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Abstract

Tensor decompositions have found many applications in sig-
nal processing, data mining, machine learning, etc. In par-
ticular, the block term decomposition (BTD), which is a
generalization of CP decomposition and Tucker decomposi-
tion/HOSVD, has been successfully used for the compres-
sion and acceleration of neural networks. However, comput-
ing BTD is NP-hard, and optimization based methods usu-
ally suffer from slow convergence or even fail to converge,
which limits the applications of BTD. This paper considers
a “blind” block term decomposition (BBTD) of high order
tensors, in which the block diagonal structure of the core
tensor is unknown. Our contributions include: 1) We estab-
lish the necessary and sufficient conditions for the existence
of BTD, characterize the condition when a BTD solves the
BBTD problem, and show that the BBTD is unique under a
“low rank” assumption. 2) We propose an algebraic method
to compute the BBTD. This method transforms the problem
of determining the block diagonal structure of the core ten-
sor into a clustering problem of complex numbers, in poly-
nomial time. And once the clustering problem is solved, the
BBTD can be obtained via computing several matrix decom-
positions. Numerical results show that our method is able to
compute the BBTD, even in the presence of noise to some
extent, whereas optimization based methods (e.g., MINF and
NLS in TENSORLAB) may fail to converge.

1 Introduction
Tensors are multi-dimensional arrays, and they are powerful
for the representation of high dimensional data. Just like ma-
trix decompositions play important roles in matrix compu-
tations (linear system solving, least-square problem, eigen-
value problem, etc.), tensor decompositions nowadays be-
come fundamental tools in multi-dimensional data analysis.
Though tensors and matrices have many similarities (since
tensors are natural generalizations of matrices), they also
have significant differences, e.g., a real-valued tensor may
have different tensor ranks over R and C, in fact, the problem
of the determination of the tensor rank is NP-hard (Håstad
1990); the rank decomposition of high order tensors are
unique under mild conditions (Kruskal 1977, 1989), whereas
matrix decompositions are not; the best low rank approxima-
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tion of a high order tensor may not exist. We also refer read-
ers to Kolda and Bader (2009); Sidiropoulos et al. (2017).

Though tensors are still not well understood as matrices,
tensors and tensor decompositions have already found many
applications in signal processing, data mining, machine
learning, chemometrics, psychometrics, etc. For example,
classification (Rendle 2010), recommender system (Acar,
Kolda, and Dunlavy 2011; Karatzoglou et al. 2010), learning
latent variables (Anandkumar et al. 2014), knowledge graph
embedding (Balazevic, Allen, and Hospedales 2019), tensor
completion (Cai and Li 2020b). We refer the readers to Acar
and Yener (2008); Kolda and Bader (2009); Sidiropou-
los et al. (2017); Papalexakis, Faloutsos, and Sidiropou-
los (2017) for more detailed applications. Tensor decom-
positions are also found useful in speeding-up, compress-
ing and understanding neural networks (Calvi et al. 2019;
Cohen, Sharir, and Shashua 2016; Lebedev et al. 2015;
Novikov et al. 2015; Stoudenmire and Schwab 2016; Tjan-
dra, Sakti, and Nakamura 2017, 2018). Many numerical
methods, mostly optimization based, are also developed to
compute tensor decompositions, see Cichocki et al. (2015);
Grasedyck, Kressner, and Tobler (2013); Lu, Plataniotis, and
Venetsanopoulos (2011) and reference therein.

There are two fundamental tensor decompositions –
CPD (Carroll and Chang 1970; Cattell 1952; Harsh-
man 1970; Hitchcock 1928), and Tucker decomposi-
tion/HOSVD (Tucker 1966). BTD (De Lathauwer 2008a,b;
De Lathauwer and Nion 2008), which is popularized by De
Lathauwer and his collaborators, unifies CPD and HOSVD.
To introduce the focus of this paper – the “blind” BTD
(BBTD), we consider a model from multidimensional in-
dependent component analysis (MICA) (Cardoso 1998;
Póczos and Lőrincz 2005; Theis 2006):

x = Ms + n,

where x = [x1, . . . , xm]T ∈ Rm is the observed mixture,
M ∈ Rm×n is a full column rank matrix, s ∈ Rn is the
source signal, and n ∈ Rm is the noise vector. The task is to
recover s from x. Let s =

[
sT1 , . . . , s

T
R

]T
with sr ∈ Rnr and

n = [ν1, . . . , νm]T . Assume that all sr’s are centered and
independent of each other. Also the noises ν1, . . . , νm are
i.i.d. Gaussian and independent of the sources. Basically, if
M is known, we can recover the sources. Now consider the
fourth order cumulant Cx of x, which is a fourth order tensor
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with dimension m, and its entries can be given by

Cx(i, j, k, l) = E(xixjxkxl)− E(xixj)E(xkxl)

− E(xixk)E(xjxl)− E(xixl)E(xjxk).

The following equality holds:

Cx = Cs ×1 M×2 M×3 M×4 M, (1)

where Cs is the fourth order cumulant of s, ×n is the modal
product, see e.g., Van Loan and Golub (2012, Chapter 12).
Based on the assumptions on s, we know that Cs is a block
diagonal tensor with R blocks, and the sizes of the blocks
are nr × nr × nr × nr for r = 1, . . . , R. When all nr ≡ 1,
then (1) is the CPD of Cx; When all nr’s are known, then
(1) is a BTD of Cx. Consequently, by computing a tensor
decomposition, we obtain an estimation for M. However,
when R and nr’s are unknown, the problem becomes even
more challenging than computing BTD. Hereafter, we call
BTD with unknown block structure as BBTD.

In the past two decades, BTD has found many applica-
tions in MICA (Cardoso 1998; De Lathauwer, De Moor,
and Vandewalle 2000; Theis 2005, 2006) and semidefinite
programming (Bai et al. 2009; De Klerk, Pasechnik, and
Schrijver 2007; De Klerk and Sotirov 2010; Gatermann and
Parrilo 2004). And recently, BTD is also successfully used
to clustering (Wang and Zeng 2019) and the compression
and acceleration of neural networks (Li et al. 2017; Ye et al.
2018; Ben-younes et al. 2019). However, in the training of
neural networks, the block diagonal structure of the core ten-
sor is unknown. And people treat the block diagonal struc-
ture as hyperparameters, which need to be carefully tuned.
Therefore, once BBTD is solved, the solution can be benefi-
cial in tuning the hyperparameters.
Related Work. BTD and its variants, especially the so-
called joint block diagonalization (JBD) problem, have been
studied for decades, both theoretically and algorithmically.
Sufficient conditions for the uniqueness have been pro-
posed, e.g., De Lathauwer (2008b, 2011); Yang (2014);
Sørensen and De Lathauwer (2015). Various optimization
based methods have been developed, e.g., Sorber, Van Barel,
and De Lathauwer (2015); Sorber, Barel, and Lathauwer
(2012). However, there are far less studies for the case when
the block diagonal structure is unknown, i.e., the BBTD
problem. For a special BBTD – the blind JBD problem, was
studied from algebraic point of views (Maehara and Murota
2011; De Klerk, Dobre, and Ṗasechnik 2011; Cai and Liu
2017; Cai and Li 2020a); in addition, Nion (2011) proposed
to determine the block diagonal structure via a generalized
eigenproblem; Cai, Cheng, and Shi (2019) proposed to solve
blind JBD problem via a matrix polynomial.
Our Contribution. In this paper, we mathematically for-
mulate the BBTD problem. We establish a necessary and
sufficient condition for the existence of the BTD, and then
we characterize the condition under which a BTD is a so-
lution to the BBTD problem. We show that the BBTD is
unique under proper assumptions. Finally, we propose a nu-
merical method to compute the BBTD. Numerical simula-
tions show that our method outperforms state-of-the-arts op-
timization based methods.

Organization. Section 2 gives preliminary definitions and
propositions and raises the BBTD problem. Section 3 es-
tablishes the necessary and sufficient conditions for the ex-
istence and uniqueness of the decomposition and proposes
an algebraic method to compute the decomposition. The ap-
proximate BBTD and some variants of BBTD are discussed
in Sections 4 and 5, respectively. Numerical simulations are
presented in Section 6. Section 7 concludes the paper.
Notation. Lowercase letters denote scalars (e.g., a, b),
boldface lowercase letters denote column vectors (e.g.,
a,b), boldface uppercase letters denote matrices (e.g.,
A,B), and boldface calligraphic letters denote tensors
(e.g., A,B). If a boldface letter is used to denote a vec-
tor/matrix/tensor, then the corresponding lowercase letter
with a subscript refers to its entry, e.g., ai, aij and aijk stand
for the ith entry of a vector a, the (i, j) entry of a matrix A
and the (i, j, k) entry of a third order tensor A, respectively.
Indices typically range from 1 to their italic uppercase ver-
sion, e.g., i = 1, 2, . . . , I . The MATLAB colon notation is
used to indicate submatrices of a given matrix or subten-
sors of a given tensor, e.g., A(i1:i2,j1:j2) denotes a submatrix
of A, which consists of row i1 to row i2 and column j1 to
column j2. The symbol ⊗ denotes the Kronecker product.
The identity matrix of order N is denoted by IN . For a real
square matrix A, λ(A) denotes the eigenvalue set of A, and
λd(A) denote the distinct eigenvalues of A within the closed
upper complex plane, e.g., A = diag(1 + ı, 1 − ı, 2, 2, 3),
λ(A) = {1± ı, 2, 2, 3}, λd(A) = {1 + ı, 2, 3}. For a (rect-
angular) matrix A ∈ Rm×n, its singular values are denoted
by σ1(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0, and σmin{m,n}(A)
is usually denoted by σmin(A). The 2-norm and Frobenius
norm are denoted by ‖ · ‖2 and ‖ · ‖F , respectively.

2 Preliminary
In this section, we first briefly review CPD, HOSVD, and
BTD, together with some definitions, followed by the math-
ematical formulation of the BBTD problem.
CPD. The CANDECOMP/PARAFAC decomposition
(CPD) of a tensor T ∈ RI1×I2×···×IN is a decomposition
of T as a linear combination of rank-1 terms:

T = Jλ; A(1), . . . ,A(N)K =
R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ,

where λ = diag(λ1, . . . , λR) is a diagonal tensor, and
A(n) = [a

(n)
1 , . . . , a

(n)
R ] with ‖a(n)

1 ‖2 = · · · = ‖a(n)
R ‖2 =

1, n = 1, 2, . . . , N . The smallest integer R such that the
equality holds is the tensor rank, denoted by rank(T ). See
Figure 1 for an illustration.

The mode-n unfolding of a tensor T is denoted by T(n),
the mode-n product between a tensor T and a matrix A is
denoted by T ×nA; see Van Loan and Golub (2012, Chapter
12) for the definitions of modal unfolding, modal product
and also their properties.
HOSVD. Let T ∈ RI1×···×IN and the economic singular
value decompositions of the modal-n unfoldings of T be
T (n) = U(n)Σ(n)(V(n))T for n = 1, . . . , N , where U(n)
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Figure 1: CPD of a third order tensor

Figure 2: HOSVD of a third order tensor

and V(n) have orthonormal columns, Σ(n) has the nonzero
singular values of T (n) on its main diagonal. The high order
singular value decomposition (HOSVD) of T is given by

T = JS; U(1), . . . ,U(N)K = S×1U(1) · · ·×N U(N), (2)

where S = T ×1 (U(1))T ×2 (U(2))T · · · ×N (U(N))T is
the core tensor. See Figure 2 for an illustration.

Definition 1. The multilinear rank of a tensor T ∈
RI1×···×IN is a vector of modal unfolding ranks:

rank∗(T ) = [rank(T (1)), rank(T (2)), . . . , rank(T (N))].

T is of full multilinear rank if rank∗(T ) = [I1, . . . , IN ].
Note here that rank(T (n)) is the number of columns

of U(n). Thus, the core tensor S is in fact dimension
rank(T (1))-by-rank(T (2))-· · · -rank(T (N)).

BTD. A block term decomposition (BTD) of a tensor T ∈
RI1×···×IN in rank-[M (n)

r ] terms is a decomposition of T of
the form:

T = JS; A(1), . . . ,A(N)K =
R∑
r=1

JSr; U(1)
r , . . . ,U(N)

r K

=
R∑
r=1

Sr ×1 A(1)
r ×2 A(2)

r · · · ×N A(N)
r , (3)

where S = diag(S1, . . . ,SR) with Sr ∈ RM(1)
r ×···×M

(N)
r ,

and A(n) = [A
(n)
1 , . . . ,A

(n)
R ] with A

(n)
r ∈ RIn×M(n)

r . See
Figure 3 for an illustration.

We can see that BTD unifies the CPD and HOSVD, and it
also provides a unifying view on tensor rank (De Lathauwer
2008b), since not strictly speaking, when each term of BTD
is rank one, BTD becomes CPD; when BTD has only one
term, BTD becomes HOSVD.

Figure 3: BTD of a third order tensor

Next, we give several definitions to make our further dis-
cussions more precise.

Definition 2. We call τ = (M
(n)
r ) =

 M
(1)
1 ... M

(1)
R

...
. . .

...

M
(N)
1 ... M

(N)
R


a partition of positive integer-valued vector (I1, . . . , IN ) if
M

(n)
r for 1 ≤ r ≤ R, 1 ≤ n ≤ N are all positive integers

and
∑R
r=1M

(n)
r = In for 1 ≤ n ≤ N . The integer R is

called the cardinality of τ , denoted by card(τ). The set of all
partitions of (I1, . . . , IN ) is denoted by T(I1, . . . , IN ). In
particular, if N = 1, we call τ = (M1, . . . ,MR) a partition
of I if

∑R
r=1Mr = I , and the set of all partitions of I is

denoted by T(I).

The partition τ = (M
(n)
r ) ∈ T(I1, . . . , IN ) essentially

determines the BTD in (3): the number of rows of τ is the
order of the tensor, the number of columns of τ is the number
of terms in BTD, and each row vector of τ corresponds to the
dimension of a diagonal block of the core tensor. Hereafter
we say that T has a τ -BTD with the meaning that (3) holds,
which is more informative.

Definition 3. Given a partition τ = (M
(n)
r ) ∈

T(I1, . . . , IN ) with card(τ) = R and an N th order ten-
sor T ∈ RI1×···×IN . Partition T as T = [T r1r2...rN ] with

T r1r2...rN ∈ RM
(1)
r1
×···×M(N)

rN for 1 ≤ r1, r2, . . . , rN ≤ R.
We call T a τ -block diagonal tensor if T r1r2...rN 6= 0 is
possible only if r1 = r2 = · · · = rN . Such a τ -block di-
agonal tensor is denoted by diagτ (T 1...1, . . . ,T R...R). In
particular, if M (n)

r = 1 for all r and n, we call T a diago-
nal tensor.

Definition 4. Given τ = (M
(n)
r ) ∈ T(I1, . . . , IN )

with card(τ) = R and an N th order tensor T ∈
RI1×···×IN . The τ -off-block diagonal part of T is defined
as offblkdiagτ (T ) = T − diagτ (T ).

In Section 3, we will see that a tensor T has a BTD under
very restrictive conditions. Therefore, in Section 4, we con-
sider the BTD in approximate sense, with the meaning that
the core tensor S in (3) is approximately τ -block diagonal,
i.e., ‖ offblkdiagτ (S)‖F is small.

The uniqueness of tensor decomposition is of great im-
portance. To discuss the uniqueness of BTD, we need the
following definitions.

Definition 5. Given a partition τ = (M1, . . . ,MR) ∈ T(I),
we call a matrix A ∈ RI×I τ -block diagonal if A =
diag(A1, . . . ,AR) with Ar ∈ RMr×Mr for r = 1, . . . , R.
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Definition 6. Given a partition τ = (M1, . . . ,MR) ∈
T(I) and a permutation π: {1, 2, . . . , R} →
{π(1), π(2), . . . , π(R)}. We call Π ∈ RI×I a τ -block
permutation matrix corresponding with π if for any
A = [A1,A2, . . . ,AR] with Ar having Mr columns,
AΠ = [Aπ(1),Aπ(2), . . . ,Aπ(R)].

Now we may state the uniqueness for BTD.

Uniqueness. Let T = JS; A(1), . . . ,A(N)K have a τ -
BTD of T as in (3). For 1 ≤ n ≤ N , let τn =

(M
(n)
1 , . . . ,M

(n)
R ) ∈ T(In), for any permutation π of

{1, 2, . . . , R}, let D(n), Π(n) be τn-block diagonal matrices
and τn-block permutation matrices corresponding with π,
respectively. Then T = JŜ; Â(1), . . . , Â(N)K is a τ̂ -BTD of
T , where Ŝ = S×1 (D(1)Π(1))−1 · · ·×N (D(N)Π(N))−1,
Â(n) = A(n)D(n)Π(n), and τ̂ = (M

(n)
π(r)). We say the τ -

BTD is unique if the τ -BTD is unique up to the above triv-
ial/natural indeterminacy.

When τ ∈ T(I1, . . . , IN ) is prescribed, computing a τ -
BTD of T is naturally an optimization problem, e.g.,

min
Sr,A(n)

r

1

2
‖T −

R∑
r=1

Sr ×1 A(1)
r · · · ×N A(N)

r ‖2F .

However, for BBTD, τ is unknown, solving BBTD without
exhaustive search for τ is difficult. We propose to consider
the following BBTD problem:

BBTD. Given an N th order tensor T ∈ RI1×I2×···×IN
and a positive integer-valued vector [J1, J2, . . . , JN ], find a
τ -BTD of T with as many terms as possible, and satisfying

R∑
r=1

[M (1)
r ,M (2)

r , . . . ,M (N)
r ] = [J1, J2, . . . , JN ].

With particular choices of [J1, J2, . . . , JN ], the BBTD
may become CP and HOSVD. Specifically, if J1 = J2 =
· · · = JN = rank(T ), the BBTD is the CPD; if
[J1, J2, . . . , JN ] = rank∗(T ) and R = 1, the BBTD be-
comes the HOSVD.

In this paper, we try to answer the following questions:
Q1 Under what conditions does a tensor T has a τ -BTD?
And under what conditions the τ -BTD is a solution to the
BBTD problem?
Q2 Is the solution to the BBTD problem unique? Under
what conditions?
Q3 How to compute a solution?
Q4 How about the approximate BBTD problem?

While full answers to the above questions are beyond our
knowledge, in this paper we make the following assumptions
to simplify the problem:

A [J1, J2, . . . , JN ]
entrywise

≤ rank∗(T ).
Assumption A is used to simulate the role of “low rank”

in matrix decomposition. Under Assumption A, the BBTD
can be simplified, based on the following proposition:

Proposition 1. Let T ∈ RI1×I2×···×IN have a τ -BTD of
the form (3) and also a HOSVD of the form (2). If the as-
sumption A holds, then [J1, J2, . . . , JN ] = rank∗(T ) and
(U(n))TA(n) for n = 1, . . . , N are all nonsingular.

Denote the core tensor of HOSVD as Shosvd, B(n) =
(U(n))TA(n). Using (2) and (3), we have

Shosvd = diagτ (S1, . . . ,SR)×1 B(1) · · · ×N B(N). (4)

In other words, under assumption A, that T has a τ -BTD is
equivalent to that the core tensor Shosvd has a τ -BTD with
nonsingular transformations along all modes. Once we find
a τ -BTD for the core tensor Shosvd as in (4), we know that

T = diagτ (S1, . . . ,SR)×1(U(1)B(1)) · · ·×N (U(N)B(N)),

i.e., T has a τ -BTD. Therefore, hereafter, we only consider
the BBTD problem for a tensor with full multilinear rank.

3 Exact BBTD
In this section, we will give answers to the questions Q1-Q3.

3.1 Existence and Uniqueness
We first give the condition for the existence of BTD, then
the condition for the uniqueness of BBTD.

The following linear subspace plays the central role in our
analysis:

N (T ) , {(Z(1), . . . ,Z(N)) | T ×1 Z(1) =

T ×2 (Z(2))T = · · · = T ×N (Z(N))T }.
Now we can give the condition for the existence of BTD.

Theorem 1. Let T ∈ RI1×···×IN have full multilinear rank.
Then T has a τ -BTD of the form (3) if and only if there exists
a matrix-valued vector (Z(1), . . . ,Z(N)) ∈ N (T ), where
Z(n) can be factorized as

Z(1) = A(1)Γ(1)(A(1))−1,

(Z(n))T = A(n)Γ(n)(A(n))−1, n > 1,
(5)

where Γ(n) = diag(Γ
(n)
1 , . . . ,Γ

(n)
R ) with λ(Γ

(n)
r ) ∩

λ(Γ
(n)
r′ ) = ∅ for r 6= r′, λd(Γ

(n)
r ) = λd(Γ

(n′)
r ) for n 6= n′.

Theorem 1 gives a necessary and sufficient condition for a
tensor T having a BTD of form (3). We can see that the size
of each diagonal block of the core tensor S is determined
by the eigenvalues of Z(n). One might wonder if there is
any eigenvalue λ ∈ λ(Z(n)) and λ /∈ λ(Z(n′)) for certain
n′ 6= n. Interestingly, the answer is negative as shown below.

Proposition 2. Let T ∈ RI1×···×IN have full multilinear
rank. For any (Z(1), . . . ,Z(N)) ∈ N (T ), it holds

λd(Z
(1)) = · · · = λd(Z

(N)).

Remark 1. Theorem 1 together with Proposition 2 tells that
∪Nn=1λd(Z

(n)) has R distinct numbers, which is the number
of diagonal blocks in the core tensor; Denote the R distinct
numbers by c1, . . . , cR, and let the number of eigenvalues
of Z(n) correspond with cr be M (n)

r , then the sizes of the
diagonal tensors will be M (1)

1 -by-· · · -by-M (N)
1 , . . . , M (1)

R -
by-· · · -by-M (N)

R .
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Next, we characterize when a BTD of form (3) is a solu-
tion to the BBTD problem.

Theorem 2. Let T ∈ RI1×···×IN have full multilinear rank.
A τ -BTD of T of the form (3) is a solution to the BBTD
problem if and only if

R = max
(Z(1),...,Z(N))∈N (T )

cardλd(Z
(n)).

And cardλd(Z
(n)) is maximized for almost all

(Z(1), . . . ,Z(N)) ∈ N (T ).

When a tensor T has a BTD of form (3), one may ask if
the BTD is a solution to the BBTD problem. The following
proposition provides a necessary condition.

Proposition 3. Let T ∈ RI1×···×IN have full multilinear
rank. If a τ -BTD of T of the form (3) is a solution to BBTD,
then for any (Z

(1)
r , . . . ,Z

(N)
r ) ∈ N (Sr), |λd(Z(n)

r )| = 1,
i.e., the eigenvalues of Z

(n)
r are the same real number or a

complex conjugate pair, for all 1 ≤ n ≤ N , 1 ≤ r ≤ R.

The following Theorem tells that the solution to the
BBTD problem is unique.

Theorem 3. Let T ∈ RI1×···×IN have full multilinear rank.
Then the solution to the BBTD problem is unique.

Remark 2. The uniqueness condition here holds for gen-
eral high order tensors, whereas the uniqueness conditions
established in De Lathauwer (2008b); Yang (2014) are for
third order tensors.

3.2 Computing a Solution
Since the solution is unique, we only need to find one so-
lution. To do so, we need to compute N (T ). Noticing
that N (T ) is just a linear system of equations, which has∑N
n=1 I

2
n unknowns and (N − 1)I1I2 · · · IN equations. In

general, the linear system has only the trivial solution zero.
This tells us that a tensor T , in general, does not have a BTD
with more than one diagonal block. But it doesn’t mean that
BTD is useless. Because (i) the tensor T is usually struc-
tured (e.g., Cx in (1)), as a result, the coefficient matrix for
the linear system is rank deficient; (ii) the linear system can
be solved in the least square sense, then T will have an ap-
proximate BTD, see in Section 4.

By Theorem 2, we only need to find a “generic”
(Z(1), . . . ,Z(N)) ∈ N (T ) rather than find a basis for
N (T ). By “generic”, we mean that cardλd(Z

(n)) is max-
imized. Now our computational task becomes:

(S1) Find a “generic” (Z(1), . . . ,Z(N)) ∈ N (T );

(S2) Compute the eigenvalue decomposition (5) of Z(n).

(S2) is simple – first, compute the Schur decomposition
of Z(n) = Q(n)T(n)(Q(n))T ; second, determine M (n)

r via
the algebraic multiplicities of the distinct eigenvalues of
T(n); third, compute the decomposition of Z(n) as in (5) via
Van Loan and Golub (2012, Alg. 7.6.3). Our central compu-
tational task is (S1) – find a “generic” (Z(1), . . . ,Z(N)) ∈

N (T ). For any 1 ≤ n < n′ ≤ N , denote

inn′ , {(i1, . . . , in−1, :, in+1, . . . , in′−1, :, in′+1, . . . , iN ) |
1 ≤ in′′ ≤ In′′ , n′′ 6= n, n′}.

Then for any i1n ∈ i1n, T i1n is an I1-by-In matrix, and
T ×1 Z(1) = T ×n (Z(n))T is equivalent to Ti1nz =
0, for all i1n ∈ i1n, where

Ti1n = [T T
i1n ⊗ II1 , 0, . . . , 0︸ ︷︷ ︸

n−2

,−IIn ⊗ T i1n , 0, . . . , 0︸ ︷︷ ︸
N−n

],

z = [vec(Z(1))T , vec(Z(2))T , . . . , vec(Z(N))T ]T . (6)

Stack all Ti1n for all i1n ∈ i1n, and denote it by Ti1n . We
know that T ×1 Z(1) = T ×n (Z(n))T is equivalent to
Ti1nz = 0. Stack all Ti1n for all 2 ≤ n ≤ N , and de-
note it by T . Then that (Z(1), . . . ,Z(N)) belongs to N (T )
is equivalent to

T z = 0. (7)

Therefore, finding a generic (Z(1), . . . ,Z(N)) in N (T ) is
essentially finding a generic z in the null space of T . One
can, of course, accomplish the task by computing the SVD
of T . Note that T is an (N − 1)I1I2 · · · IN -by-

∑N
n=1 I

2
n

matrix, which is huge when In’s andN are large. Therefore,
computing the full SVD is computationally overwhelming.
Since only the null space of T is needed, and T is ex-
tremely sparse and structured, we can use the restarted Lanc-
zos bidiagonalization method (Baglama and Reichel 2005),
which is available in MATLAB with command svds, to
compute a few smallest singular values and the correspond-
ing right singular vectors. Then a random linear combination
of the right singular vectors is “generic”, from which we can
construct a generic (Z(1), . . . ,Z(N)) ∈ N (T ). The compu-
tational cost of the method is dominated by the matrix-vector
multiplications T v and T Tu. Let In = d for all n, the com-
putational complexity for T v and T Tu isO(Nnnz(T )d).
Assuming that svds converges in O(1) steps, the overall
computational complexity will be O(Nnnz(T )d), which
scales linearly with respect to the order of the tensor N ,
the number of nonzero entries of the tensor nnz(T ), and
the dimension d. The method is thus suitable for large scale
computation.

The overall algorithm is summarized in Algorithm 1.
Later, we will see that the algorithm can also be used to solve
the approximate BBTD problem.
Implementation Details. Line 3 can be skipped if T has
full multilinear rank. In Line 4, since the restarted Lanczos
bidiagonalization method only requires two matrix-vector
multiplications T v and T Tu, it is also OK to construct
two subroutines which return T v and T Tu, instead of con-
structing T explicitly. In Line 5, K is a small integer, we
recommend to set it as R̂ + 1, where R̂ is a guess for R.
In Line 6, ζ is a parameter used to truncate σ̂k. Noticing
that σ̂1 ≡ 0 since (vec(II1), . . . , vec(IIN )) ∈ N (T ),
in our implementation, we set ζ as a multiple of σ̂2, e.g.,
ζ = 1.2 × σ̂2. Line 9, this step essentially determines the
block diagonal structure. Any clustering algorithm can be
used, e.g., k-means, DBSCAN, etc.
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Algorithm 1 SVDS for BBTD (SVDS4BBTD for short)

1: Input: T ∈ RI1×I2×···×IN .
2: Output: A solution to the BBTD problem of T .
3: Compute the HOSVD: T = JS0; A

(1)
0 , . . . ,A

(N)
0 K, set

T = S0;
4: Construct T as in (7);
5: Compute the K smallest singular values σ̂1, . . . , σ̂K (in

a non-decreasing order) and the corresponding right sin-
gular vectors v̂1, . . . , v̂K of T ;

6: Compute z =
∑K
k=1 I{σ̂k<ζ}αkvk, where ζ is parame-

ter, αk’s are random real numbers;
7: Construct Z(n) from z via (6);
8: For all n, compute the eigenvalues of Z(n) via comput-

ing its Schur decomposition;
9: Cluster real(λ(Z(1)) ∪ · · · ∪ λ(Z(N)));

10: For all n, compute Z(n) = A(n)Γ(n)(A(n))−1, where
Γ(n) satisfies the condition in Theorem 4;

11: Compute S = T ×1 (A(1))−1 · · · ×N (A(N))−1;
12: For 1 ≤ n ≤ N , compute A(n) = A

(n)
0 A(n).

4 Approximate BBTD
In this section, we give the answer to Q4. The idea appears
simple: solve a (Z(1), . . . ,Z(N)) that is approximately in
N (T ), then follow the way for the exact BBTD problem.

Recall that for the exact BBTD problem, ∪Nn=1λd(Z
(n))

has R distinct numbers. For the approximate BBTD prob-
lem, we can show that ∪Nn=1λd(Z

(n)) can be divided into R
clusters. Then we have the following theorem.
Theorem 4. Let T ∈ RI1×···×IN have full multilinear rank.
Suppose that

max
‖v(n′′)‖2=1

n′′ 6=n,n′

‖E(nn′) ×n′′=1,...,N

n′′ 6=n,n′
(v(n′′))T )‖2 ≤ δ, (8)

where E(nn′) = T ×n (Z(n))T −T ×1 (Z(n′))?, ? = T for
n′ = 1, ? is void otherwise, δ is a real constant, Z(n) can
be factorized as in (5), with Γ(n) of the form in Theorem 1.
Assume that the eigenvalues of all Z(n) can be divided into
R clusters, denoted by C1, . . . , CR. For 1 ≤ n ≤ N and
1 ≤ r ≤ R, the eigenvalues of the rth diagonal block Γ

(n)
r

of Γ(n) belong to Cr. For any 1 ≤ n 6= n′ ≤ N and 1 ≤
r 6= r′ ≤ R, assume that there exists a positive constant g
such that

min
X

‖Γ(n)
r X−X(Γ

(n′)
r′ )T ‖F

‖X‖F
≥ g. (9)

Denote C =
√

RN−2(R−1)
RN−1−1

‖(A(1))−1‖2...‖(A(N))−1‖2
g . Then

T = S ×1 A(1) · · · ×N A(N) with

‖ offblkdiagτ (S)‖F ≤ Cδ.

Remark 3. a) The parameter δ in (8) is a measurement for
how well (Z(1), . . . ,Z(N)) approximately lies in N (T ). In
particular, if δ = 0, then (Z(1), . . . ,Z(N)) ∈ N (T ). b) The

parameter g in (9) is used to measure the gap between the
eigenvalues of Γ

(n)
r and Γ

(n′)
r′ . The larger g is, the better the

eigenvalues separate.
Remark 4. Theorem 4 tells that the Frobenius norm of the
τ -off-block diagonal part of S is at the order of δ. If δ = 0, S
will be exactly block diagonal. The constantC is determined
by the number of diagonal blocks R, the condition number
of the transformation matrix A(n), and the separation of
clusters g. This tells us that when cluster ∪Nn=1λd(Z

(n)), we
should make sure that A(n)’s are good conditioned and the
gap between different clusters should be large.

5 Variants of BBTD
In this section, we briefly discuss two variants of BBTD,
which can be solved similarly.
Partial Modes BBTD. The partial modes decomposition
of a tensor T has the following form:

T =
R∑
r=1

Sr ×n1 A(n1)
r ×n2 A(n2)

r · · · ×n` A(n`)
r ,

where 1 ≤ n1 < · · · < n` ≤ N . The problem can be solved
by considering the following null space:

Np(T ) , {(Z(n1), . . . ,Z(n`)) | T ×n1
(Z(n1))? =

T ×n2 (Z(n2))T = · · · = T ×n` (Z(n`))T },
where ? = T if n1 = 1, is void otherwise.
Coupled Modes BBTD. Partition {1, . . . , N} into L non-
intersect subsetsN1, . . . ,NL. The coupled modes decompo-
sition of a tensor T has the form (3), where A(n1) = A(n2)

for any n1, n2 ∈ N`, ∀1 ≤ ` ≤ L. The problem can be
solved by considering the subspace of N (T ):

Nc(T ) , {(Z(n1), . . . ,Z(n`)) ∈ N (T ) |A(n1) = A(n2),

∀n1, n2 ∈ N`, ∀1 ≤ ` ≤ L}.
Not surprisingly, a partial mode BBTD can also be coupled,
which can be treated similarly. For example, in Cai and Liu
(2017); Cai and Li (2020a), a coupled modes 1 and 2 BBTD
of third order tensor, which has many application in inde-
pendent subspace analysis and semidefinite programming, is
discussed with a different name, called general/blind matrix
joint block diagonalization.

6 Numerical Experiment
We present several numerical examples to illustrate the per-
formance of our method. All the numerical tests were carried
out using MATLAB R2018a, with machine ε = 2.2×10−16.
We compare the performance of our algorithm with the non-
linear unconstrained optimization (MINF) and the nonlinear
least squares algorithm (NLS) (Sorber, Barel, and Lathauwer
2012; Sorber, Van Barel, and De Lathauwer 2013, 2015),
which are available in TENSORLAB 3.0 (available online at
https://www.tensorlab.net).

We emphasize here that in order to perform optimization
based methods, the block diagonal structure of the core ten-
sor needs to be given, meanwhile, our method does not need
such structure information.
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Figure 4: The revealed block diagonal structure

We generate our data tensor as

T = T 0 + σN = JS; A(1), . . . ,A(N)K + σN ,

where T , T 0, N are the noisy tensor, noiseless tensor and
noise tensor, respectively, A(n)’s are random matrices, S is
a random τ -block diagonal tensor with τ = (M

(n)
r ), N

is a random tensor, σ ≥ 0 is parameter to control noise
level. Here all random variables are i.i.d. from the standard
normal distribution. We consider 5 settings, using N = 3,
σ = η‖T 0‖F /‖N ‖F , where η = 10−3 for settings 1 and
2, η = [10−6, 10−3] for the settings 3-5. The rest of the pa-
rameters are specified below.

1. I = 20, τ =
(

2 3 4
4 2 3
3 4 2

)
;

2. I = 30, M (n)
r ≡ 3, R = [2, 4, 6, 8, 10];

3. I = 20, M (n)
r ≡ 1, R = 6;

4. I = 20, τ =
(

3 3 1
4 4 1
5 5 1

)
, R = 3;

5. I = 20, τ =
(

3 3 3
4 4 4
5 5 5

)
, R = 3.

We use setting 1 to illustrate our algorithm – SVDS4BBTD.
We generate the data 10 times, the block diagonal
structure, as shown in Figure 4, is successfully re-
vealed 10 times, the average relative residual err =
‖T −Jdiagτ (Ŝ);Â(1),...,Â(N)K‖F

‖T ‖F is 9.85 × 10−4, and the CPU
time is 0.12 second.

Using setting 2, for each R, we perform our algorithm
20 times, the average CPU time and the rate of success-
ful recoveries of the block diagonal structure are reported
in Table 1. We can see that as R increases, the CPU time
increases, and for R = 2, 4, 6, 8, the rate of successful re-
covery is 100%, for R = 10, the rate decreases to 40%.

In setting 3, T has a CPD with rank 6. The results are
reported in Table 2. For different noise levels, our method
is able to recover the block diagonal structure successfully,
with residuals and CPU times comparable to MINF and NLS.

R 2 4 6 8 10
time (s) 0.08 0.32 1.44 6.47 24.8
rate (%) 100 100 100 100 40

Table 1: Results for setting 2

η 1e-6 1e-3
err time(s) err time(s)

MINF 9.8e-6 0.14 9.8e-3 0.14
NLS 9.8e-6 0.14 9.8e-3 0.12

BBTD 9.9e-6 0.08 9.9e-3 0.07

Table 2: Results for setting 3 (10 times average)

η 1e-6 1e-3
err time(s) err time(s)

MINF 6.4e-2 0.81 1.0e-1 0.78
NLS 8.8e-2 0.99 1.1e-1 0.89

BBTD 1.7e-5 0.15 9.9e-4 0.14

Table 3: Results for setting 4 (10 times average)

η 1e-6 1e-3
err time(s) err time(s)

MINF 2.9e-1 2.40 3.2e-1 2.39
NLS 2.9e-1 26.4 2.6e-1 26.2

BBTD 1.1e-6 0.34 1.1e-3 0.27

Table 4: Results for setting 5 (10 times average)

In setting 4, T has a decomposition in rank (Lr, Lr, 1)
terms. The results are reported in Table 3. For different noise
levels, our method recovers the block diagonal structure suc-
cessfully, with much smaller residuals and less CPU times.

In setting 5, T has a τ -BTD. The results are reported in
Table 4. For different noise levels, MINF and NLS fail to con-
verge to the desired tolerance in 500 and 200 iterations, re-
spectively. Our method recovers the block diagonal structure
successfully, with significantly smaller residuals and times.

7 Concluding Remarks
In this paper, we propose a blind BTD for high order tensors.
We characterize the necessary and sufficient conditions for
the existence of BTD via N (T ). Under a “low rank” as-
sumption, we show that BBTD is unique. And it is shown
that a solution to BBTD can be obtained from an arbitrary
(Z(1), . . . ,Z(N)) ∈ N (T ) almost surely. An algebraic
method is proposed to compute the decomposition, in which
the problem of determination of the block diagonal structure
of the core tensor is transformed into a problem of solving
a clustering problem for the eigenvalues of Z(n), in polyno-
mial time. Numerical simulations show that our method not
only is able to reveal the block diagonal structure, but also
outperforms state-of-the-art optimization-based methods, in
terms of the accuracy and also the efficiency.
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