
Counterfactual Explanations for Oblique Decision Trees:
Exact, Efficient Algorithms

Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada
Dept. Computer Science & Engineering, University of California, Merced

{mcarreira-perpinan, shada}@ucmerced.edu

Abstract

We consider counterfactual explanations, the problem of min-
imally adjusting features in a source input instance so that it
is classified as a target class under a given classifier. This has
become a topic of recent interest as a way to query a trained
model and suggest possible actions to overturn its decision.
Mathematically, the problem is formally equivalent to that of
finding adversarial examples, which also has attracted signif-
icant attention recently. Most work on either counterfactual
explanations or adversarial examples has focused on differ-
entiable classifiers, such as neural nets. We focus on clas-
sification trees, both axis-aligned and oblique (having hy-
perplane splits). Although here the counterfactual optimiza-
tion problem is nonconvex and nondifferentiable, we show
that an exact solution can be computed very efficiently, even
with high-dimensional feature vectors and with both contin-
uous and categorical features, and demonstrate it in different
datasets and settings. The results are particularly relevant for
finance, medicine or legal applications, where interpretability
and counterfactual explanations are particularly important.

1 Introduction
Practical deployment of deep learning and machine learn-
ing models has become widespread in the last decade, and
there is enormous societal interest in AI as a technology that
can provide intelligent, automated processing of tasks that
up to now were hard for machines. At the same time, some
concerns about AI systems (ethical, safety and others) have
arisen as well. One is the problem of interpretability, i.e.,
explaining the functionality of an automated system. This is
an old problem, which has been studied (possibly under dif-
ferent names, such as explainability or transparency) since
decades ago in statistics and machine learning (e.g. Breiman
et al. (1984); Freitas (2014); Guidotti et al. (2018); Lipton
(2018)). A second problem is explaining why the system
made a decision, and how to contest it or—of particular in-
terest here—how to change it. This problem is more recent
and has become more pressing and widely known with the
advent of legislation, such as the European Union’s General
Data Protection Regulation (GDPR) (Goodman and Flax-
man 2017; Wachter, Mittelstadt, and Russell 2018), which
requires AI systems to explain in some way its decisions to

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

humans. That said, related problems have been studied in
data mining or knowledge discovery from databases (Yang
et al. 2006; Bella et al. 2011; Martens and Provost 2014; Cui
et al. 2015), in particular in applications such as customer
relationship management (CRM).

In this paper we focus on a specific version of the sec-
ond problem that, following Wachter, Mittelstadt, and Rus-
sell (2018), we will call a counterfactual explanation, which
refers to the fact that an event did not actually happen. For
example, “You were denied a loan because your annual in-
come was $30,000. If your income had been $45,000, you
would have been offered a loan.” The second statement, or
counterfactual, offers an alternative event that would result
in the desired outcome (loan approval). Formally, a coun-
terfactual explanation seeks the minimal change to a given
feature vector that will change a classifier’s decision in a
prescribed way, and we will make this more precise as an
optimization problem later. Compared to the problem of ex-
plaining the functionality of an automated system, counter-
factual explanations are easier in that they do not require in-
terpretability, as long as the explanations help a subject act
rather than understand.

Formally, the problem of finding a counterfactual expla-
nation is the same as that of finding an adversarial exam-
ple (Szegedy et al. 2014; Simonyan, Vedaldi, and Zisser-
man 2014; Zeiler and Fergus 2014; Goodfellow, Shlens, and
Szegedy 2015). The difference is in the underlying motiva-
tion. In a counterfactual explanation, one typically seeks a
change of the source feature vector that is as small as possi-
ble (because changing features is seen as costly) and changes
the classifier outcome (to a prescribed and more desirable
one). In an adversarial example, one typically seeks a change
of the source feature vector that is as small as possible (so
that it is hard to detect) and changes the classifier outcome
(to trick it into predicting the wrong outcome). Our focus
will be in the solution of such optimization problems, al-
though we will use as running example the case of counter-
factual explanations.

Recent work has explored various ways of defining coun-
terfactual explanation problems and solving them for differ-
ent classifiers, in particular neural nets. Here we consider
classification trees1, which are of particular interest com-

1We consider hard decision trees, where an instance goes either

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6903

pared to other models for several reasons. Trees are widely
used in practice, can handle continuous and discrete fea-
tures, are extremely fast for inference, can model nonlinear
boundaries, and provide multiclass models naturally (with-
out the need of constructions such as one-vs-all). Perhaps
most importantly, trees are generally considered among the
most interpretable models (certainly much more so that neu-
ral nets or forests). And, while (axis-aligned) trees have tra-
ditionally not been competitive in terms of predictive accu-
racy with other models, a recent algorithm (tree alternat-
ing optimization, TAO; (Carreira-Perpiñán 2021; Carreira-
Perpiñán and Tavallali 2018; Zharmagambetov et al. 2020))
is able to learn oblique trees whose accuracy is much higher,
which makes such trees competitive with other models.

Mathematically, trees provide a nonlinear classifier based
on hierarchical, discontinuous splits, so the corresponding
counterfactual problem is nonconvex and nondifferentiable.
Yet, we show it can be solved exactly and efficiently, even
if categorical variables exist. Our algorithm is very fast and
suitable for interactive exploration of counterfactual expla-
nations under different objectives or constraints. It can also
provide, in a natural way, not just one but a diverse set of
counterfactual explanations, which provide a range of ways
in which the desired classifier outcome may be achieved.

2 Related Work
Counterfactual explanations can be seen as a form of knowl-
edge extraction from a trained machine learning model. This
is the traditional realm of data mining, particularly in busi-
ness and marketing (Hand, Mannila, and Smyth 2001; Han,
Kamber, and Pei 2011; Aggarwal 2015; Witten et al. 2016).
However, the precise formulation of counterfactual expla-
nations as optimization problems given a classifier, source
instance and target class (such as the one we follow in sec-
tion 3.3) and the various works exploring this research topic
are quite recent. The formulation of counterfactual expla-
nations can take different forms but always involve a dis-
tance function to measure how costly it is to change fea-
tures (attributes) in a source instance, as well as a constraint
or penalty term that ensures a target class is predicted. Op-
timizing a tradeoff of both of these yields the counterfac-
tual instance. Most algorithms to solve the optimization as-
sume differentiability of the classifier with respect to its in-
put instance, so that gradient-based optimization can be ap-
plied. This has been particularly exploited with deep nets for
adversarial examples and model inversion (Szegedy et al.
2014; Simonyan, Vedaldi, and Zisserman 2014; Zeiler and
Fergus 2014; Goodfellow, Shlens, and Szegedy 2015; Ma-
hendran and Vedaldi 2016; Dosovitskiy and Brox 2016;
Hada and Carreira-Perpiñán 2019), two problems that are
very similar to counterfactual explanations. Other methods
are specific for linear models (Ustun, Spangher, and Liu
2019; Russell 2019; Carreira-Perpiñán and Hada 2021b).
However, none of these algorithms apply to decision trees,

left or right at each decision node, and hence it reaches a single
leaf. We do not consider soft decision trees (such as hierarchical
mixtures of experts; Jordan and Jacobs (1994)), where the instance
traverses all root-leaf paths, each weighted by a certain probability.

which define nondifferentiable classifiers.
Some agnostic algorithms have been proposed which as-

sume nothing about the classifier other than it can be eval-
uated on arbitrary instances, using some kind of random or
approximate search (Sharma, Henderson, and Ghosh 2019;
Karimi et al. 2019). While these approaches are very gen-
eral, they are computationally slow, particularly with high-
dimensional instances, and give poor approximations to the
optimal solution. One agnostic approach is to restrict the in-
stance search space to a finite set of instances (such as the
training set of the classifier), so the optimization involves a
simple brute-force search, as in a database search. While this
may be useful in some applications, it has a limited ability to
explore the instance space, particularly if the problem con-
straints are satisfied by few instances, and is slow if the set
has many, high-dimensional instances. A recent implemen-
tation of this approach is in the What-If Tool (Wexler et al.
2020) for interaction and visualization of ML systems.

Our paper is specifically about decision trees, both axis-
aligned and oblique, for multiclass classification and using
continuous and categorical features. What little work exists
in counterfactual explanations research about decision trees
has focused on axis-aligned trees (or forests) for binary clas-
sification only, as far as we know. Yang et al. (2006), mo-
tivated by customer relationship management, seek to in-
fer actions from a binary classification tree (attrition vs no
attrition), specifically to move a group of instances (cus-
tomers) from some source leaves to some target leaves of
the tree. The problem is different from a standard counter-
factual explanation and is restricted to categorical features
only. It takes the form of a maximum coverage problem,
which is NP-complete and is approximated with a greedy
algorithm. Bella et al. (2011) consider a restricted form of
counterfactual explanation over a single, “negotiable” fea-
ture, which must be continuous and satisfy certain sensitiv-
ity and monotonicity conditions. Cui et al. (2015) formulate
a type of counterfactual problem for binary classification
forests, show it is NP-hard, and encode it as an integer linear
program, which can be (approximately) solved by existing
solvers. It is practical only for low-dimensional feature vec-
tors, and even then it takes seconds or minutes for one in-
stance. Tolomei et al. (2017) also consider a restricted form
of counterfactual problem for a binary classification forest
and propose an approximate algorithm, based on propagat-
ing the source instance down each tree towards a leaf. This
is claimed to be optimal if the forest contains a single tree.
However, as our experiments show, this is not true.

3 Counterfactual Explanation for Oblique
Trees: An Exact Algorithm

3.1 Definitions
Assume we are given a classification tree that can map an
input instance x ∈ RD, with D real features (attributes), to
a class in {1, . . . ,K}. Assume the tree is rooted, directed
and binary (where each decision node has two children)
with decision nodes and leaves indexed in the sets D and
L, respectively, and N = D ∪ L. We index the root as
1 ∈ D. For example, in fig. 1 we have N = {1, . . . , 17},

6904

L = {8, 10, . . . , 17} and D = N \ L. Each decision node
i ∈ D has a real-valued decision function fi(x) such that in-
put instance x ∈ RD is sent down i’s right child if fi(x) ≥ 0
and down i’s left child otherwise. For oblique trees, the de-
cision function is a hyperplane (linear combination of all
the features) fi(x) = wT

i x + bi, with fixed weight vector
wi ∈ RD and bias bi ∈ R. For axis-aligned trees, wi is an
indicator vector (having one element equal to 1 and the rest
equal to 0). Each leaf i ∈ L is labeled with one class label
yi ∈ {1, . . . ,K}. The class T (x) ∈ {1, . . . ,K} predicted
by the tree for an input instance x is found by sending x
down, via the decision nodes, to exactly one leaf and out-
putting its label. The parameters {wi, bi}i∈D and {yi}i∈L
are estimated by TAO (Carreira-Perpiñán 2021; Carreira-
Perpiñán and Tavallali 2018) (or another algorithm) when
learning the tree from a labeled training set.

The tree partitions the input space into |L| regions, one per
leaf, as shown in figures 1 and 2 (right panels). Each region
is an axis-aligned box (for axis-aligned trees) or polytope
(for oblique trees) given by the intersection of the hyper-
planes found in the path from the root to the leaf. Specif-
ically, define a linear constraint zi(wT

i x + bi) ≥ 0 for
decision node i where zi = +1 if going down its right
child and zi = −1 if going down its left child. Then we
define the constraint vector for leaf i ∈ L as hi(x) =
(zj(w

T
j x+ bj))j∈Pi\{i}, where Pi = {1, . . . , i} is the path

of nodes from the root (node 1) to leaf i. We call Fi = {x ∈
RD: hi(x) ≥ 0} the corresponding feasible set, i.e., the re-
gion in input space of leaf i. For example, in fig. 2 (left) the
path from the root to leaf 15 is P15 = {1, 3, 6, 10, 15} and
its region is given by:

h15(x) =

 f1(x)
−f3(x)
−f6(x)
f10(x)

 =


wT

1 x+ b1
−wT

3 x− b3
−wT

6 x− b6
wT

10x+ b10

 ≥ 0.

3.2 Learning Axis-aligned and Oblique Trees:
Tree Alternating Optimization (TAO)

Traditionally, classification trees have been learned from a
labeled training set using greedy top-down algorithms that
split an initial, root node (using a class purity criterion) and
proceed recursively with its children until a stopping crite-
rion is achieved. The classical examples are CART (Breiman
et al. 1984) and C4.5 (Quinlan 1993). However, these algo-
rithms achieve quite suboptimal trees, particularly if they are
applied to oblique trees (having hyperplane decision nodes).
Still, they are widely use in practice to learn axis-aligned
(univariate) trees.

Recently, a new algorithm has been proposed that is
able to train trees more accurately, both axis-aligned and
oblique: Tree Alternating Optimization (TAO) (Carreira-
Perpiñán 2021; Carreira-Perpiñán and Tavallali 2018). TAO
does not grow a tree greedily. Instead, it takes a given tree
structure with initial parameter values at the nodes and op-
timizes a loss function over these parameters—much as one
would train, say, a neural net, except the tree is not dif-
ferentiable. TAO essentially works by optimizing the pa-
rameters of each node (decision node or leaf) at a time.

Each iteration of TAO is guaranteed to reduce or leave
unchanged the classification error, which results in trees
that are smaller yet much more accurate than those trained
with CART, C4.5 or other algorithms, as shown in a range
of datasets (Zharmagambetov et al. 2020). Furthermore,
the predictive accuracy of oblique trees trained with TAO
becomes comparable to that of state-of-the-art classifiers.
Ensembles of TAO trees also improve considerably over
traditional forests (Carreira-Perpiñán and Zharmagambetov
2020; Zharmagambetov and Carreira-Perpiñán 2020). Other
types of trees can also be learned (Zharmagambetov and
Carreira-Perpiñán 2021). More details about TAO are in
(Carreira-Perpiñán 2021; Zharmagambetov et al. 2020).

In this paper, we illustrate our counterfactual explanation
algorithm with axis-aligned trees trained with CART and
oblique trees trained with TAO.

3.3 Basic Counterfactual Optimization Problem
We start by giving the simplest, but also most important, for-
mulation of finding an optimal counterfactual explanation.
Assume we are given a source input instance x ∈ RD which
is classified by the tree as class y, i.e., T (x) = y, and we
want to find the closest instance x∗ that would be classified
as another class y 6= y (the target class)2. We define the
counterfactual explanation for x as the (or a) minimizer x∗
of the following problem:

min
x∈RD

E(x;x) s.t. T (x) = y, c(x) = 0, d(x) ≥ 0 (1)

where E(x;x) is a cost of changing features of x, and c(x)
and d(x) are equality and inequality constraints (in vector
form), all of which will be defined more precisely in sec-
tions 3.6 and 3.7. The fundamental idea is that problem (1)
seeks an instance x that is as close as possible to x while
being classified as class y by the tree and satisfying the con-
straints c(x) and d(x).

The constraint T (x) = y makes the problem severely
nonconvex, nonlinear and nondifferentiable because of the
tree function T (x). However, the following simple observa-
tion, whose proof is obvious, shows that we can solve the
problem exactly and efficiently.
Theorem 3.1. Problem (1) is equivalent to:

mini∈Lminx∈RD E(x;x)

s.t. yi = y, hi(x) ≥ 0, c(x) = 0, d(x) ≥ 0. (2)

In English, what this means is that solving problem (1)
over the entire space can be done by solving it within each
leaf’s region and then picking the leaf with the best solution.
This is shown in figures 1 and 2 (right panels). That is, the
problem has the form of a mixed-integer optimization where
the integer part is done by enumeration (over the leaves) and
the continuous part (within each leaf) by other means to be
described later. This is true for any tree as long as it has

2We can also consider a formulation of the problem where the
target class y is the same as the source class y, but we seek an
instance x having a lower cost than the source instance x. For ex-
ample, even if a subject is classified as approved for a mortgage, it
may be possible to reduce the initial payment and still be approved.
This requires redefining the cost E(x) accordingly.

6905

1
f1

2
f2

3
f3

4
f4 f5

5 6
f6 f7

7

8 9
f9

10 11 12 13 14 15

16 17

x

x
∗

x1

x2

f1

f2

f3

f4

f5

f6

f7

f9

8

10 11

12 13

14
15

16 17

Figure 1: Left: an axis-aligned classification tree with K = 2 classes (colored white and gray). A decision node i sends an input
instance x to its right child if fi(x) ≥ 0 and to its left child otherwise. For example, for node 5 we have f5(x) = x1 + b5,
i.e., it thresholds x1 and hence creates a vertical split. Likewise, for node 4 we have f4(x) = x2 + b4, i.e., it thresholds x2 and
hence creates a horizontal split. Each leaf i is colored according to its class label yi ∈ {1, . . . ,K}. Right: the space of the input
instances x ∈ R2, assumed two-dimensional, partitioned according to each leaf’s region, which is an axis-aligned box (the
region boundaries are labeled with the corresponding decision node function). The source instance is x, of the white class. The
counterfactual instance (using the squared `2 distance, ‖x− x‖2) subject to changing to the gray class is x∗, which is closest
to x. We also show the closest instances to x within each leaf of the gray class.

1
f1

2
f2

3
f3

4
f4

5 6
f6 f7

7

8 9 10
f10

11 12 13

14 15

x

x
∗

x1

x2

f1

f2

f3

f4 f6

f7

5

8
9

f10

11

12

13

14

15

Figure 2: Left: like fig. 1 but for an oblique classification tree with K = 3 classes (colored white, light gray and gray). Unlike
in an axis-aligned tree, where each decision function uses a single feature, in the oblique tree it uses a linear combination of
them: fi(x) = wT

i x+ bi. The source instance x is in the white class and the counterfactual one (using the `2 distance) subject
to being in the gray class is x∗.

hard decisions at the decision nodes, even if the decision
functions and leaf predictors are more complex than the hy-
perplanes and constant labels, respectively, that we consider
here. Since the number of leaves in a tree is relatively small,
this is computationally possible (in particular, oblique trees
have very few leaves compared to axis-aligned ones).

Hence, the problem we still need to solve is the problem
over a single leaf i ∈ L (having the desired label yi = y),
and henceforth we focus on this. We write it as:
min
x∈RD

E(x;x) s.t. hi(x) ≥ 0, c(x) = 0, d(x) ≥ 0. (3)

If the function E(x; ·) is convex over x and the constraints
c(x) and d(x) are linear, then this problem is convex (since
for oblique trees hi(x) is linear). In particular, if E is linear
or quadratic then the problem is a linear program (LP) or a
convex quadratic program (QP), both of which can be solved
very efficiently with existing solvers, more so because the
number of variables D is usually not very large in practice
(thousands at most, and in some important applications it
can be very small).

3.4 Separable Problems: Axis-aligned Trees
The following result, whose proof is immediate, vastly sim-
plifies the problem for axis-aligned trees.
Theorem 3.2. In problem (1), assume that each constraint
depends on a single element of x (not necessarily the same)
and that the objective function is separable, i.e., E(x;x) =∑D

d=1Ed(xd;xd). Then the problem separates over the
variables x1, . . . , xD.

This means that, within each leaf, we can solve for each
xd independently, by minimizing Ed(xd;xd) subject to the
constraints on xd. Further, the solution is given by the fol-
lowing result.
Theorem 3.3. Consider the scalar constrained optimization
problem, where the bounds can take the values ld = −∞
and ud =∞:

minxd∈REd(xd;xd) s.t. ld ≤ xd ≤ ud. (4)

AssumeEd is convex on xd and satisfiesEd(xd;xd) = 0 and
Ed(xd;xd) ≥ 0 ∀xd ∈ R. Then x∗d, defined as the median of

6906

xdld ud xdld ud xdld ud xd

x
∗

d

ld ud

ld

ud

Figure 3: Left: three possible cases for the location of the
solution for the scalar box-constrained problem (4). Right:
the solution x∗d is the median of xd, l and u.

xd, ld and ud, is a global minimizer of the problem:

x∗d = median(xd, ld, ud) =


ld, xd < ld
ud, xd > ud
xd, otherwise

. (5)

Proof. From the assumption over Ed we have that xd is a
global minimizer of Ed. The result follows by comparing
xd with ld and ud; see fig. 3.

The previous theorem does not consider equality con-
straints because, in a scalar problem, they trivially provide
the solution (an equality constraint “xd = value” implies
x∗d = value). The inequalities “ld ≤ xd ≤ ud” in the the-
orem are obtained by collecting all the inequalities in the
problem (1) that involve xd.

Importantly, these theorems apply to axis-aligned trees
(assuming each of the extra constraints c(x) and d(x) de-
pends individually on a single feature), because each of the
constraints hi(x) ≥ 0 in the path from the root to leaf i
involve a single feature of x. This makes solving the coun-
terfactual explanation problem exceedingly fast for axis-
aligned trees. We can represent each leaf i ∈ L by a bound-
ing box hi ≤ x ≤ ui (which collects the constraints along
the path from the root to i), solve elementwise by applying
the median formula above within each leaf, and finally re-
turn the result of the best leaf.

Finally, the following result shows that, with axis-aligned
trees, we obtain the same solution whether we use the `1
norm or the `2 norm or a linear combination of both.
Corollary 3.4. In problem (1), assume that each constraint
depends on a single element of x (not necessarily the same)
and that the objective function is E(x;x) = λ1‖x− x‖1 +
λ2‖x− x‖22 with coefficients λ1, λ2 ≥ 0. Then the solution
of the problem is the same, regardless of the values of the
coefficients, and it is given by applying the median formula
of theorem 3.3 elementwise within each leaf and then picking
the best leaf.

However, note that if we use a different weight per fea-
ture, e.g. E(x;x) =

∑D
d=1 λd(xd − xd)2, then the optimal

solution does depend on those weights: while it can still be
computed elementwise within each leaf, which leaf is the
best depends on the weights.

3.5 Non-separable Problems: Oblique Trees
With oblique trees, the root-leaf path constraints hi(x) ≥ 0
involve each a linear combination of multiple features, as
shown in fig. 2 (right). Hence the problem (3) over a leaf
does not separate and cannot be solved elementwise over
each feature. However, it can still be solved exactly and ef-
ficiently using LP or QP solvers.

Computationally, it is convenient to store in each leaf its
root-leaf path constraints and possibly to preprocess them in
order to make the subsequent optimization more efficient (as
is customary with LP or QP solvers). For example, one can
remove redundant constraints in the root-leaf path (e.g. f1
is redundant for leaf 16 in fig. 1). Also, a good initialization
for each QP is given by the source instance x.

3.6 Useful Cost or Distance Functions
The functionE(x;x) measures the cost of changing features
in the source instance x, so it should satisfy E(x;x) = 0
and E(x;x) > 0 if x 6= x (or perhaps E(x;x) ≥ 0). An
appropriate definition of E is critical to find good counter-
factual explanations, but such a definition depends on the
application. For example, changing the amount of a loan is
easier than changing the education level of a person. That
said, a useful cost function can generally be written using a
distance or a combination of distances, possibly weighted.
Next, we give several generic distances that are convex and
can be easily handled with decision trees. All of them have
been used in earlier works, with the exception of the general
quadratic distance, as far as we know.
• `2 distance: E(x;x) = ‖x− x‖22.
• `1 distance: E(x;x) = ‖x− x‖1. This encourages few

features to be changed, while the `2 distance typically
changes all features.
To optimize a problem of the form “minδ ‖δ‖1 s.t. δ ∈
F” (where δ = x − x and F is a polytope), we use
the standard reformulation as a LP “minδ,t 1

T t s.t. δ ≤
t, δ ≥ −t, δ ∈ F”.

• General quadratic distance (Carreira-Perpiñán and Hada
2021a).

• Finally, we can have combinations of all the above, such
as E(x;x) = ‖x− x‖1 + λ‖x− x‖22.

Note in practice the `1 or `2 distances should be weighted
(or equivalently each feature should be normalized). Such
weights should be chosen by the user according to the range
of variation of each feature and to its perceived cost.

3.7 Useful Constraints
The constraints c(x) = 0 and d(x) ≥ 0 in problem (1)
can be used to represent restrictions that must be obeyed for
a counterfactual explanation to be reasonable. We consider
the following:
• Constraints intrinsic to the problem: these typically repre-

sent natural equality constraints or lower and upper lim-
its of each variable. We give some examples. Many vari-
ables are nonnegative, such as salary or cholesterol level.
For a grayscale image each pixel should be in the interval
[0,1] (black to white). For a color image, suitable inter-
vals must be obeyed depending on the color space (RGB,
LUV, etc.). The race of an individual cannot change from
what it is. The age of an individual must be nonnegative
and smaller than, say, 120 years. Further, if feature d is the
age of an individual, then we should constrain xd ≥ xd
to indicate that the given individual can get older but not
younger.

6907

• Constraints desirable for a particular explanation: these
are given by the user on a case-by-case basis. For exam-
ple, a loan applicant may not want to change her marital
status, and cannot increase her age by more than say a few
months, even if either of those were possible and resulted
in the loan being approved by the tree.

• Categorical variables: because we handle them as contin-
uous with a one-hot encoding, this introduces some con-
straints (see section 3.8).

• We can constrain x to be in a discrete set of instances,
such as the training set x1, . . . ,xN of the tree. The opti-
mization reduces to a simple search in the set: we eval-
uate the objective E(x;x) on every instance xn whose
ground-truth class is the target class and satisfies the ad-
ditional constraints c(xn) = 0, d(xn) ≥ 0, and return
the one with lowest objective.

Our framework can accommodate several extensions of the
basic counterfactual problem (1) while remaining computa-
tionally easy (Carreira-Perpiñán and Hada 2021a).

3.8 Categorical Variables
Although many popular benchmarks and models in machine
learning use only continuous variables, categorical variables
are very important in practice, particularly in legal, finan-
cial or medical applications. And it is precisely in these
human-related applications where counterfactual explana-
tions might be most useful.

We handle categorical variables by encoding them as one-
hot. That is, if an original categorical variable can take C
different categories, we encode it using C dummy binary
variables jointly constrained so that exactly one of them is
1 (for the corresponding category): x1, . . . , xC ∈ {0, 1} s.t.
1Tx = 1.

During training with the TAO algorithm, we treat the
dummy variables as if they were continuous and without the
above constraints. This causes no problem because we only
need to read the values of those variables; we do not need to
update them.

When solving the counterfactual problem, we do modify
those variables and so we need to respect the above con-
straints. This makes the problem a mixed-integer optimiza-
tion, where some variables are continuous and others binary
(the dummy variables). While these problems are NP-hard in
general, in many practical cases we can expect to solve them
exactly and quickly for two reasons: 1) categorical variables
typically arise in low-dimensional problems and do not have
many categories, so the total number of binary dummy vari-
ables is relatively small. And 2) modern mixed-integer opti-
mization solvers, such as CPLEX or Gurobi, can solve rela-
tively large problems exactly, and even larger ones approxi-
mately (providing a feasible result and a lower bound to the
optimal objective) (Bixby 2012).

Note that the simple approach of relaxing each integer
constraint xc ∈ {0, 1} to xc ≥ 0, solving a continuous opti-
mization and rounding its result (i.e., picking the category c
with the largest xc value) has two drawbacks, which we have
observed in our experiments: the result can be a poor approx-
imation of the optimum; and, worse, applying the tree to it

Feature x, source
instance

x∗
1, no

constraints
x∗
2, some

constraints
x∗
3, more

constraints

age 25 = = =

workclass Private = = Federal
-gov

education 11th = Assoc-voc =
marital
-status

Never
-married = Married-

AF-spouse =

occupation Machine-op
-inspect = = Armed

-Forces
relationship Own-child = = =

race Black Asian-Pac
-Islander = =

sex Male = = =
capital-gain 0 = = 1
capital-loss 0 1 = 3

hours-
per-week 40 = 39 =

native
-country United-States Peru = =

income <$50k ≥$50K ≥$50K ≥$50K

Table 1: Example illustrating the construction of counterfac-
tual instances with our exact algorithm for an oblique deci-
sion tree on the Adult dataset. We show the dataset features,
source instance x (of class “<$50k”), and 3 counterfactual
instances (of class “≥$50k”) with progressively more user
constraints (x∗1, x∗2, x∗3). “=” means the feature value is the
same as in the source instance.

may not predict the target class (i.e., the rounded instance is
infeasible).

4 Experiments
Our algorithm is exact, as we have shown. It is also very ef-
ficient for both axis-aligned and oblique trees, even if there
are categorical variables; solving a counterfactual explana-
tion in our experiments takes usually milliseconds. We show
3 types of results: an example illustrating how the algo-
rithm can be used interactively; summary results in several
datasets, comparing with other algorithms; and, in Carreira-
Perpiñán and Hada (2021a), results on MNIST digit images,
which can be visualized.

Illustrative example We consider the UCI Adult dataset
for binary classification, where each instance corresponds to
a person (age, education, sex, etc., involving both contin-
uous and categorical features), and the classes are whether
or not the person makes over $50k a year. We are given an
oblique decision tree trained by TAO. We take the source in-
stance in table 1, which is classified by the tree as “below
$50k”, and seek counterfactual explanations x∗ (in `2 dis-
tance) classified as “above $50k”. Without any constraints,
3 features change: race, capital-loss and native-country (x∗1).
Changing a person’s race and native-country is not possible,
so we constrain race, native-country as well as sex not to
change. This results in 3 other features changing: education,
marital-status and hours-per-week (x∗2). Based on the user’s
preferences we then constrain education, marital-status and
relationship not to change. Finally, this results in changing
workclass, occupation, capital-gain and capital-loss (x∗3).

6908

%
c Our exact algorithm training & test set

ms `2 ms `1 ms `2
%

feas

0 40 0.63±0.48 580 2.85±1.40 40 53.50±17.24 100

M
N

IS
T

9 40 0.63±0.48 580 2.85±1.40 40 53.50±17.24 100
47 40 9.28±6.70 55012.80±7.89 — — 0

0 710 2.40±0.83 600 2.40±0.83 70 3.4e4±1.2e5 100

A
du

lt 7 810 2.45±0.86 590 2.40±0.83 4300 1.6e7±5.2e7 100
14 780 2.49±0.97 570 2.50±0.97 2700 1.9e7±5.8e7 100

0 4 0.35±0.33 2 1.14±0.48 0 0.86±0.49 100

B
re

as
t

11 3 0.48±0.44 2 1.14±0.48 0 1.25±0.54 77
22 3 0.52±0.48 2 1.16±0.48 0 1.61±0.89 17

0 7 0.002±0.01 12 0.060±0.06 0 0.060±0.06 100

Sp
am

ba
se

17 6 0.002±0.01 12 0.060±0.06 10 0.070±0.09 32
53 7 0.003±0.01 12 0.070±0.06 20 0.020±0.01 17

0 18 0.02±0.01 20 0.31±0.12 0 0.19±0.09 100

L
et

te
r

25 17 0.03±0.02 20 0.31±0.12 0 0.36±0.19 19
62 16 0.20±0.84 190 0.55±0.47 — — 0

0 50 3.97±3.50 80 2.70±1.20 0 3.0e3±7.3e3 100

C
re

di
t

7 50 4.00±3.50 80 2.70±1.20 — — 0
16 50 4.25±5.80 80 2.80±1.30 — — 0

Table 2: Comparison of counterfactuals generated by our
exact algorithm and by searching over the training & test
set, over a variety of datasets, using an oblique classifica-
tion tree. We show: the percentage of features constrained
in the source instance (% c), average runtime per instance
in milliseconds (ms), `2 or `1 distance (mean and standard
deviation over 20 instances per class), and the percentage of
feasible counterfactuals (for the search in the training & test
set only, since for our algorithm it is always 100%).

Algorithm comparison over different datasets We now
run our algorithm on several source instances from several
datasets (of different numbers of features D and classes K,
and with continuous and/or categorical features), on both an
oblique tree trained by TAO (table 2) and an axis-aligned
tree trained by CART (table 3). For each dataset we ran-
domly select 20 source instances of each class from the test
instances and generate a counterfactual explanation for them
(to target a different class), using the `2 or `1 distance. As
in the illustrative example, we try 3 levels of constraints:
no constraints, some constraints and even more constraints
(picked at random or manually); the tables show the percent-
age of features constrained in each case.

In the oblique tree, we compare with searching only over
those training & test set instances (as in the What-If tool
(Wexler et al. 2020)) which are classified as the target class
by the tree, using the `2 distance. We label this as “training
& test set” in the tables and figures. Clearly, this produces
counterfactual instances with far larger distances and fails
to find a feasible counterfactual instance (i.e., of the target
class) if too many constraints are applied.

In the axis-aligned tree, we compare with the Feature
Tweaking algorithm (Tolomei et al. 2017) in the `2 distance,
by running the authors’ implementation (note this algorithm
does not apply to oblique trees). Since it handles only con-

%
c Our exact algorithm Feature tweak

(Tolomei et al. 2017)
ms `2 ms `1 ms `2

%
feas

0 110 0.04±0.11 110 0.16±0.26 190 1.48±1.09 100

M
N

IS
T

9 110 0.04±0.11 110 0.16±0.26 — — —
47120 5.83±3.27 120 13.16±3.65 — — —

0 130 2.05 ±0.31 130 2.05±0.31 50 1.00±0.00 28

A
du

lt 7 130 2.07±0.34 130 2.07±0.34 — — —
14140 26.10±14.97 140 2.85±4.54 — — —

0 0 0.13±0.17 0 0.42±0.28 0 0.36±0.19 100

B
re

as
t

11 0 0.19 ±0.25 0 0.47±0.33 — — —
22 0 0.22±0.29 0 0.48 ±0.35 — — —

0 03 1.7e—5±0.0 30 0.003±0.002 0 0.005±0.009 100

Sp
am

ba
se

17 30 1.7e—5±0.0 30 0.004±0.002 — — —
53 40 4.5e—5±0.0 40 0.005±0.004 — — —

0 50 0.014±0.01 50 0.16±0.08 30 0.22±0.13 100

L
et

te
r

25 40 0.016±0.02 50 0.17±0.09 — — —
62 40 0.058±0.05 60 0.28±0.02 — — —

0 40 2.60±1.01 40 2.60±1.01 0 87.88±13.20 22

C
re

di
t

7 40 2.60±1.01 40 2.60±1.01 — — —
16 40 26.50±50.2 40 4.87±4.64 — — —

Table 3: Like table 2 but for an axis-aligned classification
tree. We also show the results for the Feature Tweaking
method of Tolomei et al. (2017) (which does not apply to
problems with constraints, marked “—”).

tinuous features, to use categorical ones we encode them as
one-hot, solve as if they were continuous and round them
at the end. We clearly see that Feature Tweaking is not ex-
act for binary axis-aligned trees, contradicting the claim in
Tolomei et al. (2017). This is shown by the larger distances
and by the failure to find a feasible counterfactual instance
if too many constraints are applied. Our algorithm is indeed
exact for both oblique and axis-aligned trees and returns a
feasible, minimal-distance counterfactual every time.

The runtime of our algorithm is a few milliseconds per
instance, even in relatively high-dimensional cases such as
the MNIST dataset (D = 784), or involving around 10 cat-
egorical features translating into almost 100 binary dummy
variables as in the Adult dataset.

5 Conclusion
Classification trees are very important in applications such
as business, law and medicine, where counterfactual expla-
nations are of particular relevance. We have given an exact,
efficient algorithm to compute counterfactual explanations
for axis-aligned and oblique trees in multiclass problems,
with different distances and constraints, and applicable to
both continuous and categorical features. The algorithm is
fast enough to allow interactive use. It should be possible
to extend it to other cases, such as softmax classifier leaves
(rather than constant-label leaves) and regression trees.

Acknowledgments. Work partially supported by NSF
award IIS–2007147. Code implementing the algorithms is
available from the authors’ web page.

6909

References
Aggarwal, C. C. 2015. Data Mining. The Textbook.
Springer-Verlag.

Bella, A.; Ferri, C.; Hernández-Orallo, J.; and Ramı́rez-
Quintana, M. J. 2011. Using Negotiable Features for Pre-
scription Problems. Computing 91: 135–168.

Bixby, R. E. 2012. A Brief History of Linear and Mixed-
Integer Programming Computation. Documenta Mathemat-
ica Extra Volume: Optimization Stories: 107–121.

Breiman, L. J.; Friedman, J. H.; Olshen, R. A.; and Stone,
C. J. 1984. Classification and Regression Trees. Belmont,
Calif.: Wadsworth.

Carreira-Perpiñán, M. Á. 2021. The Tree Alternating Opti-
mization (TAO) Algorithm: A New Way To Learn Decision
Trees and Tree-Based Models. ArXiv.

Carreira-Perpiñán, M. Á.; and Hada, S. S. 2021a. Coun-
terfactual Explanations for Oblique Decision Trees: Exact,
Efficient Algorithms. ArXiv:2103.01096.

Carreira-Perpiñán, M. Á.; and Hada, S. S. 2021b. Inverse
Classification with Logistic and Softmax Classifiers: Effi-
cient Optimization. ArXiv.

Carreira-Perpiñán, M. Á.; and Tavallali, P. 2018. Alter-
nating Optimization of Decision Trees, with Application to
Learning Sparse Oblique Trees. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett,
R., eds., Advances in Neural Information Processing Sys-
tems (NEURIPS), volume 31, 1211–1221. MIT Press, Cam-
bridge, MA.

Carreira-Perpiñán, M. Á.; and Zharmagambetov, A. 2020.
Ensembles of Bagged TAO Trees Consistently Improve over
Random Forests, AdaBoost and Gradient Boosting. In Proc.
of the 2020 ACM-IMS Foundations of Data Science Confer-
ence (FODS 2020), 35–46. Seattle, WA.

Cui, Z.; Chen, W.; He, Y.; and Chen, Y. 2015. Optimal Ac-
tion Extraction for Random Forests and Boosted Trees. In
Proc. of the 21st ACM SIGKDD Int. Conf. Knowledge Dis-
covery and Data Mining (SIGKDD 2015), 179–188. Sydney,
Australia.

Dosovitskiy, A.; and Brox, T. 2016. Inverting Visual Rep-
resentations with Convolutional Networks. In Proc. of the
2016 IEEE Computer Society Conf. Computer Vision and
Pattern Recognition (CVPR’16). Las Vegas, NV.

Freitas, A. A. 2014. Comprehensible Classification Models:
A Position Paper. SIGKDD Explorations 15(1): 1–10.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In Proc. of the
3rd Int. Conf. Learning Representations (ICLR 2015). San
Diego, CA.

Goodman, B.; and Flaxman, S. 2017. European Union Reg-
ulations on Algorithmic Decision-Making and a “Right to
Explanation”. AI Magazine 38(3): 50–57.

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2018. A Survey of Methods for

Explaining Black Box Models. ACM Computing Surveys
51(5): 93.

Hada, S. S.; and Carreira-Perpiñán, M. Á. 2019. Sampling
the “Inverse Set” of a Neuron: An Approach to Understand-
ing Neural Nets. ArXiv:1910.04857.

Han, J.; Kamber, M.; and Pei, J. 2011. Data Mining: Con-
cepts and Techniques. Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, third edition.

Hand, D.; Mannila, H.; and Smyth, P. 2001. Principles of
Data Mining. Adaptive Computation and Machine Learning
Series. Cambridge, MA: MIT Press.

Jordan, M. I.; and Jacobs, R. A. 1994. Hierarchical Mix-
tures of Experts and the EM Algorithm. Neural Computa-
tion 6(2): 181–214.

Karimi, A.-H.; Barthe, G.; Balle, B.; and Valera, I. 2019.
Model-Agnostic Counterfactual Explanations for Conse-
quential Decisions. ArXiv:1905.11190.

Lipton, Z. C. 2018. The Mythos of Model Interpretability.
Comm. ACM 81(10): 36–43.

Mahendran, A.; and Vedaldi, A. 2016. Visualizing Deep
Convolutional Neural Networks Using Natural Pre-images.
Int. J. Computer Vision 120(3): 233–255.

Martens, D.; and Provost, F. 2014. Explaining Data-Driven
Document Classifications. MIS Quarterly 38(1): 73–99.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann.

Russell, C. 2019. Efficient Search for Diverse Coherent Ex-
planations. In Proc. ACM Conf. Fairness, Accountability,
and Transparency (FAT 2019), 20–28. Atlanta, GA.

Sharma, S.; Henderson, J.; and Ghosh, J. 2019. CERTIFAI:
Counterfactual Explanations for Robustness, Transparency,
Interpretability, and Fairness of Artificial Intelligence Mod-
els. ArXiv:1905.07857.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2014. Deep
Inside Convolutional Networks: Visualising Image Classi-
fication Models and Saliency Maps. In Proc. of the 2nd
Int. Conf. Learning Representations (ICLR 2014). Banff,
Canada.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing Prop-
erties of Neural Networks. In Proc. of the 2nd Int. Conf.
Learning Representations (ICLR 2014). Banff, Canada.

Tolomei, G.; Silvestri, F.; Haines, A.; and Lalmas, M. 2017.
Interpretable Predictions of Tree-based Ensembles via Ac-
tionable Feature Tweaking. In Proc. of the 23rd ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining
(SIGKDD 2017), 465–474. Halifax, Nova Scotia.

Ustun, B.; Spangher, A.; and Liu, Y. 2019. Actionable Re-
course in Linear Classification. In Proc. ACM Conf. Fair-
ness, Accountability, and Transparency (FAT 2019), 10–19.
Atlanta, GA.

6910

Wachter, S.; Mittelstadt, B.; and Russell, C. 2018. Counter-
factual Explanations without Opening the Black Box: Auto-
mated Decisions and the GDPR. Harvard J. Law & Tech-
nology 31(2): 841–887.
Wexler, J.; Pushkarna, M.; Bolukbasi, T.; Wattenberg, M.;
Viégas, F.; and Wilson, J. 2020. The What-If Tool: Inter-
active Probing of Machine Learning Models. IEEE Trans.
Visualization and Computer Graphics 26(1): 56–65.
Witten, I. H.; Frank, E.; Hall, M. A.; and Pal, C. J. 2016.
Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, fourth edition.
Yang, Q.; Yin, J.; Ling, C. X.; and Pan, R. 2006. Extracting
Actionable Knowledge from Decision Trees. IEEE Trans.
Knowledge and Data Engineering 18(1): 43–56.
Zeiler, M. D.; and Fergus, R. 2014. Visualizing and Un-
derstanding Convolutional Networks. In Proc. 13th Euro-
pean Conf. Computer Vision (ECCV’14), 818–833. Zürich,
Switzerland.
Zharmagambetov, A.; and Carreira-Perpiñán, M. Á. 2020.
Smaller, More Accurate Regression Forests Using Tree Al-
ternating Optimization. In Daumé III, H.; and Singh, A.,
eds., Proc. of the 37th Int. Conf. Machine Learning (ICML
2020), 11398–11408. Online.
Zharmagambetov, A.; and Carreira-Perpiñán, M. Á. 2021.
Learning a Tree of Neural Nets. In Proc. of the IEEE
Int. Conf. Acoustics, Speech and Sig. Proc. (ICASSP’21).
Toronto, Canada.
Zharmagambetov, A.; Hada, S. S.; Carreira-Perpiñán,
M. Á.; and Gabidolla, M. 2020. An Experimental
Comparison of Old and New Decision Tree Algorithms.
ArXiv:1911.03054.

6911

