High-Confidence Off-Policy (or Counterfactual) Variance Estimation
DOI:
https://doi.org/10.1609/aaai.v35i8.16855Keywords:
Reinforcement Learning, Causal Learning, Safety, Robustness & TrustworthinessAbstract
Many sequential decision-making systems leverage data collected using prior policies to propose a new policy. For critical applications, it is important that high-confidence guarantees on the new policy’s behavior are provided before deployment, to ensure that the policy will behave as desired. Prior works have studied high-confidence off-policy estimation of the expected return, however, high-confidence off-policy estimation of the variance of returns can be equally critical for high-risk applications. In this paper we tackle the previously open problem of estimating and bounding, with high confidence, the variance of returns from off-policy data.Downloads
Published
2021-05-18
How to Cite
Chandak, Y., Shankar, S., & Thomas, P. S. (2021). High-Confidence Off-Policy (or Counterfactual) Variance Estimation. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 6939-6947. https://doi.org/10.1609/aaai.v35i8.16855
Issue
Section
AAAI Technical Track on Machine Learning I