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Abstract

Predicting extreme weather events such as tropical and extrat-
ropical cyclones is of vital scientific and societal importance.
Of late, machine learning methods have found their way to
weather analysis and prediction, but mostly, these methods use
machine learning merely as a complement to traditional numer-
ical weather prediction models. Although some pure machine
learning and data-driven approaches for weather prediction
have been developed, they mainly formulate the problem sim-
ilar to pattern recognition or follow the train of thought of
traditional time-series models for extreme weather event fore-
casting; for the former, this usually yields only single-step
ahead prediction, and for the latter, this lacks the flexibility to
account for observed weather features as such methods con-
cern only the patterns of the extreme weather occurrences. In
this paper, we depart from the typical practice of pattern recog-
nition and time-series approaches and focus on employing ma-
chine learning to estimate the probabilities of extreme weather
occurrences in a multi-step-ahead (MSA) fashion given infor-
mation on both weather features and the realized occurrences
of extreme weather. Specifically, we propose a Markov condi-
tional forward (MCF) model that adopts the Markov property
between the occurrences of extreme weather for MSA extreme
weather forecasting. Moreover, for better long-term prediction,
we propose three novel cube perturbation methods to address
error accumulation in our model. Experimental results on a
real-world extreme weather dataset show the superiority of
the proposed MCF model in terms of prediction accuracy for
both short-term and long-term forecasting; moreover, the three
cube perturbation methods successfully increase the fault tol-
erance and generalization ability of the MCF model, yielding
significant improvements for long-term prediction.

1 Introduction

Extreme weather forecasting is vital for efficient resource
management and active warning systems (Rolnick et al.
2019). The further ahead that predictions can be made, the
more beneficial in terms of allowing time for adjustment and
reduction of damage due to the event. An accurate prediction
of extreme weather is therefore crucial for both damage con-
trol and optimizing the management of government resources.
However, extreme weather occurrences are by nature rare;
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due to the heavily skewed distribution of such rare events, ex-
treme weather prediction remains one of the most challenging
tasks in climate science and meteorology.

Traditionally, numerical weather prediction and generic
circulation models are key tools to forecast the evolution
of atmospheric states over time (Scher 2018). Both types
of models acquire their predictions by solving discretized
physical equations of the physics of the atmosphere. In re-
cent years, combinations of machine learning models and
physics formulation have been proposed for more accurate
predictions (Reichstein et al. 2019; Krasnopolsky and Fox-
Rabinovitz 2006; Holden et al. 2015; Scher and Messori
2018). For example, (Holden et al. 2015) learn relations be-
tween orbital parameters and climate fields from a climate
model, whereas (Scher and Messori 2018) seek to predict the
uncertainty of weather forecasts. Although such techniques
are valuable for climate science and meteorology, they are
focused on either extracting certain information from mod-
els or on combining information from different models, for
which machine learning is thus regarded as a complement to
traditional physical models.

Of late, pure machine learning and data-driven methods
have found their way to weather analysis and prediction.
Starting from simple regression to complicated neural net-
work models, machine learning techniques have been ap-
plied to various weather tasks, including predicting hurricane
routes (Kim 2019) and estimating precipitation (Hwang et al.
2019). As weather data are usually presented as an image
with multiple weather features, convolutional neural networks
(CNNp) are usually used; for example, CNN has been applied
to predict the bounding box of extreme weather (Racah et al.
2017) and to emulate the complete physics and dynamics of
generic circulation models (Scher 2018).

On the other hand, multi-step-ahead (MSA) prediction,
rather than single-step, is more common in applications. For
decades, the time-series literature has formulated MSA pre-
diction with various training strategies, including direct and
recursive strategies (Al-Qahtani and Crone 2013; Bontempi,
Le Borgne, and De Stefani 2017; Chang, Chiang, and Chang
2007; Cheng et al. 2006; Hussein, Chandra, and Sharma
2016; Koesdwiady, El Khatib, and Karray 2018; Sorjamaa
et al. 2007; Taieb and Atiya 2015; Taieb et al. 2012). For
the direct strategy, separate prediction models are trained
to directly predict each h-step ahead, whereas for recursive



strategies, the model is trained to forecast one step ahead,
and afterwards, h-step-ahead forecasts are made by iterat-
ing the predictions h times, leveraging previously predicted
values as inputs as needed. However, such studies are made
under the prediction scenario of traditional time-series mod-
els such as the autoregressive model; that is, they model only
dependency among output variable y at different times. For
example, for extreme weather prediction, such an approach
models relations among occurrences of extreme weather at
different time points. As such, these studies lack the flexi-
bility to include richer information from observed weather
features such as temperature, pressure, and humidity.
Interestingly, prediction for extreme weather shares sim-
ilar characteristics with default prediction in finance, as 1)
both extreme weather and default are by nature rare, 2) MSA
prediction is vital for both prediction tasks, and finally 3)
observed covariates (e.g, temperature for extreme weather
prediction and firm value for default prediction) are useful for
prediction. For example, state-of-the art models for default
prediction factorize the problem of MSA prediction into inde-
pendent conditional forward models (Duan, Sun, and Wang
2012; Duffie, Saita, and Wang 2007), in which a multivariate
feature vector is leveraged for prediction. However, these
models are statistical models and thus naturally constrained
by their functional rigidity. Moreover, two major differences
between the problems of weather and default predictions
make the former much more complicated and challenging
both in terms of problem formulation and model training.
First, whereas features for default prediction form a simple
multidimensional vector as input, weather covariates are usu-
ally represented as multi-channel images with strong locality
dependency; thus CNN-based architectures (e.g., naive CNN
or CNN-LSTM (Klein, Wolf, and Afek 2015; Qiu et al. 2017,
Xingjian et al. 2015)) are common choices for such a predic-
tion problem. Second, whereas default can only happen once
in general, extreme weather can happen more than once at
the same location, making the conditional forward models for
default prediction inapplicable to extreme weather prediction.
Inspired by conditional forward models for default predic-
tion, we address the aforementioned issues regarding func-
tional rigidity, locality dependency, and multiple occurrences
using a conditional forward model that adopts the Markov
property between occurrences of extreme weather for MSA
extreme weather prediction. We term this a Markov condi-
tional forward (MCF) model. Specifically, the usage of the
Markov property between occurrences of extreme weather
results in two conditional forward models between two con-
secutive prediction horizons, using which we recursively
compose the prediction for all future prediction horizons.
Such a Markov approach better leverages the observations
and future realized occurrences for model training. Moreover,
in contrast to the statistical default models in (Duan, Sun, and
Wang 2012; Duffie, Saita, and Wang 2007), which impose
distribution constraints in their models, the proposed MCF
model is free from functional rigidity and thus can be learned
by any neural architecture. Here, due to the locality depen-
dency of weather features, we mainly propose using a CNN
architecture to learn the conditional forward models.
Although the future realized occurrences of extreme
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weather are available at training, such information is unavail-
able at inference and thus we must use the predicted prob-
abilities of occurrences to compute the prediction for each
future prediction horizon. Similar techniques are commonly
used in multiple-step-ahead time series prediction, such as
the moving average (Said and Dickey 1984) and exponential
smoothing (Gardner Jr 1985); in the field of neural networks,
sequence-to-sequence models also take into account former
predictions in the decoding phase (Chiu et al. 2018). However,
these methods, which use predicted values to compute the
next prediction, all accumulate error (Sorjamaa et al. 2007;
Taieb et al. 2012); that is, bad predictions harm the perfor-
mance of future predictions. We address this by perturbing
the training labels to increase the fault tolerance and general-
ization ability of the MCF model, for which, considering the
locality and temporal dependency of weather features, three
novel cube perturbation methods are proposed.

To evaluate the proposed MCF model along with the three
cube perturbation methods, we conduct extensive experi-
ments on the ExtremeWeather dataset (Racah et al. 2017)
for predicting two types of extreme weather events: tropical
and extratropical cyclones. Experimental results demonstrate
that the proposed MCF model achieves significantly better
prediction performance than the direct-strategy model. We
further show that the proposed three cube perturbation meth-
ods effectively prevent error accumulation and thus yield sig-
nificant improvements when compared to the model without
perturbation, especially for long-term prediction. Moreover,
we conduct sensitivity analyses on the hyperparameters of
the proposed cube perturbation methods, providing general
guidance for perturbation and hyperparameter selection. Fi-
nally, interesting case studies with graphical presentation are
also provided and discussed. In sum, the proposed approach
advances the state of the art in extreme weather prediction
along three dimensions:

(i) From a mathematical point of view, we propose a MCF
model to better address MSA extreme weather prediction.
(i) We successfully learn the MCF model with the use of
neural networks with CNN architectures for MSA extreme
weather prediction, yielding prominent results for both
short-term and long-term predictions.
(iii)) We propose three novel cube perturbation methods to
effectively address error accumulation.

Furthermore, in addition to these three contributions, this
paper also provides vision and approaches for research and
applications that require multi-step-ahead prediction and si-
multaneously leverage the observed covariates and future re-
alized occurrences for model training. To our best knowledge,
this is the first work to formally frame such a problem with a
Markov conditional forward model. For instance, with slight
modifications, the proposed framework should be suitable
for problems such as flood forecasting or patient readmission
rate prediction concerning different future periods.

2 Problem Definition

We formulate multiple-step-ahead (MSA) prediction on ex-
treme weather as follows. Suppose there are weather data
of a specific rectangular area of size I x J for a period



of time with discrete time indices 7 = {1,--- ,T}. Given
x¢ = (24,241, - - ) denoting the weather features observed
on and before time ¢, where each z, € R¥<1*7 is a tensor
composed of all d-dimensional multivariate weather features
in the rectangular data area at time £ and y; = (¢, Y41, ")
denoting extreme weather occurrences before time ¢, where
each y, € {0, 1}IXJ contains extreme weather labels within
the data area at time r, our goal is to predict extreme weather
occurrences of the next H future observations for each lo-
cation (4,7) in the data area; i.e., {yt+1 S ,y§+H} for
i1 =1,---,ITand j = ,J,whereyt(z’]) e {0,1} is
the occurrence of extreme weather at given position (4, j) at
time ¢. With the definitions above, our goal is further defined
from a probability perspective as

- (4,5)

= (i =1 xey) €0 @
forh =1,2,--- H,i =1,---J,and j = 1,---J. In
Eq. (1), ;&gfh) denotes the prediction of the occurrence of

the extreme weather event at time ¢ + h for position (3, )

in the area. Note that hereafter z\"/) € R? denotes the d-
dimensional weather features (e.g., precipitation and temper-
ature) at ¢ for a specific position (7, j) in the data area.

3 Multi-step-ahead (MSA) Prediction Models
3.1 Direct Model

For MSA prediction, a direct and intuitive strategy is to treat
each future prediction time point independently and build
the model for each future time point ¢ + h solely based on
the observations on and before time ¢ to approximate the
following probability:

1 ‘ Xt> .

yt+}1 PDlrect ( (2)

Foreach h € {1,--- , H}, we construct a (neural) model to
approximate the probability in Eq. (2), resulting in H models
in total for MSA prediction. We here formally define the
model for the prediction of event occurrence at time ¢ + h as

iy = &), 3)

Yi4n =
where iti’j ) denotes the features extracted from x; for loca-
tion (7, j) to train the model. Note that as the occurrences of
the extreme weather form binary labels (i.e., yt(mh) € {0,1}),
for each future time point ¢ + h, the model in Eq (3) simply

treats the problem as a binary classification task.

(4,9) _
f+h -

A (1,5) _

3.2 Proposed Markov Conditional Forward
(MCF) Model

For each future prediction time point ¢t + h, as the infor-
mation of the realized occurrences of the extreme weather
(i.e., Yetn—1 = (Ytth—1,Yt+h—2, - )) is generally avail-
able at the training stage, in this paper we propose a Markov
conditional forward model that adopts the Markov property
between occurrences of extreme weather for two consecutive
future prediction time points to better leverage such useful
information. Specifically, under the Markov assumption be-
tween yy4p, and y, 4,1, for each future time point ¢ + h and
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Figure 1: Direct and conditional forward models

training

a specific position in the data area (4, j), we formulate the
inference for extreme weather prediction as

~ (1, s i,3),T
y( J) _ . (i.9) (4,3),

t+h = Ye+rh—1 X Piyh—1t+h
+ (1 - y&jh) 1) X p&jh) Ii Jt+ho 4)
where
pgijh)ﬂ,urh P}jﬁ)ﬁwﬁr%h (yt(ih) = 1’ Xt»yt(+h) 1= 1)
%)
Pgijizﬂ,wrh Pth;Lwair(ti+h (yt(+h = 1’ Xt7ytg:-€1) 1= 0) .
(6)

Above, Eq. (5) refers to the conditional probability of yt( ’Jh) =

1 given the observations on and before time ¢ and the condl-
tion that the extreme weather occurs at previous time point
t+h—1, whereas Eq. (6) refers to that given the observations
on and before time ¢ but with the condition that the extreme
weather does not occur at previous time point ¢ + h — 1.
Compared to the direct model, here we must train 24 mod-
els in total for MSA prediction as foreach h € {1,--- , H},
we construct two (neural) models to approximate the proba-
bilities in Egs. (5) and (6), respectively. Specifically, due to
the availability of yt(mh) , at the training stage, we use such
information to separate the data into two groups—one with

y&z) 1 = 1 and one with yz&?—l = 0—to individually train

models f'(-) and f£'(-), respectively, as

(4,4),T

Dyihit4n = fi?(ii(t )), )
i,7),F ~ (1,
pg-s-jh) Lt+h — flf( E J))v ®)

forh = 1,---,H, where fI'(-) and f(-) model the con-
ditional probabilities in Egs. (5) and (6) for forward period
(t+ h —1,t 4 h), respectively. Fig. 1 illustrates the concept
of the direct and the proposed conditional forward models.
At the inference stage, we adopt Eq. (4) to recursively
obtain ;z]t(fh) by using f7(-) and f{(-). Note that at time ¢,
for each position (i, j), as the only information we have is x;



(i

and y; 7) for predicting yt(i’j) forh =1, ---, H, we use the
~(4,7) (i,5)

predicted value g, "', to approximate y, ", in Eq. (4) for
h > 1. To better illustrate how we produce the probabilities
at inference, we here provide an example for I = 2. First,
for h = 1, from Eq. (4), we have

A(1,9) _, (4,9) ) (1 _ yiEZ’j)) Xfl (ng J)) (9)

yt+1 =Y
with which we have the prediction for time ¢ + 2 as

9 = o) < ) + (1= 80)) < &),
(10)

Note that the setting in Eq. (4) inherits the Markov as-
sumption on the relation between y;4, and y44,—1, which
makes such a conditional forward approach tractable in prac-
tice. This is due to the fact that if we consider the p past
realized occurrences (i.€., Yryh—1, Yi+h—2," " s Yt+h—p) aS
the conditions to build the conditional forward models, the
number of models grows exponentially when p increases.
For example, if a Markov chain of order 2 is considered, for
each h, we must construct four models for the following four
different conditions, (y¢+r—2 = 1, yt4n-1 = 1), (Yt4h—2 =
Lyttn—1 = 0), (Yt4n—2 = 0,yt4n—1 = 1), (Yr4n—2 =
0,Yt+n—1 = 0). The number of models with p-Markovian
models is thus 2P H, which for large values of p is computa-
tionally expensive.

Xfl (ng”

i,j
Y1

4 Cube Perturbation

During training, the proposed MCF model in Egs. (5) and (6)
leverages the ground truth of the former time step (i.e.,
th,l)l to learn the two conditional forward models in
Egs. (7) and (8) for period (¢t + h — 1, + h). However,
during inference, with Eq. (4), we must use the estimated
(predicted) ¢;41—1 to compute the prediction for each fu-
ture time point when h > 1 (see Egs. (9) and (10)). This is
widely done in multiple-step-ahead time series prediction,
such as in the moving average (Said and Dickey 1984) and
in exponential smoothing (Gardner Jr 1985); in the field of
neural networks, sequence-to-sequence models also take into
account former predictions in the decoding phase (Chiu et al.
2018). However, these methods, which use predicted values
to compute the next prediction, also accumulate error; that
is, a bad prediction degrades the performance of future pre-
dictions. In this work, we propose perturbing the training
labels by adding noise to increase the fault tolerance and
generalization ability of the MCF model.

A naive way to perturb the data—here termed naive per-
turbation—is to set a predefined perturbation probability and
then randomly switch the label from O to 1 (or from 1 to
0) based on the probability. However, as extreme weather is
usually a rare event, the number of occurrences is relatively
small compared to that of extreme-weather-free data points.
Therefore, to reflect such an unbalanced data distribution,
we propose three cube perturbation methods based on the
following two assumptions:

(1) Due to their sparsity, positive data are far more critical
for model training than negative data.

'For simplicity, we omit the superscript (4, j) hereafter.
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Figure 2: Cube perturbation candidates in SCP

(ii) Adjacent data points in terms of their physical locations
on the given rectangle area or in terms of time can have
a great impact on each other; i.e., there exist spatial and
temporal correlations among labels in the obtained data.

With assumption (i), all of the three cube perturbation
methods proposed in this paper perform label-switching on
negative labels only and keep all positive labels unchanged.
Moreover, the spatial and temporal correlations in assump-
tion (ii) form the core idea of the three cube perturbation
methods, for which two dimensions describe the physical
locations of data points and one dimension describes the time
factor. The three cube perturbation methods are introduced in
detail in the following subsections. First, we define a set of
indices of neighbor data points for data index (ig, jo, yo) as

NP — LGty |ieTAjeTAtETA

li —io| < KALJ—Jol S KAt —to] < K}\
{(i0,70,t0)}, (1D

where Z = {1,---,I}, J = {1,---,J}, and T =
{1,---,T}; that is, the set ./\/;(JU’]”) contains the indices of
the neighbors of the data point at position (49, jo) and time
to. In Eq. (11), « is related to the size of the cube in which
the data points are considered as the neighbors of the center
point; it is clear that the cube size is (2x + 1)3; for example,
k = lresultsin a3 x 3 X 3 cube perturbation.

4.1 Simple Cube Perturbation

We first propose simple cube perturbation (denoted as SCP
hereafter) based on the aforementioned two assumptions. In
SCP, a data point is a candidate for perturbation only if its la-
bel is negative and its neighboring data points contain positive

data; hence, the label y( 0:J0) §

if
g AT, € N (50 <1).

is a candidate for perturbation

(12)



Fig. 2 shows an example for candidate selection, in which

the red label yézo’j °) is selected as a candidate as its original
label is zero and it has more than one neighbors (i.e., five
neighbors actually) having positive labels. With the pertur-
bation candidates defined in Eq. (12), we set a universal rate
¢5CP ¢ [0, 1], with which all perturbation candidates have
the same probability to switch from the original label O to 1.

4.2 Neighborhood Probability Cube Perturbation

Instead of switching labels according to a universal rate £5¢F,

we further propose a method termed neighborhood proba-
bility cube perturbation (abbreviated as NPCP hereafter), in
which each position (i, jo, o) is associated with its own

probability for perturbation & go JC.OPtO), defined as

NPCP H(i’j’ 2
5(io,jt)ﬂfo) =

(3. €N gfi =1}

‘ Nt(;(] 7j0)

(13)
The intuition behind Eq. (13) is simple: for a given candidate
location (ig, jo, to), the perturbation probability is propor-
tional to how many of its neighbors have positive labels; that
is, having more positive neighbors entails a higher perturba-
tion probability.

4.3 Multinomial Cube Perturbation

A variant of the perturbation method is called multinomial
cube perturbation (MCP). In probability theory, the multino-
mial distribution is a generalization of the binomial distri-
bution, which for instance models the probability of counts
for each side of a k-sided die rolled n times. Mathemati-
cally, we have k possible mutually exclusive outcomes, with
corresponding probabilities pq, - - - , px, and n independent
trials. In contrast to the previous two methods, MCP regards
the choice of data points for perturbation as a multinomial
distribution with £ = I x J x T, for which the multinomial
probability of the point at (4o, jo, to) is formulated as

{50 [ G5, e NG Ay =1}

> {650 [ G50 e NP Ay =1}

vi,7,t
R ) (14)
where i € Z, j € J, and, t € T. With the event probabilities
defined in Eq. (14), we then roll the k-sided die n times to
obtain n data points for perturbation, where n is associated
with the hyperparameter for sampling rate 7MCF = n /L.

gher .
(i0,J0:t0) —

I

S Experiments
5.1 Dataset and Settings

We conducted extensive experiments on global atmospheric
states from 1979 to 1980 extracted from the ExtremeWeather
dataset (Racah et al. 2017). The details of the dataset and the
criteria of choosing the area for experiments are described in
Appendices. In the experiments, we examine the proposed
method on two extreme weather phenomena: tropical cy-
clones and extratropical cyclones.
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To build the prediction models, we chose September 1979
and June 1979, respectively, as our training data. We then
used the data of the same month in 1980 for testing; for
validation, we chose the data from the month preceding the
testing data to tune the hyperparameters of the perturbation
methods; this corresponds to August 1980 and May 1980 for
tropical and extratropical cyclones, respectively.

The prediction horizons were set to every 6 hours for a
total of 48 hours. We took each pixel in an image as a training
instance, labeling pixels within the 150 x 150 bounding box
as 1 or 0 according to the extreme weather occurrence at that
point. As the temporal resolution of data was 6 hours, we
had 150 x 150 x 30 x 4 = 2,700, 000 training instances in
total; thatis I = 150, J = 150, T' = 120. In the experiments,
we leveraged two machine learning algorithms—Ilogistic re-
gression (LR) and convolutional neural networks (CNN), the
detailed settings of which are described in Appendices.

The prediction performance was evaluated with AUC, the
area under the receiver operating characteristic (ROC) curve,
which is a common evaluation metric for imbalanced data.
For comparison purposes, except for the three cube perturba-
tion methods, we also implemented naive perturbation, which
randomly switches the label from O to 1 based on a univer-
sal predefined probability, €21V, Note that we selected the
hyperparameters of each perturbation method with the best
results on the validation data, after which we used these hy-
perparameters to compare their performance on the test data;
in the experiments, we report the average performance over
20 repetitions.

5.2 Quantitative Results

Comparison of Direct and Markov Conditional Forward
Models Table 1 first tabulates the performance of the MCF
model and the direct model. As shown in Table 1, for both
events (i,e., tropical and extratropical cyclones), MCF sig-
nificantly outperforms the direct model in terms of AUC,
especially for short-term prediction. Moreover, for extratrop-
ical cyclones, MCF even achieves a 13% performance im-
provement for the shortest prediction horizon (i.e., 6 hours).
On average, the proposed method improves performance by
over 4% compared to the direct model. These results clearly
demonstrate the superiority of the MCF model, especially for
short-term prediction.

Comparison of Perturbation Methods We here compare
the performance of different perturbation methods, the goal
of which is to enhance the fault tolerance and generalization
ability of the MCF and thus generates more accurate predic-
tions, long-term prediction in particular. Table 2 shows the
experimental results of the four perturbation methods along
with MCF; note that due to the superiority of the MCF model
with CNN over other compared models shown in Table 1, we
here only use the no-perturbation MCF model with CNN as
our compared baseline. To reduce the complexity of hyperpa-
rameter search, we adopted a 3 x 3 x 3 cube (i.e., xk = 1 in
Eq. (11)) for the three cube perturbation methods; the effect
of different cube sizes is discussed in Section 5.3. with this
setting, we tuned hyperparameters £"1Ve, pMP and £5°P of
each perturbation method on the validation data; the best



Tropical cyclones

Horizons (hours) 6 12 18 24 30 36 42 48 Average
LR (direct) 0.6682 0.6664 0.6641 0.6490 0.6472 0.6502 0.6576  0.6428  0.6557
LR (MCF) 0.7376 0.7213 0.7081 0.6747 0.6598 0.6634 0.6567 0.6428  0.6830
LR improvement (%) 10.39** 8.25"* 6.63"* 3.96" 1.93*" 2.04" -0.14" 0.00 4.16
CNN (direct) 0.6760 0.6760 0.6773 0.6629 0.6577 0.6601 0.6674 0.6518 0.6662
CNN (MCF) 0.7441 0.7309 0.7188 0.6864 0.6739 0.6756  0.6689  0.6506  0.6937
CNN improvement (%) 10.07** 8.12** 6.13" 3.55"" 2.46™ 2.35"" 0.22 —0.18 4.13
Extratropical cyclones
Horizons (hours) 6 12 18 24 30 36 42 48 Average
LR (direct) 0.8243 0.8113 0.7976 0.7831 0.7628 0.7429 0.7303  0.7242  0.7721
LR (MCF) 0.9361 0.8858 0.8426 0.8104 0.7821 0.7564  0.7376  0.7275  0.8098
LR improvement (%) 13.56** 9.19"* 5.64" 3.48" 253" 1.81" 1.00 0.46"" 4.88
CNN (direct) 0.8244 0.8119 0.7979 0.7843 0.7734 0.7614 0.7489  0.7396  0.7802
CNN (MCF) 0.9360 0.8851 0.8421 0.8103 0.7852 0.7651 0.7532  0.7413  0.8148
CNN improvement (%) 13.54"* 9.02** 5.54*" 3.32"* 1.53" 049" 0.57"* 0.23*" 4.43

“*” and “**” denote statistical significance at p-value j 0.05 and j 0.01, respectively, with a Student’s ¢-test.

Table 1: Performance (in terms of AUC) of direct and conditional forward models

hyperparameters are listed in parentheses after the name of
each method in Table 2.

As shown in Table 2, the proposed three cube perturba-
tion methods generally outperform naive perturbation. The
results show that using naive perturbation usually worsens
performance; for example, for the prediction of tropical cy-
clones at h = 18 hours, the AUC decreases around 4% with
naive perturbation. In contrast, for both datasets, the three
cube perturbation methods do not harm the original CNN-
based MCF model. Moreover, for the prediction of tropical
cyclones, some of the cube perturbation methods successfully
and significantly enhance long-term prediction performance;
e.g., there is a 4.76% improvement for h = 36 with the neigh-
borhood probability cube perturbation method introduced in
Section 4.2.

As for extratropical cyclones, from both Tables 1 and 2, we
observe that the prediction for such an event is much easier
than that for tropical cyclones, as clearly demonstrated by its
high AUC values in both tables. In this case, although the
improvement yielded by the proposed cube perturbation is
relatively minor, it does not degrade performance and thus
still yields results comparable to the model learned from data
without perturbation.

5.3 Sensitivity Analysis

We further conducted a sensitivity analysis on the hyper-
parameters of different perturbation methods. Note that as
the differences among the four perturbation methods are rel-
atively insignificant on the extratropical cyclone data, we
conducted the sensitivity analysis only on the tropical cy-
clone data; we present the results on the test data. The details
of our sensitivity experiments are presented in appendices.

With the observations of sensitivity analysis, we summa-
rize general guidelines for perturbation method and hyperpa-
rameter selection:
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» Naive perturbation always yields the worst performance,
especially when accompanied with an inappropriate per-
turbation rate.

* Multinomial cube perturbation is sensitive to neither sam-
pling rate nor cube size, as event probabilities are endoge-
nously generated from the data and thus successfully en-
code representative information; hence this can be regarded
as a hyperparameter-free perturbation method.

* Increasing cube size does not improve performance for
cube perturbation methods; thus, a 3 x 3 x 3 cube is the
best setting.

* Neighborhood probability cube perturbation yields the best
performance, as shown in both Table 2 and appendices;
most importantly, with a fixed cube size of 3 x 3 X 3, it is
hyperparameter-free.

6 Conclusion

This paper develops a Markov conditional forward (MCF)
model to better address MSA extreme weather prediction,
one of the most challenging prediction problems in climate
science. Specifically, with the use of neural networks, we
train two conditional forward models between two consecu-
tive prediction horizons, by which we recursively compose
the prediction for all future prediction horizons. To further
enhance the fault tolerance and generalization ability of the
MCF model, we present three unconventional cube perturba-
tion methods. Experimental results on a real-world extreme
weather dataset suggest that the proposed MCF model to-
gether with the cube perturbation methods yields significantly
better performance than the direct model for both short-term
and long-term predictions. Along with the contributions made
in extreme weather prediction, this paper provides vision and
approaches for research and applications that require MSA
prediction and simultaneously uses the observed covariates
and future realized occurrences for model training.



Tropical cyclones

Horizons (hours) 6 12 18 24 30 36 42 48 Average
CNN (MCF) 0.7441 0.7309 0.7188 0.6864 0.6739 0.6756 0.6689 0.6506 0.6937
+Naive (EN*Ve = 5%) 0.7405 0.7144 0.6898 0.6614 0.6551 0.6555 0.6602 0.6438 0.6776
+Multinomial cube (rM°" = 10%) 0.7395 0.7266 0.7182 0.6863 0.6749 0.6791 0.6678 0.6481 0.6926
+Simple Cube (¢5°F = 47.5%) 0.7458 0.7317 0.7266 0.6999 0.6908 0.7045 0.6820 0.6633  0.7056
+Neighborhood prob cube 0.7445 0.7308 0.7272 0.7002 0.6922 0.7077 0.6846 0.6668 0.7068
Improvement (%) 0.23 0.11 1.16* 2.01* 2.71"* 4.76"* 2.35* 248" 1.89
Extratropical cyclones

Horizons (hours) 6 12 18 24 30 36 42 48 Average
CNN (MCF) 0.9360 0.8851 0.8421 0.8103 0.7852 0.7651 0.7532 0.7413  0.8148
+Naive (EN#ve = 2.5%) 0.9371 0.8808 0.8288 0.7957 0.7716 0.7566 0.7470 0.7385  0.8070
+Multinomial cube (rM°" = 5%)  0.9365 0.8861 0.8425 0.8105 0.7857 0.7661 0.7545 0.7435 0.8157
+Simple Cube (¢5°F = 47.5%) 0.9356  0.8855 0.8428 0.8101 0.7845 0.7663 0.7558 0.7442 0.8156
+Neighborhood prob cube 0.9368 0.8873 0.8444 0.8112 0.7849 0.7650 0.7538 0.7428 0.8158
Improvement (%) 0.12 0.24 0.27 0.12 0.06 0.16 0.35 0.39 0.12

“*#” and “**” denote statistical significance at p-value ; 0.05 and j 0.01, respectively, with a Student’s ¢-test.
“Improvement (%)” denotes the percentage improvement of best perturbation method (in boldface) with respect to CNN conditional

forward model without perturbation.

Table 2: Performance of various perturbation methods
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