b∈Dj(x) ∈ R|Dk|×|Dj | for
any k, j = 1, · · · ,m. Additionally, we denote WDj =

I|Dj | − 1
|Dj |1|Dj |1

T
|Dj | ∈ R|Dj |×|Dj | and MDj ,λ =

(WDjKDj ,Dj +
λ|Dj |

2 I|Dj |)−1 for j = 1, · · · ,m.
Training flow: The training flow for DLSRank-C can be

broken down into following five steps:
Step 1 (Initialization): On the j-th local machine, we ob-

tain ᾱDj = MDj ,λWDjYDj with dataDj for j = 1, · · · ,m.
Then we communicate j-th dataset Dj(x) to the k-th local
machine and store KDk,Dj for k = 1, · · · ,m. Finally, we
can initialize m synthesized global vectors

f̄0
D,λ(Dk(x)) =

m∑
j=1

|Dj |2∑m
t=1 |Dt|2

f̄Dj ,λ(Dk(x))

with k = 1, · · · ,m, where f̄Dj ,λ(Dk(x)) = KDk,Dj ᾱDj .
In the following steps, we update the global vectors iter-

atively. For l = 1, 2, · · · , we distribute f̄ l−1
D,λ(Dj(x)) to the

j-th local machine for j = 1, · · · ,m.
Step 2 (On each local machine): On the j-th local ma-

chine, we compute m local gradient vectors

Gl−1

Dj ,λ,f̄
l−1
D,λ

(Dk(x))

:=
4KDk,Dj

|Dj |
[WDj (f̄

l−1
D,λ(Dj(x))− YDj )] + 2λf̄ l−1

D,λ(Dk(x))

for each k = 1, · · · ,m and then communicate these gradi-
ent vectors to global machine.

Step 3 (On global machine): Based on the local gradient
vectors, we obtain m global gradient vectors

Gl−1

D,λ,f̄ l−1
D,λ(Dk(x))

:=
m∑
j=1

|Dj |2∑m
t=1 |Dt|2

Gl−1

Dj ,λ,f̄
l−1
D,λ(Dk(x))

with k = 1, · · · ,m, and distribute these m global gradient
vectors to all local machines.

Step 4 (On each local machine): Recall the proposed
DLSRank-C in (6), we have the following equivalent trans-
formation

H−1
Dj ,λ

GD,λ,f̄ l−1
D,λ

=
1

2λ
[I− 4H−1

Dj ,λ
LK,Dj ]GD,λ,f̄ l−1

D,λ
.

As a result, on the j-th local machine, we denote

γ̄l−1
D,Dj

:=
1

4
MDj ,λWDjG

l−1

D,λ,f̄ l−1
D,λ(Dj(x))

.

According to the Equation (7) in (Lin, Wang, and Zhou
2020), we can obtain

H−1
Dj ,λ

LK,DjG
l−1

D,λ,f̄ l−1
D,λ(Dk(x))

= KDk,Dj γ̄
l−1
D,Dj

and

F̄ l−1
Dj ,λ

(Dk(x)) :=
1

2λ
[Gl−1

D,λ,f̄ l−1
D,λ(Dk(x))

− 4KDk,Dj γ̄
l−1
D,Dj

]

for k = 1, · · · ,m. Finally, we transmit these m vectors to
the global machine.

Step 5 (On global machine): We update the global vector

f̄ lD,λ(Dk(x)) = f̄ l−1
D,λ(Dk(x))−

m∑
j=1

|Dj |2∑m
t=1 |Dt|2

F̄ l−1
Dj ,λ

(Dk(x)),

for k = 1, · · · ,m. Then, we transmit f̄ lD,λ(Dk(x)) to j-th
local machine with j = 1, · · · ,m and go back to Step 2.

Testing flow: Given |D′| query points D′(x), we can ob-
tain the test vector by following steps:

Step 1 (Initialization): On the global machine, we initial-
ize the test vector

f̄0
D,λ(D′(x)) =

m∑
j=1

|Dj |2∑m
t=1 |Dt|2

KD′,Dj ᾱDj .

In the following steps, we update the test vectors itera-
tively. For l = 1, 2, · · · , distribute f̄ l−1

D,λ(D′(x)) to m local
machines.

Step 2 (On each local machine): On the j-th local ma-
chine, compute the local gradient vector for j = 1, · · · ,m,

Gl−1

Dj ,λ,f̄
l−1
D,λ

(D′(x))

=
4KD′,Dj

|Dj |
[WDj (f̄

l−1
D,λ(Dj(x))− YDj )] + 2λf̄ l−1

D,λ(D′(x)),
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p = 3 p = 5

m = 60 m = 120 m = 240 m = 60 m = 120 m = 240
LSRank 0.0206(0.0043) 0.0206(0.0043) 0.0206(0.0043) 0.0195(0.0032) 0.0195(0.0032) 0.0195(0.0032)
Executive time (s) 27.443(0.8514) 27.443(0.8514) 27.443(0.8514) 26.734(1.0449) 26.734(1.0449) 26.734(1.0449)
DLSRank 0.0216(0.0039) 0.0227(0.0040) 0.0244(0.0033) 0.0208(0.0027) 0.0224(0.0025) 0.0244(0.0029)
Executive time (s) 0.0135(0.0002) 0.0068(0.0001) 0.0050(0.0002) 0.0142(0.0004) 0.0073(0.0002) 0.0053(0.0002)
DLSRank-C(l = 2) 0.0208(0.0042) 0.0215(0.0041) 0.0261(0.0056) 0.0201(0.0032) 0.0240(0.0040) 0.0422(0.0090)
Executive time (s) 0.0176(0.0003) 0.0094(0.0002) 0.0073(0.0003) 0.0183(0.0004) 0.0099(0.0003) 0.0075(0.0003)
DLSRank-C(l = 4) 0.0207(0.0042) 0.0208(0.0042) 0.0215(0.0035) 0.0194(0.0029) 0.0196(0.0029) 0.0202(0.0019)
Executive time (s) 0.0259(0.0005) 0.0144(0.0004) 0.0119(0.0006) 0.0267(0.0007) 0.0150(0.0005) 0.0121(0.0005)
DLSRank-C(l = 8) 0.0206(0.0042) 0.0208(0.0042) 0.0214(0.0035) 0.0194(0.0029) 0.0196(0.0029) 0.0199(0.0021)
Executive time (s) 0.0426(0.0009) 0.0246(0.0008) 0.0210(0.0011) 0.0434(0.0011) 0.0253(0.0009) 0.0213(0.0011)

Table 2: The comparison of misranking risk (standard deviation) and training executive time (standard deviation)

where f̄ l−1
D,λ(Dj(x)) is obtained from the training flow. Then

we transmit Gl−1

Dj ,λ,f̄
l−1
D,λ(D′(x))

with j = 1, · · · ,m to the

global machine.
Step 3 (On global machine): Compute the global gradient

vector

Gl−1

D,λ,f̄ l−1
D,λ(D′(x))

=

m∑
j=1

|Dj |2∑m
t=1 |Dt|2

Gl−1

Dj ,λ,f̄
l−1
D,λ(D′(x))

.

Step 4 (On global machine): We obtain the final vector of
prediction

f̄ lD,λ(D′(x))

= f̄ l−1
D,λ(D′(x))− 1

2λ

m∑
j=1

|Dj |2∑m
t=1 |Dt|2

[Gl−1

D,λ,f̄ l−1
D,λ(D′(x))

− 4KD′,Dj γ̄
l−1
D,Dj

]

=
2

λ

m∑
j=1

|Dj |2∑m
t=1 |Dt|2

[KD′,Dj γ̄
l−1
D,Dj
−

KD′,Dj

|Dj |
WDj (f̄

l−1
D,λ(Dj(x))− YDj )].

Remark 4 Here we compare the computational complexi-
ties of LSRank and DLSRank-C. Let r be the complexity
of computing a kernel function K(·, ·). It is trivial to ob-
tain the computational complexity of LSRank, i.e., train-
ing complexity O(|D|2r + |D|3) and testing complexity
O(|D||D′|r). Without considering the time of data transmis-
sion in DLSRank-C, the computational complexity analysis
of DLSRank-C for the training flow and testing flow is sum-
marized in Table 1.

Empirical Evaluations
In this section, we evaluate DLSRank-C on some simulated
and benchmark datasets to validate our theoretical findings.
All experiments were implemented in MATLAB 2019b on
an intel Core i7 with 16 GB memory.

Empirical Evaluation on Simulated Data
Inspired by numerical experiments in (Kriukova,
Pereverzyev, and Tkachenko 2016), the inputs

{xi}|D|i=1 ∈ R|D|×p are randomly chosen from natural
number set {1, · · · , 100}, and the corresponding outputs are

yi = [‖xi‖/5] + εi, 1 ≤ i ≤ |D|,

where [·] means the integer part of inputs and ε is the
noise sampled from the uniform distribution U(−5, 5).
The RKHS is constructed by Gaussian kernel K(x,x′) =

exp(− ‖x−x
′‖22

2d2 ).
We generate 10000 samples for training and 1000 sam-

ples for testing. LSRank, as a baseline, is trained on all
samples in a batch. We compare our proposed DLSRank-C
with LSRank and DLSRank by carrying out various settings
(e.g., dimension p = 3, 5, the number of local machines
m = 60, 120, 240 and iteration times l = 2, 4, 8). We train
the model on training set and evaluate the methods on test-
ing data via following averaged misranking risk (Kriukova,
Pereverzyev, and Tkachenko 2016), i.e.,

R(f) =

n∑
i,j=1

I{(yi>yj)∧(f̄(xi)≤f̄(xj))}

n∑
i,j=1

I{yi>yj}

,

where I{ϕ} is 1 if ϕ is true and 0 otherwise. The regulariza-
tion parameter λ and bandwidth d are selected in the grids
{10−2, 10−1, 1, 10, 100} and {1, 10, 102, 103}, respectively.
Finally, the averaged performance (e.g., misranking risk and
executive time) of different methods is given in Table 2.
Moreover, Figure 1 shows the relation between misranking
risk, different numbers of communications l and the number
of local machines m.

From Table 2 and Figure 1, we can conclude the follow-
ing assertions: a) When m is not too large, the distributed
methods (DLSRank and DLSRank-C) are always compara-
ble to original LSRank. There exists an upper bound ofm for
DLSRank and DLSRank-C respectively, when larger than
it, the misranking risk increases and is far from the original
LSRank. This verifies the theoretical statement in Theorems
1 and 2; b) DLSRank-C with more communications, com-
pared with DLSRank, can achieve better performance when
the number of local machine increases, which verifies the
fact in Remark 2 that the bound of m is determined by the
communication times. c) DLSRank-C enjoys smaller mis-
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Figure 1: The relation between misranking risk and the number of local machines for fixed numbers of communications. The
left figure and right figure are respectively the results on the 3-dimensional data and the 5-dimensional data.

MovieLens 500-1000 MovieLens 1000-1500

Method m = 60 m = 120 m = 240 m = 60 m = 120 m = 240
LSRank 0.4901(0.0162) 0.4901(0.0162) 0.4901(0.0162) 0.4970(0.0207) 0.4970(0.0207) 0.4970(0.0207)
DLSRank 0.4904(0.0178) 0.4907(0.0178) 0.4920(0.0180) 0.4976(0.0192) 0.4979(0.0193) 0.4980(0.0193)
DLSRank-C(l = 2) 0.4904(0.0179) 0.4905(0.0178) 0.4918(0.0178) 0.4976(0.0193) 0.4972(0.0194) 0.4972(0.0191)
DLSRank-C(l = 4) 0.4903(0.0179) 0.4904(0.0180) 0.4917(0.0178) 0.4976(0.0192) 0.4972(0.0192) 0.4970(0.0192)
DLSRank-C(l = 8) 0.4901(0.0177) 0.4901(0.0177) 0.4915(0.0176) 0.4976(0.0192) 0.4972(0.0192) 0.4970(0.0191)

Table 3: The comparison of misranking risk (standard deviation) on testing data

ranking risk than DLSRank when the number of local ma-
chines is smaller than the upper bound of m, which verifies
the effectiveness of communication strategy. Moreover, we
investigate the impact of the parameters (e.g., dimension p
and the number of training set) on the ranking performance
in the Supplementary Material.

Empirical Evaluation on Real-world Data
In daily life, we need some recommendations from other
people to look for the meaningful movies. For a moviegoer,
the goal here is to produce a list of unseen movies ordered
by the predicted preference. For this purpose, we employ
DLSRank-C on the movie recommendation task and com-
pare its performance with other competitors such as DL-
SRank and LSRank. All data used here are freely available
at: http://www.grouplens.org/taxonomy/term/14.

The MovieLens dataset consists of 25000095 anonymous
ratings of 62423 movies made by 162541 MovieLens users.
The rating score is represented with an integer from the set
{1, 2, 3, 4, 5}. The dataset is a 62423×162541 rating matrix
where (i, j) entry is the rating score of the j-th reviewer on
the i-th movie.

Inspired by the experimental set-up in (Cortes, Mohri,
and Rastogi 2007; Freund et al. 2003; Zhou et al. 2016),
we grouped the reviewers into 500 – 1000 and 1000 – 1500
movies according to the number of movies they have rated.
Five-hundred reference reviewers were selected at random
from one of the two groups. Moreover, the test reviewers
are selected from those users who had rated more than 5000
movies. For a given test reviewer we only kept those rows

in the rating matrix corresponding to the movies reviewed
by the test reviewer. These columns and rows corresponding
to 500 reference reviewers constituted a submatrix of size
at least 5000 × 501, where the last column corresponds to
the test reviewer. In fact, this rating matrix is very sparse.
Then those movies rated by none of the reference reviewers
and those reference reviewers who did not rate any movie
viewed by the test reviewer were removed. Finally, miss-
ing review values of every left movie were replaced with the
median review score of those left reference reviewers on this
movie. We then obtain a smaller submatrix. Each row of it
formed a data pair (xi, yi) and the last entry was the label yi
of the input features xi . The data we got were divided into
two parts at random according to the ratio 8 : 2. One part
was used for training and the rest part for test. We repeat the
experiment for 10 times and present the average results in
Table 3. These results show effectiveness of the communi-
cation strategy for DLSRank.

Conclusion
This paper proposed a new distributed ranking model with
communication strategy. Theoretical analysis is provided to
demonstrate its promising learning rate. Empirical examples
verify its competitive performance compared with the DL-
SRank without communication strategy.
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