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Abstract

In this paper, we study the problem of learning representations
of entities and relations in the knowledge graph for the link pre-
diction task. Our idea is based on the observation that the vast
majority of the related work only models the relation as a sin-
gle geometric operation such as translation or rotation, which
limits the representation power of the underlying models and
makes it harder to match the complicated relations existed
in real-world datasets. To embrace a richer set of relational
information, we propose a new method called dual quaternion
knowledge graph embeddings (DualE), which introduces dual
quaternions into knowledge graph embeddings. Specifically, a
dual quaternion behaves like a “complex quaternion” with its
real and imaginary part all being quaternary. The core of DualE
lies a specific design of dual-quaternion-based multiplication,
which universally models relations as the compositions of a
series of translation and rotation operations. The major merits
of DualE are three-fold: 1) it is the first unified framework
embracing both rotation-based and translation-based models
in 3D space, 2) it expands the embedding space to the dual
quaternion space with a more intuitive physical and geometric
interpretation, 3) it satisfies the key patterns and the multiple
relations pattern of relational representation learning. Exper-
imental results on four real-world datasets demonstrate the
effectiveness of our DualE method.

Introduction
Knowledge Graph (KG) represents a collection of interlinked
descriptions of entities, namely, real-world objects, events,
situations, or abstract concepts. During the past decade, KG
has been proven to be an indispensable build-block for a wide
spectrum of applications ranging from question answering,
knowledge inference to natural language processing. To effec-
tively integrate KG into downstream AI applications, a key
step, known as Knowledge Graph Embedding (KGE), then
comes into play as a powerful tool which encodes entities and
relations of the graph into low-dimensional representations.

We could roughly divide the vast majority of KGE method-
s into two general families based on how relations in KG are
formulated. As the name suggests, translation family refers
to the models which regard relations as translations, which
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Figure 1: An illustration of that DualE is a unified framework
of translation family and rotation family.

could be traced back to TransE (Bordes et al. 2013). A re-
markable trait of the models belonging to this family is that
they provide a natural way to represent the hierarchical rela-
tions which are extremely common in KGs. And its variants
such as (Wang et al. 2014; Lin et al. 2015) can model the
multiple relations pattern. Meanwhile, rotation family refers
to the models in which the relations are modeled as rota-
tion operations, which typically includes (Sun et al. 2019;
Zhang et al. 2019). As what is claimed in the representative
work RotatE (Sun et al. 2019), rotation can model all the
three fundamental patterns of relations in KG, i.e., symme-
try/antisymmetry, inversion, and composition. A thorough
discussion of these methods is delayed to the next section.

With the efforts of the translation family and rotation fam-
ily models, we have witnessed great success of KG-based
applications. Nonetheless, a single translation or rotation is
not always a better way to represent relations. For example,
translation family cannot model all the three fundamental
patterns (Sun et al. 2019); rotation family models have little
effect on hierarchical relations and multiple relations pattern.
See the motivation part for more detailed analysis on this
issue. As such, we find that the strengths of translation fam-
ily and rotation family are essentially complementary. This
brings about the question that is there a way to unify both
translation and rotation in one framework?

Fortunately, we can seek out a solution by means of a
number field named dual quaternion, which is proposed by
William Kingdom Clifford (Clifford 1871). The dual quater-
nion has an intuitive geometric and physical interpretation:
(1) It can represent both translation and rotation. (2) It pro-
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vides an elegant way of solving a range of problems that are
otherwise complex, such as rigid transformations.

In this paper, we propose a new method called dual quater-
nion knowledge graph embeddings (DualE). As a key instru-
ment, we introduce the dual quaternion as the number field
of the embedding space. Specifically, embeddings in a dual
quaternion space are vectors in the hypercomplex space Hd
formed as a+εb, where a and b are two quaternions represent-
ing the real and dual part of the vector, respectively. It could
be proved that with a proper definition of dual-quaternion-
based multiplication, we can represent relations in the KGs
as compositions of translation and rotation operations. As
shown in Figure 1, this allows us to unify the previous studies
in the translation family and rotation family.

To summarize, our contributions are as follows: 1) We pro-
vide theoretical analyses on why both rotation and translation
operations are necessary for knowledge graph embedding. 2)
We propose a new framework called DualE to effectively in-
tegrate rotation and translation operations in KG embedding
methods. 3) We conduct a series of theoretical and empirical
analyses to show the strength of DualE against some of the
SOTA methods.

Related Work
Recall that we divide the majority of KGE methods rough-
ly into two families according to the way they manipulate
relations. In this section, we take a further step to provide a
detailed review of the methods in each family.
Translation Family. This family includes TransE (Bordes
et al. 2013) and its variants. The common trait of these meth-
ods is that they all model relations as translations between
heads and tails in the embedding space. TransE (Bordes et al.
2013) is the first model that realizes this assumption based on
the principle head + relation ≈ tail. TransH (Wang et al.
2014), TransR (Lin et al. 2015), TransD (Ji et al. 2015), and
TransA (Xiao et al. 2015) then improve this idea with dif-
ferent projection strategies. TransG (Xiao, Huang, and Zhu
2016) and KG2E (He et al. 2015) further inject probabilis-
tic principles into this framework by considering Bayesian
nonparametric Gaussian mixture model and Gaussian distri-
bution covariance, respectively. TranSparse (Ji et al. 2016)
provides adaptive sparsity to the transfer matrices in search
of a solution to heterogeneity and imbalance issues of KGs.
Last but definitely not the least, a recent work called TorusE
(Ebisu and Ichise 2018) adopts torus to avoid forcing embed-
ding to be on a sphere. In one word, translation family models
provide a simple yet effective way to achieve better results
than previous complex models such as (Bordes et al. 2014,
2011; Sutskever, Tenenbaum, and Salakhutdinov 2009). But
unfortunately, translation family cannot completely capture
all the three fundamental patterns of relations in KG, i.e.,
symmetry/antisymmetry, inversion, and composition.
Rotation Family. Another branch of studies, what we call
rotation family here, emerges as an alternative way to learn
embedding in a complex space. This spirit is initiated by Dist-
Mult (Yang et al. 2015) and ComplEx (Trouillon et al. 2016),
which extends the embedding space to the complex space
for the first time. RotatE (Sun et al. 2019) then proposes to
formulate relations as rotations from the head entity to the

tail entity through rotational operation in the complex space
with only one rotating surface. As a remarkable property,
RotatE is the first model to unify symmetry/antisymmetry,
inversion, and composition patterns for KGE. This suggests
that rotation operations in the complex space have a strong
potential to empower a universal knowledge representation.
This is why we name this direction after rotation. Most recent-
ly, QuatE (Zhang et al. 2019) extends the complex space into
the quaternion space with two rotating surfaces. However,
rotation family cannot model the hierarchical structure, nor
can it model multiple relations between two entities simulta-
neously.
KGE with Deep Learning. Recently there are some models
using neural networks to produce KG embeddings with re-
markable effects. For instance, R-GCN (Schlichtkrull et al.
2018), ConvE (Dettmers et al. 2017) and ConvKB (Nguyen
et al. 2018), KBGAT (Nathani et al. 2019), A2N (Bansal et al.
2019). A downside of these methods is that the geometric
meaning is not clear or the transformation is single.

Problem Setup
Problem Definition
In the KGE problem, we define the head entity, the relation
and the tail entity as h, r and t, respectively. Now we define
a triplet as (h, r, t), which represents h r→ t, i.e., the head
entity h is related to tail entity t by a relation r. Then a
knowledge graph could be represented by means of a set
of specific triplets (h, r, t) ⊆ V × R × V , where V and
R are entity and relation sets, respectively. Practically, it
is impossible to collect a complete knowledge graph with
pure human efforts. The link prediction task then comes into
play as a powerful application to automatically infer missing
links in a knowledge graph. From a practical perspective, our
ultimate goal is then to develop effective knowledge graph
embedding algorithms for the link prediction task. In this way,
our algorithm will simultaneously produce proper embedding
of the nodes/relations as well as the confidence score of a
given triplet (h, r, t).

Motivation
Before introducing the motivation, we give definitions of
the key patterns (see Appendix for the definitions of sym-
metry/antisymmetry, inversion, composition patterns) and
multiple relations pattern first.

Definition 1 Relations ri are multiple if ∀i ∈ {0, · · · ,m},
(h, ri, t) can hold in KGs simultaneously. A clause with such
form is a multiple relations pattern.

Recalling what we have aforementioned in the introduc-
tion, our idea is inspired by the fact that the single effect of
either translation or rotation might be insufficient to capture
the realistic structure of relations. To show this, we consider a
knowledge graph as follows. Hunk is the father and guardian
of John and Bruce is the father of Sam, then we have re-
lations: John

father−→
guardian

Hunk and Sam
father−→ Bruce; Bruce

and Hunk are neighbors, then we have the relation: Bruce
neighbor←→ Hunk; John and Sam are classmates, we have the
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(a) Translation. (b) Rotation. (c) The combination of translation and rotation.

Figure 2: Illustrations of different transformations modeling relations. Note that the arc represents the operation of rotation, not
the trajectory of rotation. We can see that combining translation and rotation will diversify the description of the relation.

relation: John classmate←→ Sam. As shown in Figure 2(a), we
can see that translation method can model the hierarchical
structure of relations, but cannot model symmetric relations.
As shown in Figure 2(b), we can see that rotation method can
model symmetric relations, but cannot model the hierarchical
structure and multiple relations. In this sense, it becomes cru-
cial to unify both translation and rotation. In fact, as shown
in Figure 2(c), we can see that the combination of rotation
and translation can overcome their respective shortcomings
well.

Next, we consider a more complicated example where
both symmetry and inversion are necessary. For example, for
Hunk and John, we first have the relation: Hunk son−→ John; if
they graduated from the same college, we have the relation:
Hunk alumni←→ John. Because all the translation family cannot
model both symmetry and inversion relations, it is invalid
for this pattern. In the embedding, the angle between Hunk
and John is fixed, and a relation can only correspond to a
fixed angle of rotation. So an angle cannot model these two
relations at the same time, otherwise it will cause confusion.
Therefore, rotation cannot model this pattern. For the combi-
nation of translation and rotation, we can see that modeling
the symmetry relation as rotation and modeling the inversion
relation as translation can solve the problem easily.

Let us further consider a more general question: if there
are many multiple relations between the two entities, can the
combination of rotation and translation model these relations
simultaneously? Obviously, first of all, a single translation
or rotation is invalid for this multiple relations pattern. Then
some translation family models such as TransR can solve
this problem. For each type of relation in TransR, it has not
only a vector r to model itself but also a mapping matrix Mr

to model the relation space while they cannot model inver-
sion and composition patterns. Contrary to such complicated
methods, we model the multiple relations pattern by using the
combination of translation and rotation while it can model all
the key patterns. As shown in Table 1, we show the pattern
modeling and inference abilities of several transformations.

Pattern Translation Rotation Translation+Rotation

Symmetry ×
√ √

Antisymmetry
√ √ √

Inversion
√ √ √

Composition
√ √ √

Multiple
√

×
√

Table 1: The pattern modeling and inference abilities of sev-
eral transformations (See Appendix for more details).

We can see that it strongly supports our motivation for the
combination of rotation and translation.

Basic Properties of Dual Quaternion Numbers
In this section, we will introduce dual quaternions by quater-
nions and dual numbers, along with its operations and prop-
erties.
Quaternion: Quaternion is a hypercomplex number system
firstly described by Hamilton (Hamilton 1844). A quaternion
q is defined to be the sum of a scalar q0 and a vector q =
(q1, q2, q3) namely, q = q0 + q = q0 + q1i + q2j + q3k
where i, j, k are the unit vectors along the x−, y−, z−axes,
respectively. The quaternion can also be viewed as a 4-tuple
(q0, q1, q2, q3). A vector v is called a pure quaternion in the
form of (0, q1, q2, q3).
Dual numbers: A dual number is defined to be zd = a+ εaε
where a and aε are real numbers, or more generally, elements
of a (algebraic) field, and ε is a dual unit with ε2 = 0. In the
formula above, a and aε are referred to as the real and dual
parts of zd.
Dual quaternion: Dual quaternion algebra is an extension
of the dual-number theory by Clifford (Clifford 1871) in an
effort to combine with Hamilton’s quaternion algebra.

A dual quaternion Q has the form Q = a + εb, where a
and b are quaternions given by below:
a = a0 + a1i + a2j + a3k, b = b0 + b1i + b2j + b3k.
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The quaternions a and b are the real and dual part of Q,
respectively. We can also view Q as an 8-tuple:

Q = (a0, a1, a2, a3, b0, b1, b2, b3).

Please see Appendix1 for operational properties of dual
quaternion.
Dual quaternion can model both translation and rotation.
Let q = cos θ2 + û sin θ

2 be a quaternion that represents a
rotation about the unit vector û through θ. We can have
|q| = 1. Then we denote the corresponding rotation matrix
as R and let t = (t1, t2, t3) be a translation, which can be
set as a pure quaternion. A point v under the rotation R
followed by the translation t becomes the point Rv + t,
then the translation vector sequence R, t can be compactly
represented by a dual quaternion σ, and it can be written as

σ = q +
ε

2
tq. (1)

Particularly, if the transformation is a pure rotation, i.e.,
t = 0, we end up with σ = q. If the transformation is a pure
translation, that is, θ = 0, we end up with σ = 1 + ε

2t. Note
that Eq.(1) is a unit dual quaternion, and please see Eq.(15)
in Appendix for the proof and more details.

Methodology
Dual Quaternion Representations for Knowledge
Graph Embedding
In this section, we propose an effective knowledge graph
embedding framework named as DualE. First of all, we elab-
orate the details of the framework. After that, we provide a
series of analyses to show the strength of our framework.
Symbol Description. Suppose that we have a knowledge
graph G consisting of N entities and M relations. We
formulate the all entity embeddings as a dual quaternion
matrix Q ∈ HN×kd , where each row is an embedding
vector for a specific entity of dimensionality k, and de-
note the relation embeddings as W ∈ HM×kd . Given a
triplet (h, r, t), the embedding of head entity h is denot-
ed as Qh = (a0,a1,a2,a3, b0, b1, b2, b3) and the embed-
ding of the tail entity Qt = (e0, e1, e2, e3,f0,f1,f2,f3),
where Qh,Qt ∈ Q. Then we denote the relation r as
Wr = (c0, c1, c2, c3,d0,d1,d2,d3), where Wr ∈W .
Normalization of the relation dual quaternion. As men-
tioned in (Clifford 1871), the unit dual quaternions can repre-
sent translation and rotation. In order to avoid the impact of
scaling, we need to use some steps of Schmidt orthogonaliza-
tion to normalize the relation dual quaternion Wr to a unit
relation dual quaternion W �r . We define Wr = (c,d), where
c = (c0, c1, c2, c3),d = (d0,d1,d2,d3) and we denote

d = d− (d, c)

(c, c)
c = (d0,d1,d2,d3). (2)

We then obtain a normalized variable called c′:

c′ =
c

‖c‖
=

c0 + c1i + c2j + c3k√
c2
0 + c2

1 + c2
2 + c2

3

. (3)

1For the appendix and the code, please refer to
https://github.com/Lion-ZS/DualE.

Figure 3: DualE models relation r as translation and rotation
in 3D space.

Then we denote W �
r = (c′,d) = (c,d) =

(c0, c1, c2, c3,d0,d1,d2,d3). And we can deduce that:

c2
0 + c2

1 + c2
2 + c2

3 = 1. (4)

c0d0 + c1d1 + c2d2 + c3d3 = 0. (5)

It can be seen that Eq.(4)-(5) make the number of degrees of
freedom reduce from 8 to 6, whose physical interpretation
happens to be the degrees of freedom of the rigid body in a
3D world.
Translate and rotate the head entity. As shown in Figure
3, for DualE, if a triplet exists in the KG, we will rotate
h to the place of h′ and translate h′ to the place of h+ to
make the angle between h2 and tail t to be zero (shown as
r+). Otherwise, we can make the head and tail entity be
orthogonal so that their product becomes zero (shown as r−).
Then we define an intermediate variable Q′

h as the result of
the multiplication between Qh and W �

r :

Qh⊗W �
r

= (ah � p− bh � q − ch � u− dh � v)

+ (ah � q + bh � p + ch � v − dh � u) i

+ (ah � u− bh � v + ch � p + dh � q) j

+ (ah � v + bh � u− ch � q + dh � p)k,

(6)

where � denotes the element-wise multiplication between
two vectors. Expand Eq.(6), and we can get the following
form of Q′h, which represents the head entity after translation
and rotation:

Q′h =(h0 + εh′
0) + (h1 + εh′

1)i + (h2 + εh′
2)j

+ (h3 + εh′
3)k

=a′
h + b′hi + c′hj + d′

hk,

(7)

where h0,h
′
0,h1,h

′
1,h2,h

′
2,h3,h

′
3 are obtained by merg-

ing related items after the calculation.
Scoring function and Loss function: Then the scoring func-
tion φ(h, r, t) = 〈Q′h,Qt〉 is defined by the dual quaternion
inner product naturally:

φ(h, r, t) = 〈a′h,at〉+ 〈b′h, bt〉+ 〈c′h, ct〉+ 〈d′h,dt〉 .
(8)
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Then we adopt the cross entropy loss as our loss function.
And we use Ω and Ω′ = E ×R× E − Ω to denote the set of
observed triplets and the set of unobserved triplets, respec-
tively. Moreover, we perform regularization on Q and W to
avoid overfitting, where we learn parameters to regularize Q
and W by using `2 norm with regularization rates λ1 and λ2:

L(Q,W ) =
∑

r(h,t)∈Ω∪Ω−

log (1 + exp (−Yhrtφ(h, r, t)))

+ λ1‖Q‖22 + λ2‖W ‖22,
(9)

where Ω− ⊂ Ω, Yhrt ∈ {−1, 1} represents the correspond-
ing label of the triplet (h, r, t). We use negative sampling
strategies which include sampling, adversarial sampling (Sun
et al. 2019), and Bernoulli sampling(Wang et al. 2014) to
sample Ω− from the unobserved set Ω′. Under the premise
that the search space can be effectively limited, we optimize
the loss function by utilizing Adagrad (Duchi, Hazan, and
Singer 2011). Please see Appendix in Algorithm 1 for more
details of the training algorithm and the initialization scheme.

Theoretical Analysis
In this part, we discuss the theoretical properties of DualE.
As shown in Table 5 in Appendix, we provide comparison
between our proposed method and several popular models in
terms of the scoring function and the time complexity.
Dual quaternion space is non-commutative and associa-
tive. The algebraic properties of the relations depend on the
corresponding properties of the multiplication. As mentioned
in QuatE, the composition is realized through the lens of the
Hamilton product (multiplication of quaternions) between re-
lations. In the hypercomplex space, we also notice that there
is an octonion model2. Similar to dual quaternion, the octo-
nions also live in an 8D world. In the forthcoming discussion,
we will reveal the fundamental advantage of dual quaternions,
which makes it a better choice. Regarding multiplication, the
dual quaternion is non-commutative and associative, while
the octonion is non-commutative and non-associative. These
properties have a great impact on the embedding of relations.

Suppose that there are three persons “x, y, z”
and the relations between the three are as follows:
x

father−−−−→
r1

y
mother−−−−−→
r2

z. The relations above mean that y is

the father (denoted as r1) of x and z is the mother (denoted
as r2) of y , we can easily infer that z is the father’s mother
(r1 ◦ r2, the ◦ here represents composition) of x, i.e., z is
the paternal grandmother of x. But we cannot infer that z
is the mother’s father (r2 ◦ r1) of x, which represents that
z is the maternal grandfather of x. So we can get that the
non-commutative of the multiplication is necessary.

Let us consider another example, and suppose there are
four persons “w, x, y, z”and the relations between the four

are as follows: w
father−−−−→
r1

x
father−−−−→
r2

y
mother−−−−−→
r3

z. From re-

lations above, we can easily infer that z is the father’s father’s

2Hypercomplex number with one real part and seven imaginary
parts:O = x0+x1e1+x2e2+x3e3+x4e4+x5e5+x6e6+x7e7

mother (r1 ◦r2 ◦r3) of w. Then we can say that z is the pater-
nal grandfather’s mother ((r1 ◦r2)◦r3) of w, and we can also
say that z is the father’ paternal grandmother (r1 ◦ (r2 ◦ r3))
of w, for the relations they express are the same. So we can
get that the associative of the multiplication is appropriate.
The weakness of octonions is also verified by the experiments
in (Zhang et al. 2019).
Capability in Modeling Symmetry, Antisymmetry, Inver-
sion and Composition. As mentioned by (Sun et al. 2019),
the three key types of relation patterns above are very impor-
tant and widely spread in knowledge graphs. So can DualE
portray these three key relation patterns and multiple rela-
tions pattern? The answer is positive in light of the following
lemmas.
Lemma 1 DualE can infer the (anti)symmetry pattern. (See
Appendix 1 for the proof)
Lemma 2 DualE can infer the inversion pattern. (See Ap-
pendix 2 for the proof)

Lemma 3 DualE can infer the composition pattern. (See
Appendix 3 for the proof)

Lemma 4 DualE can infer the multiple relations pattern.
(See Appendix 4 for the proof)

Connection to rotation family and translation family
models. The following results show that DualE is a unified
framework for rotation family and translation family. And
then, we have the following lemmas:
Lemma 5 DualE can degenerate into rotation family models.
(See Appendix 5 for the proof)
Lemma 6 DualE can degenerate into translation family
models. (See Appendix 6 for the proof)

Lemma 7 Rotation family models cannot derive DualE mod-
el. (See Appendix 10 for the proof)

Lemma 8 Translation family models cannot derive DualE
model. (See Appendix 11 for the proof)

And based on the lemmas above, we can derive the following
theorem:
Theorem 1 DualE is a unified framework embracing rota-
tion family and translation family.
Proof Combining Lemma 5, Lemma 6, Lemma 7, Lemma 8,
we can obviously prove the theorem.

Experiments and Results
Experimental Setup
In this section, we conduct a series of empirical studies on
four widely-used knowledge graph datasets, which are sum-
marized in Table 3.
Datasets: WN18 (Bordes et al. 2013) is a subset of Word-
Net (Miller 1995), a database featuring lexical relations
between words. The dataset also has many inverse rela-
tions. So mainly the relation patterns in WN18 are sym-
metric/antisymmetric and inversion. FB15K (Bordes et al.
2013) is a subset of Freebase (Bollacker et al. 2008) and
is a large-scale knowledge graph containing general knowl-
edge facts. Therefore, the key of link prediction on FB15K
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WN18 FB15K
Model MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE - 0.495 0.943 0.888 0.113 - 0.463 0.749 0.578 0.297
DistMult 655 0.797 0.946 - - 42.2 0.798 0.893 - -

HolE - 0.938 0.949 0.945 0.930 - 0.524 0.739 0.759 0.599
ComplEx - 0.941 0.947 0.945 0.936 - 0.692 0.840 0.759 0.599

ConvE 374 0.943 0.956 0.946 0.935 51 0.657 0.831 0.723 0.558
R-GCN+ - 0.819 0.964 0.929 0.697 - 0.696 0.842 0.760 0.601
SimplE - 0.942 0.947 0.944 0.939 - 0.727 0.838 0.773 0.660
NKGE 336 0.947 0.957 0.949 0.942 56 0.73 0.871 0.790 0.650
TorusE - 0.947 0.954 0.950 0.943 - 0.733 0.832 0.771 0.674
RotatE 184 0.947 0.961 0.953 0.938 32 0.699 0.872 0.788 0.585

a-RotatE 309 0.949 0.959 0.952 0.944 40 0.797 0.884 0.830 0.746
QuatE 162 0.950 0.959 0.954 0.945 17 0.782 0.900 0.835 0.711

DualE1 - 0.951 0.961 0.956 0.945 - 0.790 0.881 0.829 0.734
DualE2 156 0.952 0.962 0.956 0.946 21 0.813 0.896 0.850 0.766

Table 2: Link prediction results on WN18 and FB15K. Best results are in bold and second best results are underlined.

Dataset #entity #relation #training #validation #test

FB15K 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 3: Number of entities, relations, and observed triplets
in each split for four benchmarks.

is to model and infer the symmetry/antisymmetry and in-
version patterns. WN18RR (Dettmers et al. 2017) is a subset
of WN18. The inverse relations are deleted, and the main
relation patterns are symmetric/antisymmetric and compo-
sition. FB15K-237 (Toutanova and Chen 2015) is a subset
of FB15K, where the inverse relations are deleted. Therefore,
the key to link prediction on FB15K-237 boils down to mod-
el and infer symmetrical/antisymmetric and composition
patterns.
Baselines: We compare our method DualE to state-of-the-art
models, including MurP (Balažević, Allen, and Hospedales
2019), MurE (which is the Euclidean analogue or MurP),
RotatE (Sun et al. 2019), ComplEx-N3 (Lacroix, Usunier,
and Obozinski 2018), ROTH(Chami et al. 2020) and Tuck-
ER (Balažević, Allen, and Hospedales 2019). Some neural
network-based methods even use dropout and label smooth-
ing to improve their performance. For DualE, the number of
negative samples are 10(WN18), 10 (FB15K), 2(WN18RR),
10(FB15K-237), respectively.
Evaluation Protocol: In this paper, we use Mean Ranking
(MR), Mean Reciprocal Ranking (MRR) and Hits@n as e-
valuation indicators. MR can indicate performance measured
by the average rank of all correct entities with lower values.
And the reverse ranking of the correct entity is represented by
MRR. Then we measure the proportion of the first n correct
entities by Hits@n, where n = 1, 3, 10. We refer to (Bordes

et al. 2013) for the processing of the original results, and the
filtered results are shown in results.
Implementation Details: Our settings for hyper-parameter
selection using pytorchare as follows: The embedding size
k is selected in {50, 100, 150, 200, 250}. The regularization
rates λ1 and λ2 are adjusted in {0, 0.02, 0.05, 0.1, 0.15, 0.2}.
The learning rate is chosen from 0.02 to 0.1, and different
learning rates can be selected according to different datasets.
In addition, we create 10 batches of training samples for
all the datasets above. For details about the epoch we use,
please refer to Table 6. Note that in order to ensure a fair
comparison, we use fewer dimensions than other baselines,
so that the number of parameters remains the same.
Results: From Table 2 and Table 4, we can see that DualE
surpasses other state-of-art models to achieve the best per-
formance. We use two versions of DualE in the experiment,
which is without/with type constraints (Krompa, Baier, and
Tresp 2015) called DualE1 and DualE2. Next, we conduct a
detailed analysis of each dataset.

On WN18, we achieve the best performance, which shows
that DualE can learn symmetry/antisymmetry and inversion
patterns well. The main relations included in the FB15K
dataset are similar to that of WN18. The performance of
DualE is equal to that of QuatE in MR and hits@10, but
it obtains obvious advantages in MRR, hits@3 and hits@1.
On WN18RR, TransE cannot learn the symmetric relation
pattern, so it performs not well. In contrast, the rotation family
can achieve good results, and DualE has further refreshed
the performance to achieve the optimal. On FB15K-237, the
performance of DualE can be improved by several percentage
points compared with the previous state-of-the-art models,
which shows that DualE can learn the composition relation
pattern better. We have also noticed some competitive models
such as MURP and ROTH, which extend the embedding
space to hyperbolic space while they model the relation as a
single translation or rotation. But their experimental results
on FB15K237 are worse than DualE, which fully demonstrate
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WN18RR FB15K-237
Model MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

TransE 3384 0.226 0.501 - - 357 0.294 0.465 - -
DistMult♦ 5100 0.43 0.49 0.44 0.39 254 0.241 0.419 0.263 0.155
ComplEx♦ 5261 0.44 0.51 0.46 0.41 339 0.247 0.428 0.275 0.158

ConvE♦ 4187 0.43 0.52 0.44 0.40 244 0.325 0.501 0.356 0.237
R-GCN+ - - - - - - 0.249 0.417 0.264 0.151
NKGE 4170 0.45 0.526 0.465 0.421 237 0.33 0.510 0.365 0.241

RotatE♠ 3277 0.470 0.565 0.488 0.422 185 0.297 0.480 0.328 0.205
a-RotatE♠ 3340 0.476 0.571 0.492 0.428 177 0.338 0.533 0.375 0.241

QuatE 2363 0.491 0.579 0.510 0.441 88 0.352 0.555 0.392 0.258
ComplEx-N3 - 0.480 0.572 0.495 0.435 - 0.357 0.547 0.392 0.264

TuckER - 0.470 0.526 0.482 0.443 - 0.358 0.544 0.394 0.266
MURP - 0.475 0.554 0.487 0.436 - 0.336 0.521 0.370 0.245
ROTH 2293 0.491 0.586 0.511 0.441 - 0.344 0.535 0.380 0.246

DualE1 - 0.482 0.561 0.500 0.440 - 0.330 0.518 0.363 0.237
DualE2 2270 0.492 0.584 0.513 0.444 91 0.365 0.559 0.400 0.268

Table 4: Link prediction results on WN18RR and FB15K-237. [♦]: Results are taken from (Dettmers et al. 2017); [♠]: Results
are taken from (Sun et al. 2019).

the superiority of the combination of translation and rotation.
We also notice that QuatE apply N3 regularization and re-

ciprocal learning approaches (Lacroix, Usunier, and Obozin-
ski 2018) to improve performance. It mentions that using
N3 and reciprocal learning on FB15K and FB15K-237 could
boost the performances well. But it requires a large embed-
ding dimension We think it is not preferable since our original
intention is embedding entities and relations to a lower di-
mensional space. In contrast, the effect of DualE model in
fewer dimensions can reach and surpass that of QuatE model
with the N3 regularization.

Experimental Analysis
Ablation Study on Dual Quaternion Normalization. We
remove the normalization step in DualE and use the orig-
inal relation quaternion Wr to project head entity, but it
makes the results poorer. It is likely because scaling ef-
fects in non-unit dual quaternions are detrimental. We al-
so add more normalization steps in DualE to study the
impact of normalization. Recall normalization steps we
use before, we add the following normalization base on
Eq.(3): d′ = d

‖d‖ = d0+d1i+d2j+d3k√
d2
0+d2

1+d2
2+d2

3

. Then we denote

W †
r = (c′,d′) = (c,d) = (c0, c1, c2, c3,d0,d1,d2,d3).

We also do dual quaternion multiplication between head and
tail dual quaternions and consider the relation quaternion as
weight. Thus we have φ(h, r, t) = 〈Wr,Qh⊗Qt〉, which
will lead the poor performance, for the reason is that the
geometric property of relational translation and rotation is
lost. The results are shown in Table 7.
Impact of embedding dimension. To understand the role of
dimensionality, we also conduct experiments on WN18RR
against SotA methods under varied low-dimensional settings.
As shown in Figure 4, our approach consistently outperforms
all baselines, suggesting that DualE still attains high-accuracy

across a broad range of dimensions.

Figure 4: Impact of embedding dimension.

Conclusion
In order to overcome the shortcomings of previous knowl-
edge graph embeddings, we design a new knowledge graph
embedding model called DualE. Based on dual quaternions,
DualE can model the relation as both rotation and transla-
tion. The dual quaternion space has clear mathematical and
physical meanings and all key relation patterns and multi-
ple relations pattern can be modeled. We have also proved
that DualE model is the unified framework of rotation family
and translation family, combining the two branches of the
research on modeling relations as rotation or translation. The
experimental evaluations on datasets show that our DualE
outperforms other state-of-the-art methods.
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