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Abstract

Recently proposed knowledge distillation approaches based
on feature-map transfer validate that intermediate layers of
a teacher model can serve as effective targets for training a
student model to obtain better generalization ability. Exist-
ing studies mainly focus on particular representation forms
for knowledge transfer between manually specified pairs of
teacher-student intermediate layers. However, semantics of
intermediate layers may vary in different networks and man-
ual association of layers might lead to negative regulariza-
tion caused by semantic mismatch between certain teacher-
student layer pairs. To address this problem, we propose Se-
mantic Calibration for Cross-layer Knowledge Distillation
(SemCKD), which automatically assigns proper target lay-
ers of the teacher model for each student layer with an atten-
tion mechanism. With a learned attention distribution, each
student layer distills knowledge contained in multiple layers
rather than a single fixed intermediate layer from the teacher
model for appropriate cross-layer supervision in training.
Consistent improvements over state-of-the-art approaches are
observed in extensive experiments with various network ar-
chitectures for teacher and student models, demonstrating the
effectiveness and flexibility of the proposed attention based
soft layer association mechanism for cross-layer distillation.

Introduction
The generalization ability of a lightweight model can be im-
proved by training to match the prediction of a powerful
model (Bucilua, Caruana, and Niculescu-Mizil 2006; Ba and
Caruana 2014). This idea is popularized by knowledge dis-
tillation (KD) in which temperature scaling outputs from the
teacher model are exploited to improve the performance of
the student model (Hinton, Vinyals, and Dean 2015). Com-
pared to discrete labels, soft targets predicted by the teacher
model serve as an effective regularization to prevent the stu-
dent model from being trapped in over-confident solutions
during optimization (Pereyra et al. 2017; Müller, Kornblith,
and Hinton 2019; Yuan et al. 2020).

In the vanilla KD framework, the knowledge learned by a
classification model is represented only by the prediction of
its final layer (Hinton, Vinyals, and Dean 2015). Although
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the relative probabilities assigned to different classes pro-
vide an intuitive understanding about how a model gen-
eralize, knowledge transfer in such a highly abstract form
ignores a wealth of information contained in intermediate
layers. Intending to further boost effectiveness of distilla-
tion, recent works proposed to align feature maps or their
transformations of manually selected teacher-student layer
pairs (Romero et al. 2015; Zagoruyko and Komodakis 2017;
Ahn et al. 2019; Tung and Mori 2019; Passalis, Tzelepi, and
Tefas 2020). An interpretation for the success of feature-map
based distillation is that the multi-layer feature representa-
tions respect hierarchical concept learning process which
may entail reasonable inductive bias (Bengio, Courville, and
Vincent 2013).

Intermediate layers of teacher and student models with
different capacity tend to have different levels of abstraction
(Passalis, Tzelepi, and Tefas 2020). A peculiar challenge
is thus to ensure appropriate layer associations in feature-
map based distillation to achieve maximum performance im-
provement. However, existing efforts mainly focus on partic-
ular representations of feature maps to capture the enriched
knowledge and enable knowledge transfer based on hand-
crafted layer assignments, such as random selection or one-
to-one association (Romero et al. 2015; Zagoruyko and Ko-
modakis 2017; Ahn et al. 2019; Tung and Mori 2019; Pas-
salis, Tzelepi, and Tefas 2020). A naive allocation strategy
may cause semantic mismatch between feature maps of can-
didate teacher-student layer pairs, leading to negative regu-
larization effect in training of the student model. Since we
have no access to prior knowledge of the semantic level of
each intermediate layer, layer association becomes a non-
trivial problem. Therefore, systematic approaches need to be
developed for more effective and flexible knowledge transfer
with feature maps.

In this paper, we propose Semantic Calibration for Cross-
layer Knowledge Distillation (SemCKD) to exploit inter-
mediate knowledge by keeping the transfer in a matched
semantic level. An attention mechanism is applied in our
approach for automatic soft layer association, which effec-
tively binds a student layer with those semantically similar
target layers in the teacher model. Learning from multiple
target layers with an attention allocation rather than turning
to a fixed assignment can suppress over-regularization effect
in training. To align the spatial dimension of each layer pair
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for calculating the total loss, feature maps of each student
layer are projected to the same dimension as those in the
target layers. By taking advantage of semantic calibration
and feature-map transfer across multiple layers, the student
model can be effectively optimized with more appropriate
guidance. The overall contributions of this paper are sum-
marized as follows:

• We propose a novel technique to significantly improve ef-
fectiveness of feature-map transfer by semantic calibra-
tion via soft layer association. Our approach is readily ap-
plicable to heterogeneous settings where different archi-
tectures are used for the teacher and student models.

• Attention mechanism is used to achieve soft layer associ-
ation for cross-layer distillation. Its capability to alleviate
the semantic mismatch problem is supported by carefully
designed experiments.

• Extensive experiments on CIFAR-100 and ImageNet
datasets with a large variety of settings based on popular
network architectures demonstrate that SemCKD consis-
tently generalizes better than state-of-the-art approaches.

Related Work
Knowledge Distillation. KD serves as an effective recipe to
improve the performance of a given student model by ex-
ploiting soft targets from a pre-trained teacher model (Hin-
ton, Vinyals, and Dean 2015). Compared to discrete labels,
fine-grained information among different categories pro-
vides extra supervision to optimize the student model better
(Pereyra et al. 2017; Müller, Kornblith, and Hinton 2019).
A new interpretation for the improvement is that soft tar-
gets act as a learned label smoothing regularization to keep
the student model from producing over-confident predic-
tions (Yuan et al. 2020). To save the expense of pre-training,
some cost-effective online variants have been explored later
(Anil et al. 2018; Chen et al. 2020).

Feature-Map Distillation. Rather than only formalizing
knowledge in a highly abstract form like predictions, re-
cent methods attempted to leverage information contained in
intermediate layers by designing elaborate knowledge rep-
resentations. A bunch of techniques have been developed
for this purpose, such as aligning hidden layer responses
called hints (Romero et al. 2015), mimicking spatial atten-
tion maps (Zagoruyko and Komodakis 2017), or maximizing
the mutual information through variational principle (Ahn
et al. 2019). The transferred knowledge can also be captured
by crude pairwise activation similarities (Tung and Mori
2019) or hybrid kernel formulations built on them (Passalis,
Tzelepi, and Tefas 2020). With the pre-defined representa-
tions, all of the above methods perform knowledge transfer
with certain hand-crafted layer associations, such as random
selection or one-to-one match. Unfortunately, as pointed in
(Passalis, Tzelepi, and Tefas 2020), these hard associations
would make the student model suffer from negative regular-
ization, which limits the effectiveness of feature-map distil-
lation. Based on the transfer learning framework, a newly
solution is to learn association weights by a meta-network
given only feature maps of the source network (Jang et al.

2019), while our proposed approach incorporates more in-
formation from teacher-student layer pairs.

Feature-Embedding Distillation. Feature embedding is
a good substitute for feature maps since low dimensional
vectors are more tractable than high dimensional tensors.
Meanwhile, feature embedding also preserves more struc-
tural information compared to the final predictions. There-
fore, a variety of knowledge distillation approaches have
been proposed based on feature embedding, especially the
generated relational graphs where each node represents one
instance (Passalis and Tefas 2018; Peng et al. 2019; Park
et al. 2019; Liu et al. 2019). The main difference among
these methods lies on how edge weights are constructed.
Typical choices include cosine kernel (Passalis and Tefas
2018), truncated Gaussian RBF kernel (Peng et al. 2019),
or combination of distance-wise as well as angle-wise po-
tential functions (Park et al. 2019). In contrast to pairwise
transfer, CRD formulates distillation as contrastive learn-
ing to capture higher-order dependencies in the representa-
tion space (Tian, Krishnan, and Isola 2020). Although our
method mainly focuses on feature-map distillation, it is also
compatible with the state-of-the-art feature-embedding dis-
tillation approach to further improve the performance.

Semantic Calibration for Distillation
Background and Notations

In this section, we briefly recap the basic concepts of clas-
sic knowledge distillation as well as provide necessary nota-
tions for the following illustration. Given a training dataset
D = {(xi,yi)}Ni=1 consisting of N instances from K cat-
egories, and a powerful teacher model pre-trained on the
dataset D, our goal is reusing the same dataset to train an-
other simple student model with cheaper computational and
storage demand. For a mini-batch with size b, we denote
the output of each target layer tl and student layer sl as
F t
tl
∈ Rb×ctl×htl

×wtl and F s
sl
∈ Rb×csl×hsl

×wsl , respec-
tively, where c is the number of output channels, h and w
are spatial dimensions, superscript t and s reflect the cor-
responding models. The value of candidate layers tl and sl
range from 1 to tL and sL, respectively. Note that tL and
sL may be different especially when the teacher and stu-
dent architectures are different. The representations at the
penultimate layer from the teacher and student models are
denoted as F t

tL and F s
sL , which are mainly used in feature-

embedding distillation. Take the student model as an exam-
ple, outputs of the last fully connected layer g(·) are known
as logits gsi = g(F s

sL [i]) ∈ RK and the predicted proba-
bilities are calculated with a softmax layer built on logits,
i.e., psi = σ(gsi /T ) with T usually equals to 1. The nota-
tion F s

sl
[i] denotes the output of student layer sl for the i-th

instance and is a shorthand for F s
sl
[i, :, :, :].

For classification tasks, in additional to regular cross en-
tropy loss (CE) between the predicted probabilities psi and
the one-hot label yi of each training sample, classic knowl-
edge distillation (Hinton, Vinyals, and Dean 2015) incorpo-
rates another alignment loss to encourage the minimization
of Kullback-Leibler (KL) divergence between psi and soft
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Figure 1: An overview of the proposed Semantic Calibration for Knowledge Distillation (SemCKD). (a) Feature maps for
certain instance from the student layer-1 are projected into three individual forms to align with the spatial dimension of those
from each target layer. The learned attention allocation adaptively helps the student model focus on the most semantic-related
information for effective distillation. (b) Pairwise similarities are first calculated between every stacked feature maps and then
the attention weights are obtained by the proximities among generated query and key factors.

targets pti of the teacher model

LKDi = LCE(yi, σ(g
s
i )) + T 2LKL(σ(g

t
i/T ), σ(g

s
i /T )),

(1)
where T is a hyper-parameter and a higher T leads to more
considerable softening effect. We set T to 4 throughout this
paper for fair comparison.

Feature-Map Distillation
As mentioned earlier, feature maps of a teacher model are
valuable for helping a student model achieve better per-
formance. Recently proposed feature-map distillation ap-
proaches can be summarized as adding the following loss
term to Equation (1) for each mini-batch with size b

LFMD =
∑

(sl,tl)∈C

Dist
(
Transt

(
F t
tl

)
, T ranss

(
F s
sl

))
,

(2)
leading to the overall loss as

Ltotal =
b∑

i=1

LKDi
+ βLFMD, (3)

where functions Transt(·) and Transs(·) in each method
transform feature maps of candidate teacher-student layer
pairs into a particular hand-designed representation, such as
attention maps (Zagoruyko and Komodakis 2017) or pair-
wise similarity matrices (Tung and Mori 2019). The layer
association sets C of existing methods are generated by ran-
dom selection or one-to-one match. However, these simple
association strategies may cause the loss of useful informa-
tion. Take one-to-one match as an example, extra layers have

to be discarded when the number of layers sL and tL are dif-
ferent, i.e., C = {(1, 1), ..., (min(sL, tL),min(sL, tL))}.
With these associated layer pairs, the feature-map distilla-
tion loss is calculated by distance function Dist(·, ·). The
hyper-parameter β in Equation (3) is used to balance two
individual loss terms.

Rather than performing knowledge transfer based on fixed
associations between candidate teacher-student layer pairs,
our approach aims to learn associations for semantic cali-
brated cross-layer distillation.

Semantic Calibration Formulation
In our approach SemCKD, each student layer is automati-
cally associated with those semantic-related target layers by
attention allocation, as illustrated in Figure 1. Training with
soft associations encourages the student model to collect and
integrate multi-layer information to obtain a more suitable
regularization. Moreover, SemCKD is readily applicable to
the situation where the number of candidate layers from the
teacher and student models differ.

The learned association set C in SemCKD is denoted as

C = {(sl, tl) | ∀ sl ∈ [1, ..., sL], tl ∈ [1, ..., tL]}, (4)

with the corresponding weight satisfies
∑tL

tl=1α(sl,tl) =

1, ∀ sl ∈ [1, ..., sL]. The weight α(sl,tl) ∈ Rb×1 represents
the extent to which the target layer tl is attended in deriv-
ing the semantic-aware guidance for the student layer sl. We
will elaborate on these attention-based weights later. All the
feature maps of each student layer are projected into tL in-
dividual forms to align with the spatial dimension of each of
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target layers for the following distance calculation

F s′

tl
= Proj

(
F s
sl
∈ Rb×csl×hsl

×wsl , tl
)
, tl ∈ [1, ..., tL],

(5)
with F s′

tl
∈ Rb×ctl×htl

×wtl . Each function Proj(·, ·) in-
cludes a stack of three layers with 1 × 1, 3 × 3 and 1 × 1
convolutions to meet the demand of capability for effective
transformation1.

Loss function. For a mini-batch with size b, the student
model produces several feature maps across multiple lay-
ers, i.e., F s

s1 , ..., F
s
sL . After semantic layer associations and

dimensional projections, the LFMD loss of SemCKD is ob-
tained by simply using Mean-Square-Error (MSE)

LSemCKD =
∑

(sl,tl)∈C

α(sl,tl)Dist
(
F t
tl
, P roj

(
F s
sl
, tl
))

=

sL∑
sl=1

tL∑
tl=1

b∑
i=1

αi
(sl,tl)

MSE
(
F t
tl
[i], F s′

tl
[i]
)
,

(6)
where feature maps from each student layer is transformed
by a projection function Transs(·) = Proj(·, ·) while those
from the target layers remain unchanged by identity trans-
formation Transt(·) = I(·). The i-th element of vector
α(sl,tl) is denoted as αi

(sl,tl)
for the corresponding instance.

Equipped with the learned attention distributions, the total
loss is aggregated by a weighted summation of each individ-
ual distance among the feature maps from candidate teacher-
student layer pairs. Note that FitNet (Romero et al. 2015) is
a special case of SemCKD by fixing αi

(sl,tl)
to 1 for certain

(sl, tl) layer pair and 0 for the rest ones.
Attention Allocation. Feature representations contained

in a trained neural network are progressively more abstract
as the layer depth increases. Semantic level of those inter-
mediates can vary among teacher and student architectures
with different capacity. To further improve the performance
of feature-map distillation, each student layer had better as-
sociate with the most semantic-related target layers to derive
its own regularization. Random selection or forcing feature
maps from the same layer depths to be aligned may not suf-
fice due to negative effects from those mismatched layers.

Layer associations based on attention mechanism pro-
vides a potentially feasible solution to this problem. Since
feature maps produced by similar instances probably be-
come clustered at separate granularity in different layers, the
proximity of pairwise similarity matrices can be regarded
as a good measurement of the inherent semantic similarity
(Tung and Mori 2019). These similarity matrices are calcu-
lated as

As
sl
= R(F s

sl
) ·R(F s

sl
)T At

tl
= R(F t

tl
) ·R(F t

tl
)T , (7)

where R(·) : Rb×c×h×w 7→ Rb×chw is a reshaping opera-
tion, and therefore As

sl
and At

tl
are b× b matrices.

Based on the self-attention framework (Vaswani et al.
2017), we separately project the pairwise similarity matrices

1In practice, we first use a pooling operation to align the height
and weight dimensions of the F t

sl and F s
sl before projections to

reduce computational consumption.

Algorithm 1 Semantic Calibration for Distillation.

Input: Training dataset D = {(xi,yi)}Ni=1; A pre-trained
teacher model with parameter θt; A student model with
randomly initialized parameters θs;

Output: A well-trained student model;
1: while θs is not converged do
2: Sample a mini-batch B with size b from D.
3: Forward propagation B into θt and θs to obtain in-

termediate presentations F t
tl

and F s
sl

across layers.
4: Construct pairwise similarity matrices At

tl
and As

sl
as Equation (7).

5: Perform attention allocation as Equation (8-9).
6: Align feature maps by projections as Equation (5).
7: Update parameters θs by backward propagation the

gradients of the loss in Equation (3) and Equation (6).
8: end while

of each student layer and target layers into two subspaces by
a Multi-Layer Perceptron (MLP) to alleviate the effect of
noise and sparseness. For i-th instance

Qsl [i] = MLPQ(A
s
sl
[i]) Ktl [i] = MLPK(At

tl
[i]). (8)

The parameters of MLPQ(·) and MLPK(·) are learned dur-
ing training to generate query and key vectors and shared by
all instances. Then, αi

(sl,tl)
is calculated as follows

αi
(sl,tl)

=
eQsl

[i]TKtl
[i]∑

j e
Qsl

[i]TKtj
[i]
. (9)

Attention-based allocation provides a possible way to
suppress negative effects caused by layer mismatch and in-
tegrate positive guidance from multiple target layers, which
is validated by Figure 2 and Table 3.

Although the proposed approach distills only the knowl-
edge contained in intermediate layers, its performance can
be further boosted by incorporating additional orthogonal
techniques, e.g., feature-embedding transfer as shown in Ta-
ble 5. The full training procedure with the proposed seman-
tic calibration formulation is summarized in Algorithm 1.

Experiments
To demonstrate the effectiveness of the proposed semantic
calibration strategy for cross-layer knowledge distillation,
we conduct a series of classification tasks on the CIFAR-
100 (Krizhevsky and Hinton 2009) and ImageNet datasets
(Russakovsky et al. 2015). A large variety of teacher-student
combinations based on popular network architectures are
evaluated, including VGG (Simonyan and Zisserman 2015),
ResNet (He et al. 2016), WRN (Zagoruyko and Komodakis
2016), MobileNet (Sandler et al. 2018) and ShuffleNet (Ma
et al. 2018). In addition to comparing SemCKD with repre-
sentative feature-map distillation approaches, we also pro-
vide results to support and explain the success of our se-
mantic calibration strategy in helping student models ob-
tain a proper regularization through three carefully designed
experiments. Ablation studies on the attention mechanism
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Student VGG-8 VGG-13 ShuffleNetV2 ShuffleNetV2 MobileNetV2 VGG-8 ResNet-8x4 ARI (%)70.46 ± 0.29 74.82 ± 0.22 72.60 ± 0.12 72.60 ± 0.12 65.43 ± 0.29 70.46 ± 0.29 73.09 ± 0.30

KD 72.73 ± 0.15 77.17 ± 0.11 75.60 ± 0.21 75.49 ± 0.24 68.70 ± 0.22 73.38 ± 0.05 74.42 ± 0.05 72.65 %
FitNet 72.91 ± 0.18 77.06 ± 0.14 75.44 ± 0.11 75.82 ± 0.22 68.64 ± 0.12 73.63 ± 0.11 74.32 ± 0.08 71.92 %

AT 71.90 ± 0.13 77.23 ± 0.19 75.41 ± 0.10 75.91 ± 0.14 68.79 ± 0.13 73.51 ± 0.08 75.07 ± 0.03 75.21 %
SP 73.12 ± 0.10 77.72 ± 0.33 75.54 ± 0.18 75.77 ± 0.08 68.48 ± 0.36 73.53 ± 0.23 74.29 ± 0.07 64.95 %

VID 73.19 ± 0.23 77.45 ± 0.13 75.22 ± 0.07 75.55 ± 0.18 68.37 ± 0.24 73.63 ± 0.07 74.55 ± 0.10 64.11 %
HKD 72.63 ± 0.12 76.76 ± 0.13 76.24 ± 0.09 76.64 ± 0.05 69.23 ± 0.16 73.06 ± 0.24 74.86 ± 0.21 61.23 %

SemCKD 75.27 ± 0.13 79.43 ± 0.02 76.39 ± 0.12 77.62 ± 0.32 69.61 ± 0.05 74.43 ± 0.25 76.23 ± 0.04 –

Teacher ResNet-32x4 ResNet-32x4 VGG-13 ResNet-32x4 WRN-40-2 VGG-13 ResNet-32x4 Average
79.42 79.42 74.64 79.42 75.61 74.64 79.42 68.34 %

Table 1: Top-1 test accuracy of feature-map distillation approaches on CIFAR-100.

as well as dimensional projection are also conducted. Fi-
nally, we show that SemCKD is compatible with the feature-
embedding distillation technique to achieve better results
and analyze its sensitivity to the hyper-parameter β.

All evaluations are made in comparison to state-of-the-
art approaches based on standard experimental settings and
reported in means and standard deviations We regard the
building blocks of teacher and student networks as target
layer and student layer in practice for convenience. The de-
tailed descriptions of computing infrastructure, network ar-
chitectures, data processing, hyper-parameters in model op-
timization for reproducibility as well as more results are in-
cluded in the technical appendix. The code is available at
https://github.com/DefangChen/SemCKD.

Comparison of Feature-Map Distillation
Approaches
Table 1 gives the Top-1 test accuracy (%) on CIFAR-100
based on seven different network combinations, which con-
sist of two homogeneous settings, i.e. the teacher and stu-
dent models share similar architectures (VGG-8/13, ResNet-
8x4/32x4), and five heterogeneous settings. Each column
apart from the first row includes the results of corresponding
student models which are generated under the supervision
of the same teacher model. The results of the vanilla KD
are also included for comparison. According to Table 1, it is
shown that SemCKD consistently achieves higher accuracy
than state-of-the-art feature-map distillation approaches.

In order to obtain an intuitive sense about quantitative im-
provement, we adopt Average Relative Improvement (ARI)
as the previous work (Tian, Krishnan, and Isola 2020)

ARI =
1

M

M∑
i=1

AcciSemCKD −AcciFMD

AcciFMD −AcciSTU

× 100%, (10)

where M is the number of different architecture combina-
tions and AcciSemCKD, AcciFMD, AcciSTU refer to the ac-
curacies of SemCKD, a certain feature-map distillation ap-
proach and a regularly trained student model in the i-th set-
ting, respectively. This evaluation metric reflects the extent
to which SemCKD further improves on the basis of exist-
ing approaches compared to improvements made by these
approaches upon the baseline student models.

Student ResNet-18 ShuffleV2x0.5 ResNet-18
69.67 53.78 69.67

KD 70.62 53.73 70.54
FitNet 70.31 51.46 70.42

AT 70.30 52.83 70.30
SP 69.99 51.73 70.12

VID 70.30 53.97 70.26
HKD 68.86 51.60 68.44

SemCKD 70.87 53.99 70.66

Teacher ResNet-34 ResNet-34x4 ResNet-34x4
73.26 73.54 73.54

Table 2: Top-1 test accuracy of feature-map distillation ap-
proaches on ImageNet.

On average, SemCKD shows significantly relative im-
provement (68.34%) over all of the compared methods.
Specifically, comparing with VID, which is the newest
feature-map distillation approach under a single teacher-
student training process, the relative improvement of Sem-
CKD for each of the cases are 80.83%, 58.83%, 28.80%,
58.19%, 37.25%, 29.21%, respectively, leading to 64.11%
in ARI . As for HKD, which relies on a costly teacher-
auxiliary-student paradigm, the ARI becomes rather small
on two settings (3.93% for “ShuffleNetV2 & ResNet-32x4”,
9.98% for “MobileNetV2 & WRN-40-2”). But in gen-
eral, SemCKD still relatively outperforms HKD for about
61.23%, showing that our approach can indeed make better
use of intermediate information for effective distillation.

We also find that none of the compared methods can
consistently beats the vanilla KD on CIFAR-100, which
probably due to semantic mismatch among associated layer
pairs. This problem becomes especially severe for random
selection (FitNet method fails in 4/7 cases) and the situa-
tion where the number of candidate layers sL is larger than
tL (4/5 of methods fail in the “ShuffleNetV2 & VGG-13”
setting). Nevertheless, the semantic calibration formulation
helps alleviate semantic mismatch to a great extent, leading
to satisfied performance of SemCKD.

Table 2 shows the results on a large-scale image classifica-
tion dataset and similar observations are obtained as above.
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Figure 2: Negative regularization effect on CIFAR-100.

FitNet AT SP VID HKD SemCKD

12.05 15.52 16.30 15.82 19.86 11.27

Table 3: Semantic Mismatch Score (log-scale) for VGG-8 &
ResNet-32x4 on CIFAR-100.

Semantic Calibration Analysis
In this section, we experimentally study the negative reg-
ularization effect caused by manually specified layer asso-
ciations and provide some explanations for the success of
SemCKD by the proposed criterion and visual evidence.

Negative regularization effect occurs when feature-map
distillation with certain layer association performs poorer
than the vanilla KD. To reveal its existence, we conduct ex-
periments by training the student model with only one spec-
ified teacher-student layer pair in “VGG-8 & ResNet-32x4”
and “MobileNetV2 & WRN-40-2” settings. In both cases,
the number of candidate target layers and student layers are
3 and 4, respectively. Figure 2 shows the results of student
models with these 12 teacher-student layer combinations un-
der the two settings on CIFAR-100. For better comparison,
the results of the vanilla KD and SemCKD are plotted as
dash horizontal lines with different colors.

As shown in Figure 2, the performance of a student model
becomes extremely poor for some layer associations, which
is probably caused by large semantic gaps. Typical results
that suffer from negative regularization are “Student Layer-
4 & Target Layer-3” in Figure 2a and “Student Layer-1, 2 &
Target Layer-3” in Figure 2b. Another finding is that one-to-
one layer matching is suboptimal since better results can be
achieved by exploiting the information in a target layer with
different depth, such as “Student Layer-1 & Target Layer-2”
in Figure 2b. Although training with certain hand-craft layer
association could outperform SemCKD in a few cases, such
as “Student Layer-3 & Target Layer-3” in Figure 2b, Sem-
CKD still performs reasonably well against a large selection
of associations, especially the knowledge of the best layer
association for each network combination is not available
in advance. Nevertheless, those cases in which training with
SemCKD are inferior to the best layer association indicates
that there is room for refinement of our association strategy.

We then evaluate whether SemCKD actually leads to
less semantic mismatch solutions compared with other ap-
proaches. A criterion called semantic mismatch score is pro-
posed and measured by the average Euclidean distance be-

Figure 3: Grad-CAM visualization of feature-map distilla-
tion approaches on ImageNet. Region with a darker red is
more important for the prediction. Best viewed in color.

tween the similarity matrices generated by feature maps
of each associated teacher-student layer pair, which hope-
fully represents the degree of difference between the cap-
tured pairwise similarity among instances in certain seman-
tic level. As shown in Table 3, a lower semantic mismatch
score is achieved by SemCKD thanks to our soft layer asso-
ciation mechanism. Detailed formulation as well as the cal-
culation are provided in the technical appendix.

To further provide visual explanations for the advantage
of SemCKD, we randomly select several images from Ima-
geNet labeled by “Bow tie”, “Rain barrel”, “Racer”, “Bath-
hub” and “Goose”, and use Grad-CAM (Selvaraju et al.
2017) to highlight the regions which are considered to be
important for predicting the corresponding labels. As shown
in Figure 3, the class-discriminative regions is centralized by
SemCKD which is similar to the teacher model while being
scatted around the surroundings by compared methods. As
visualized in the fifth column, another failure mode of com-
pared methods is that they sometimes regard the right re-
gions as background while putting their attention on the spa-
tial adjacency object. Moreover, SemCKD can capture more
semantic-related information like highlighting the head and
neck to identify a “Goose” in the image.
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Equal Alloc w/o Proj w/o MLP SemCKD

72.94 ± 0.87 72.51 ± 0.16 72.78 ± 0.29 75.27 ± 0.13

Table 4: Ablation study: Top-1 test accuracy for VGG-8 &
ResNet-32x4 on CIFAR-100.

Ablation Study
Table 4 presents the evaluation of three SemCKD variants to
further show the benefit of each individual component.

(1) Equal Allocation. In order to validate the effectiveness
of allocating the attention of each student layer to multiple
target layers, equal weight assignment is applied instead.
This causes a lower accuracy by 2.33% (From 75.27% to
72.94%) and a considerably larger variance by 0.74%.

(2) w/o Projection. Rather than projecting the feature
maps of each student layer to the same dimension as those
in the target layers by Equation (5), we add a new MLPV (·)
to project the pairwise similarity matrices of teacher-student
layer pairs into another subspace to generate value vectors.
Thus the Mean-Square-Error among feature maps in Equa-
tion (6) is replaced by these value vectors to calculate the
overall loss, which reduces the performance by 2.76%.

(3) w/o MLP. A simple linear transformation is used
to obtain query and key vectors in Equation (8) instead of
the two-layer non-linear transformation, i.e., MLP(·). The
2.49% performance drop indicates that the usefulness of
MLP(·) to alleviate the effect of noise and sparseness.

Extension to Feature-Embedding Distillation
Approaches
Knowledge transfer based on feature embedding of the
penultimate layer is another alternative to improve the gen-
eralization ability of student models. The results in Table
5 confirm that our approach holds a very satisfying prop-
erty that it is highly compatible with the state-of-the-art
feature-embedding distillation approach to achieve the bet-
ter performance. We compare the performance of each stu-
dent model trained with several newly proposed methods on
three teacher-student network combinations. It is observed
that by simply adding the loss term of CRD (Tian, Krish-
nan, and Isola 2020) into the original loss function of Sem-
CKD without tuning any hyper-parameter, the performance
has already been further boosted. Specifically, the ARI of
SemCKD+CRD over CRD and SemCKD is about 40.13%
and 13.90%, respectively.

Sensitivity Analysis
Finally, we evaluate the impact of hyper-parameter β on the
performance of knowledge distillation. We compare three
representative knowledge distillation approaches, includ-
ing logits transfer (KD), feature-embedding transfer (CRD)
and feature-map transfer (SemCKD). The range of hyper-
parameter β for SemCKD is set as 100 to 1100 at equal in-
terval of 100, while the hyper-parameter β for CRD ranges
from 0.5 to 1.5 at equal interval of 0.1, adopting the same
search space as the original paper (Tian, Krishnan, and Isola

Student VGG-8 MobileNetV2 ResNet-8x4
70.46 ± 0.29 65.43 ± 0.29 73.09 ± 0.30

PKT 73.11 ± 0.21 68.68 ± 0.29 74.61 ± 0.25
RKD 72.49 ± 0.08 68.71 ± 0.20 74.36 ± 0.23
IRG 72.57 ± 0.20 68.83 ± 0.18 74.67 ± 0.15
CC 72.63 ± 0.30 68.68 ± 0.14 74.50 ± 0.13

CRD 73.54 ± 0.19 69.98 ± 0.27 75.59 ± 0.07

SemCKD 75.27 ± 0.13 69.61 ± 0.05 76.23 ± 0.04
SemCKD+CRD 75.52 ± 0.09 70.55 ± 0.11 76.68 ± 0.19

Teacher ResNet-32x4 WRN-40-2 ResNet-32x4
79.42 75.61 79.42

Table 5: Top-1 test accuracy of feature-embedding distilla-
tion approaches on CIFAR-100.

Figure 4: Impact of the hyper-parameter β for VGG-8 &
ResNet-32x4 on CIFAR-100.

2020). Note that the hyper-parameter β always equals to 0
for the vanilla KD, leading to a horizontal line in Figure 4.

It is seen that SemCKD achieves the best results in all
cases and outperforms CRD at about 1.73 absolute accuracy
for the default hyper-parameter setting. Figure 4 also shows
that the performance of SemCKD keeps very stable after the
hyper-parameter β is greater than 400, which indicates our
proposed method works reasonably well in a wide range of
search space for the hyper-parameter β.

Conclusion
Feature maps produced by multiple intermediate layers of a
powerful teacher model are valuable for improving knowl-
edge transfer performance. A peculiar challenge for feature-
map distillation is to ensure an appropriate association of
teacher-student layer pairs. To alleviate negative regulariza-
tion effect due to semantic mismatch between certain pairs
of teacher-student intermediate layers, we propose seman-
tic calibration via attention allocation for effective cross-
layer distillation. Each student layer in our approach distills
knowledge contained in multiple target layers with an auto-
matically learned attention distribution to obtain proper su-
pervision. Experimental results show that training with Sem-
CKD leads to a relative low-level semantic mismatch score
and its generalization ability outperforms the compared ap-
proaches. Visualization as well as detailed analysis provide
some insights to the working principle of SemCKD.
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