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Abstract

Domain adaptation on time series data is an important but
challenging task. Most of the existing works in this area are
based on the learning of the domain-invariant representation
of the data with the help of restrictions like MMD. How-
ever, such extraction of the domain-invariant representation
is a non-trivial task for time series data, due to the complex
dependence among the timestamps. In detail, in the fully de-
pendent time series, a small change of the time lags or the
offsets may lead to difficulty in the domain invariant extrac-
tion. Fortunately, the stability of the causality inspired us to
explore the domain invariant structure of the data. To reduce
the difficulty in the discovery of causal structure, we relax it
to the sparse associative structure and propose a novel sparse
associative structure alignment model for domain adaptation.
First, we generate the segment set to exclude the obstacle of
offsets. Second, the intra-variables and inter-variables sparse
attention mechanisms are devised to extract associative struc-
ture time-series data with considering time lags. Finally, the
associative structure alignment is used to guide the transfer of
knowledge from the source domain to the target one. Exper-
imental studies not only verify the good performance of our
methods on three real-world datasets but also provide some
insightful discoveries on the transferred knowledge.

Introduction
Domain adaptation (Pan and Yang 2009; Long et al. 2015;
Cai et al. 2019), utilizing both the labeled source domain
data and the unlabeled target domain data, has a wide range
of applications (Ganin and Lempitsky 2015; Lin and Lu
2018). To address the well-known phenomenon named do-
main shift, a large number of methods have been proposed
by exploring various assumptions between the source and
target domains (Tzeng et al. 2014; Cai et al. 2019; Zhang
et al. 2019).

One of the most widely used assumptions in domain adap-
tation is the existence of domain-invariant representation in
both source and target domains. Since such an assumption
has achieved great performance in non-time series data (Cai
et al. 2019; Wang et al. 2019), researchers have extended it
to the time series data, by employing models like Recurrent
Neural Network(RNN) (Mikolov et al. 2010) and variational
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Figure 1: The illustration of the physiological mechanism in
the human body among “Blood glucose (B) ↓”, “Glucagon
(G) ↓” and “Insulin (I) ↑”. The decrease of “Blood glucose”
leads to the decrease of “Glucagon” and the increase of “In-
sulin”. The colored blocks denote the segments of change
of variables. The different lengths of red double-head ar-
rows denote different offsets. And the different lengths of
blue double-head arrows denote different response times be-
tween “Blood glucose” and “Glucagon”. Different response
time means different time lags. (Best view in color.)

RNN (Chung et al. 2015), to learn representation from time
series and using the gradient reversal layer (GRL) to align
the representations learned from source and target time se-
ries data.

However, extracting domain-invariant information from
time series data is a challenging task. Existing meth-
ods (da Costa et al. 2020; Purushotham et al. 2017),
which simply employ the RNN based feature extractor,
essentially assume that the conditional distributions are
equal (Pan et al. 2010), i.e., PS(y|ϕ(x1, x2, · · · , xt) =
PT (y|ϕ(x1, x2, · · · , xt), in which ϕ(·) is the feature trans-
formation mapping. This assumption works well in the static
data but is difficult to satisfy in the time series data. Take
Figure 1 as an example, due to the complex dependency
structure among the timestamps, even small discrepancies
from different domains (e.g. offsets and varying of time lags)
may result in the difficulty to learn the domain invariant rep-
resentation. Furthermore, as for the multivariable time se-
ries data, variables are not always i.i.d. Existing methods for
time series domain adaptation, which ignore the associative
structure among variables, might suffer from overfitting.

Motivated by the toy example of Figure 2(a), data from
the source and the target domains share the same stable
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Figure 2: The illustration of various structures among six
time series. (a) The causal structure of variables. (b) The ex-
isting methods take the conditional independence relation-
ships into account and lead to overfitting. (c) Inspired by the
stability of the causal mechanism, our method considers the
stable and sparse associative structure among variables.

causal structure (e.g., the physiological mechanism among
“Blood glucose↓”(B), “Glucagon↓”(G) and “Insulin↑” (I)
shown in Figure 1), which is domain-invariant. However, as
shown in Figure 2(b), the existing methods consider not only
the ground truth associative structure but also the redundant
relationships, which leads to overfitting. Since the causal
structure from different domains is the same, time series data
from the source and the target domains also share a similar
associative structure. Figure 2(c) gives another insightful ex-
ample, showing that considering domain-invariant associa-
tive structure and excluding domain-specific associations is
important and can make the model robust and generalizable.

However, how to construct the associative structure
among variables in time series data is another challenge,
which is caused by the well-known discrepancy like time
lags and offsets. According to the physiological mechanism
of the human body, the decrease of “Blood glucose” leads
to the decrease of “Glucagon” and the increase of “Insulin”,
and the response time of the physiological mechanism varies
with ages and races, resulting in different time lags (i.e., dif-
ferent length of blue double-head arrows from the source
and the target domains in Figure 1). Giving another exam-
ple, let source domain data and target domain data be sam-
pled from the elder and the younger patients respectively,
the response time of the elder patients is longer than the
younger ones. At the same time, the same mechanism often
happens with varying start points as indicated by different
offsets from a different domain (i.e., the different length of
red double-head arrows in Figure 1). Existing work, which
simply adopting RNNs as feature extractors to extract the
domain-invariant representation, can not exclude the nega-
tive influence of time lags and offsets and further fails to
extract the associative structure.

Based on the above intuition, we propose the sparse asso-
ciative structure alignment (SASA) approach for time series

domain adaptation. The main challenges of SASA can be
summarized into two folds. (1) How to get rid of the ob-
struction of time lags and offsets to extract the sparse asso-
ciative structure? (2) How to extract the common associa-
tive structure and further extract the domain-invariant repre-
sentation? To address these problems, first, we propose the
adaptive segment summarization to ease the obstacle of off-
sets. Second, the proposed model extracts the sparse associa-
tive structure of the time series data via intra-variables and
the inter-variables attention mechanism. Third, our model
transfers the sparse associative structure from the source
domain to the target domain by simply aligning the struc-
ture. Extensive experimental studies demonstrate that our
SASA model outperforms the state-of-the-art time series un-
supervised domain adaptation methods on three real world
datasets.

Related Works
In this section, we mainly focus on the existing techniques
on unsupervised domain adaptation as well as time series
domain adaptation.
Domain Adaptation on Non-Time Series Data. The main-
stream methods of unsupervised domain adaptation (Pan
et al. 2010; Wei, Ke, and Goh 2016, 2018; Wen et al. 2019)
aim to extract the domain invariant representation between
the source and the target domains. Maximum Mean Discrep-
ancy (MMD) is one of the most popular methods by using
kernel-reproducing Hilbert space (Tzeng et al. 2014). Sun
et al. (Sun, Feng, and Saenko 2016) propose second-order
statistics for unsupervised domain adaptation. And Long et
al. (Long et al. 2015) reduce the domain discrepancy by us-
ing an optimal multi-kernel selection method.

Another essential approach to unsupervised domain adap-
tation is to extract the domain-invariant representation
by borrowing the idea of generative adversarial networks
(Goodfellow et al. 2014). Ganin et al. (Ganin and Lempitsky
2015) introduce a gradient reversal layer to fool the domain
classifier and further extract the domain-invariant represen-
tation. Tzeng et al. (Tzeng et al. 2017) propose a novel uni-
fied framework for adversarial domain adaptation. Recently,
considering the fine-grained alignment and aiming to pre-
vent the false alignment. Xie et al. (Xie et al. 2018) address
the unsupervised domain adaptation problem by aligning the
centroid for each class in source and target domains with the
help of pseudo labels.

Under the causality view over the variables, the domain
adaptation scenario can be determined by the causal mecha-
nism. Three scenarios including target shift, condition shift,
and generalized target shift, are discussed by Zhang et
al. (Zhang et al. 2013). Based on the former, Germain et
al.(Germain et al. 2016) and Zhang et al. (Zhang, Gong, and
Schölkopf 2015) investigate more on the generalized target
shift in the context of domain adaptation. Recently, follow-
ing the causal model of the data generation process, Cai et
al. (Cai et al. 2019) address this problem by extracting the
disentangled semantic representation on the recovered latent
space.

In this paper, we study the problem of unsupervised do-
main adaptation for time series data. Our SASA method is
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Figure 3: The framework of the sparse associative structure alignment model. (a) Adaptative segment summarization process
with variable-specific LSTM. (b) Sparse associative structure discovery via intra-variables and inter-variables attention mecha-
nism. (c) Sparse associative structure alignment between the source and the target domain. (Best view in color.)

first inspired by the causal mechanism from observed data.
And we further consider a more relaxed sparse associative
structure since any two variables contain causal structure
also have associative structure.
Domain Adaptation on Time Series data. Recently, unsu-
pervised domain adaptation on time series data has received
more and more attention. Da Costa et al. (da Costa et al.
2020) employ the most straightforward method and simply
replace with feature extractor with RNN based feature ex-
tractors to extract the representation of time series data. Pu-
rushotham et al. (Purushotham et al. 2017) use variational
RNN (Chung et al. 2015) to extract the latent representa-
tions of time series. There are limited works on time series
domain adaptation. One possible solution is the direct ex-
tension of the unsupervised domain adaptation methods on
non-time series data to the time series data. However, this
straightforward method might not work in time series data,
since it’s difficult to align the conditional distribution of the
observed data in all timestamps.

Since the existing methods (da Costa et al. 2020; Pu-
rushotham et al. 2017) for time series domain adaptation
cannot well align the condition distribution of the time se-
ries data, we propose a novel domain adaptation method for
time series data, which aims to distill the sparse associative
structure and filter the domain-specific information.

Sparse Associative Structure Alignment

In this section, we elaborate our Sparse Associative Struc-
ture Alignment (SASA) Model that distills the sparse asso-
ciative structure and extracts the domain-invariant informa-
tion from time series data. In this section, we first formulate
the problem. Then, we provide the details of our model.

Problem Formulation and Overview

In this work, we focus on the problem of unsupervised
domain adaptation for time series data. We let x =
{xt−N+1, · · · ,xt−1,xt} denote a multivariate time series
sample with N time steps, where xt ∈ RM , and y ∈ R
is the corresponding label. We assume that PS(x, y) and
PT (x, y) are different distributions from the source and the
target domains but are generated from a shared causal mech-
anism. Since the two variable sets generated by a same
causal structure should share the same associative structure,
PS(x, y) and PT (x, y) share the same associative structure.
(XS ,YS) and (XT ,YT ), which are sampled from PS(x, y)
and PT (x, y) respectively, denote the source and target do-
main dataset. Then we further assume that each source do-
main sample xS comes with yS , while the target domain has
no labeled sample. Our goal is to devise a predictive model
that can predict yT given time series sample xT from the
target domain.

To achieve this goal, we aim to extract the domain-
invariant representation in the form of associative structure.
This solution is inspired by intuition that the causal mech-
anism is invariant across the domains. Due to the complex-
ity of learning causal structure, we relax the causal struc-
ture to the sparse associative structure. Considering that the
offsets vary with different domains and hinder the model
from extracting the domain-invariant associative structure,
we first elaborate on how to obtain the fine-grain segments
of time series data to ease the obstacle of the offsets. Se-
quentially, we reconstruct the associative structures via the
intra-variables attention mechanism and the inter-variables
attention mechanisms with considering time lags from dif-
ferent domains. Different from the existing works that align
the feature from different domains, our SASA model aligns
the common associative structures from different domains to
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indirectly extract the domain-invariant representation.

Adaptive Segment Summarization
In this subsection, we will elaborate on how to obtain the
candidate segments to remove the obstacle of offsets. As
shown in Figure 1, the orange blocks, whose duration varies
with different domains, denote the segment of the change of
variable ‘B’. Existing methods, which take the whole time
series data as input, can not accurately capture when a seg-
ment starts and when a variable affects the others, i.e., the
sphere of influence of any variables. Therefore, these meth-
ods can not address the noise of offsets (i.e., the duration
between the start point of time series and the start point of a
segment).

To address the aforementioned problem, we first pro-
pose the adaptive segment summarization. To obtain
the candidate segments of i-th time series xi =
{xit−N+1, · · · ,xit−1,x

i
t}, we construct multiple segments

with different length for each variable xi. We have:

x̃i = {xit:t,xit−1:t, · · · ,xit−τ+1:t, · · · ,xit−N+1:t}. (1)

Motivated by RIM (Goyal et al. 2019), we allocate an inde-
pendent LSTM for each variable. In detail, given a segment
of i-th variable with τ time steps, we have:

hiτ = f(xit−τ+1:t;θ
i), (2)

in which θi denote the parameters of i-th LSTM. Note that
the segments of any univariate time series xi share the same
LSTM, and finally we can obtain the segments representa-
tion set shown as follow:

hi = {hi1, hi2, · · · , hiτ , · · · , hiN}. (3)

Since it’s almost impossible to manually extract all the ex-
act segments from the multivariable time series data, we first
obtain the representation of all candidate segments via the
aforementioned processing. The most suitable segment rep-
resentations are selected and used to reconstruct the associa-
tive structure.

Sparse Associative Structure Discovery
In this section, we will introduce how to generalize the most
exact segment representations and how to reconstruct the as-
sociative structure with the help of intra-variable attention
mechanism and inter-variable attention mechanism.

Segments Representation Selection via Intra-Variables
Attention Mechanism. In order to get rid of the obstacle
brought from the offsets, we need to pay more attention to
the exact segment representation among all the candidate
segment representations with the help of the self-attention
mechanism (Vaswani et al. 2017). Formally, we calculate
the weights of each segment of xi as follow:

uiτ =
1

N

N∑
k=1

(hiτW
Q)(hikW

K)T√
dh

,

αi = {αi1, αi2, · · · , αiτ , · · · , αiN}
= sparsemax(ui1, u

i
2, · · · , uiτ , · · · , uiN ),

(4)

in which WQ,WK are trainable projection parameters
and

√
dh is the scaling factor. In order to obtain the

sparse weights that represent specific segment representa-
tion clearly, we choose sparsemax (Martins and Astudillo
2016) to calculate the weights. The sparsemax is defined as
sparsemax(z) = arg minp∈∆K−1 ||p− z||2, which returns
the Euclidean projection of vector z ∈ RK onto probability
simplex ∆K−1. As a result, we obtain the weighted segment
representation of variable xi as follow:

Zi =

N∑
τ=1

αiτ · (hiτW V ), (5)

in which W V is trainable projection parameter. Note that
α also denotes the probability of the length of a segment.
For generalization, we also consider the case that the dura-
tion of a segment of a given variable varies with different
domains. In this case, in order to reconstruct the associative
structure more precisely, we minimize the maximum mean
discrepancy (MMD) betweenα from the source and the tar-
get domain to remove the obstacle of offsets. It restricts the
duration of the segment from different domains to be sim-
ilar, which contributes to extracting structure for transfer.
Formally, we have:

Lα =

M∑
m=1

|| 1

|XS |
∑

xS∈XS

αmS −
1

|XT |
∑

xT ∈XT

αmT ||, (6)

in which αmS and αmT denote the weights of segments of
the m-th variable from the source and the target domains
calculated by Equation (4).

Sparse Associative Structure Reconstruction via Inter-
variables Attention Mechanism. With the help of
the intra-variables attention mechanism, we extract the
weighted segment representations despite the obstacle of
offsets. Then we utilize these weighted segment represen-
tations to reconstruct the sparse associative structure among
different variables. So we propose the inter-variables atten-
tion mechanism to mine the associative structure among
variables.

In this part, our goal is to reconstruct the associative
structure among variables. Instead of using the self-attention
mechanism in the intra-variables attention mechanism, we
employ the “referenced” attention mechanism (Bahdanau,
Cho, and Bengio 2015). One of the most straightforward
methods to calculate the degree of association of variable
i and variable j is shown as follow:

eij =
Zi · Zj

||Zi|| · ||Zj || (7)

However, the associative structure calculated by Equation
(7) ignores the time lags from different domains between
i and j. Since Equation (7) does not refer to time lags
among variables, the associative structure might be falsely
estimated. To take the time lags into account, we calculate
the degrees of association between variable i and variable j
by:

eijτ =
Zi · hjτ

||Zi|| · ||hjτ ||
,

eij = {eij1 , e
ij
2 , · · · , e

ij
τ , · · · , eijN}.

(8)

Then we normalize these degrees of association with sparse-
max (Martins and Astudillo 2016) as intra-variable atten-
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tion. Formally, we have:

βi = {βi1,βi2, · · · ,βij , · · · ,βiM}

= sparsemax({ei1, ei2, · · · , eij , · · · , eiM})(j 6= i).
(9)

Note that βijτ ∈ βi denotes the associative strength between
variable i and variable j with regard to segment duration of
τ .

Sparse Associative Structure Alignment
In this subsection, we aim to extract the domain-invariant
information for time series data with the help of the extracted
associative structure from the source and the target domains.

We reconstruct the associative structure by Equation (8)
and (9) taking the time lags into account. In order to ex-
tract the domain-invariant associative structure, we need to
restrict the distance of the structure between the source and
the target domains. Since βij can be seen as the associa-
tive strength distribution between i and j, we turn the prob-
lem of structure distance measure to the distribution dis-
tance measure. In this paper, we borrow the idea of domain
confuse network (Tzeng et al. 2014) and employ maximum
mean discrepancy (MMD) for associative structure align-
ment. Formally, we have:

Lβ =

M∑
m=1

|| 1

|XS |
∑

xS∈XS

βmS −
1

|XT |
∑

xT∈XT

βmT ||. (10)

Note that we minimize the associative structure adjacent
matrix instead of aligning the features like what (Tzeng et al.
2014) does.

Model Summary
Task based Label Predictor. We aim to obtain the
domain-invariant representations which are combined with
the sparse associative structure β. In detail, we first calcu-
late the associative structure representations of variable j,
which is shown as follow:

U ij =

N∑
τ=1

βijτ · hjτ ,

U i =

M∑
m=1,m 6=i

U im.

(11)

As a result, we can obtain the final representations by con-
catenating weighted segment representations and associative
structure representations as follow:

Hi =
[
Zi;U i

]
. (12)

For convenience, we describe the above process as:

H = GH(f(x;Θ);WQ,WK ,W V ), (13)

in which GH actually denotes the feature extractor con-
taining the aforementioned two kinds of attention mecha-
nisms. H = [H1;H2; · · · ;HM ] denotes the final repre-
sentation, we further let Θ be the parameters of variable-
specific LSTM.

After obtaining the final representation, we takeH as the
input of label classifier Gy(·;φ) whose loss function is Ly .

For the classification problems, we employ cross-entropy
as the label loss. For the regression problems, we employ
RMSE as the label loss.

The label classifier with the trained optimal parameters is
adapted to the target domains.

ypre = Gy(GH
(
f (x; Θ) ;WQ,WK ,W V

)
,φ). (14)

Objective Function. The total loss of the proposed struc-
ture alignment model for time series domain adaptation is
formulated as:

L
(
Θ,WQ,WK ,W V ,φ

)
= Ly + ω(Lα + Lβ), (15)

in which ω is hyper-parameter.
Under the above objective function, our model is trained

on the source and target domain using the following proce-
dure:(

Θ,WQ,WK ,W V ,φ
)

=

arg min
Θ,WQ,WK ,WV ,φ

L
(
Θ,WQ,WK ,W V ,φ

)
.

(16)

Experiments and Result
Setup
Boiler Fault Detection Dataset. The boiler data con-
sists of sensor data from three boilers from 2014/3/24 to
2016/11/30. There are 3 boilers in this dataset and each
boiler is considered as one domain. The learning task is to
predict the faulty blowdown valve of each boiler. Since the
fault data is very rare. It’s hard to obtain the fault samples
in the mechanical system. So it’s important to utilize the la-
beled source data and unlabeled target data to improve the
model generalization.

Air Quality Forecast Dataset. The air quality forecast
dataset(Zheng et al. 2015) is collected in the Urban Air
project1 from 2014/05/01 to 2015/04/30, which contains air
quality data, meteorological data, and weather forecast data,
etc. The dataset covers 4 major Chinese cities: Beijing (B),
Tianjin (T), Guangzhou(G), and Shenzhen(S). We employ
air quality data as well as meteorological data to predict the
PM2.5. We choose the air quality station with the least miss-
ing value and take each city as a domain. We use this dataset
because the air quality data is common and the sensors in
the smart city systems usually contain complex causality.
The association among sensors are often sparse, which is
suitable for our model.

In-hospital Mortality Prediction Dataset. MIMIC-
III(Johnson et al. 2016; Che et al. 2018)2 is another
published dataset with de-identified health-related data
associated with more than forty thousand patients who
stayed in critical care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012. It’s the benchmark
of time series domain adaptation in VRADA(Purushotham

1https://www.microsoft.com/en-us/research/project/urban-air/
2https://mimic.physionet.org/gettingstarted/demo/
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Method B→T G→T S→T T→B G→B S→B B→G T→G S→G B→S T→S G→S Avg
LSTM S2T 40.20 41.67 48.91 52.81 56.44 68.14 19.00 19.76 17.56 13.82 13.82 13.86 33.83
RDC 39.72 40.80 47.75 51.98 55.83 67.67 18.18 19.10 15.43 13.70 13.75 13.76 33.14
R-DANN 39.93 40.98 46.16 52.72 55.65 66.47 18.00 18.47 15.18 13.82 13.78 13.79 32.91
VRADA 38.12 38.69 45.29 52.14 54.51 64.41 17.30 17.95 14.63 13.80 13.90 13.80 32.04
SASA-α 36.60 34.42 41.31 48.34 54.20 59.09 16.42 16.48 14.30 13.68 13.53 13.47 30.15
SASA-β 35.54 35.10 42.16 48.40 54.42 60.45 16.66 16.58 14.62 13.62 13.49 13.68 30.39
SASA 34.26 33.84 40.91 48.15 54.14 56.80 16.40 15.41 14.23 13.49 13.46 13.38 29.54

Table 1: RMSE on air quality prediction.

Method 2→1 3→1 4→1 1→2 3→2 4→2 1→3 2→3 4→3 1→4 2→4 3→4 Avg
LSTM S2T 80.52 78.79 76.85 80.24 81.43 77.24 75.77 79.30 75.56 65.79 68.93 69.41 75.82
RDC 81.36 78.94 77.11 80.66 82.40 78.47 75.96 79.39 75.63 66.20 69.59 70.21 76.33
R-DANN 81.38 79.30 77.57 80.70 82.71 78.38 76.00 79.18 76.18 66.64 69.83 69.62 76.46
VRADA 82.12 80.68 77.71 82.24 83.09 78.82 76.27 80.00 76.28 68.20 70.01 71.34 77.23
SASA-α 84.62 81.02 79.89 83.36 84.12 80.78 76.78 80.72 78.37 68.65 70.62 72.23 78.47
SASA-β 83.68 81.47 78.36 82.70 84.36 81.20 77.14 80.52 77.86 68.23 70.35 72.57 78.20
SASA 85.03 82.91 80.32 83.82 85.20 82.03 77.83 81.10 78.93 69.02 70.96 72.76 79.16

Table 2: AUC score(%) on in-hospital mortality prediction.

et al. 2017). Similar to Purushotham et al.(Purushotham
et al. 2018), we choose 12 time series (such as Heart Rate,
Temperature, Systolic blood pressure, etc) from 35637
records. In order to prepare the in-hospital mortality pre-
diction dataset for time series domain adaptation, we split
the patients into 4 groups according to their age (Group1:
20-45, Group2: 46-65, Group3: 66-85, Group4: >85).

Baseline

LSTM S2T. LSTM S2T uses the source domain data to
train a vanilla LSTM model and applies it to the target do-
main without any adaptation (S2T stands for source to tar-
get). It’s expected to provide the lower bound performance.
R-DANN. R-DANN (da Costa et al. 2020) is an unsuper-
vised domain adaptation architecture proposed in (Ganin
and Lempitsky 2015) with GRL (Gradient Reversal Layer)
on LSTM, which is a straightforward solution for time series
domain adaptation.
RDC. Deep domain confusion is an unsupervised do-
main adaptation method proposed in (Tzeng et al. 2014)
which minimizes the distance between the source and tar-
get distributions by employing Maximum Mean Discrep-
ancy (MMD). Similar to the aforementioned R-DANN, we
use LSTM as the feature extractor for time series data.
VRADA. VRADA (Purushotham et al. 2017) is a time se-
ries unsupervised domain adaptation method which com-
bines the GRL and VRNN (Chung et al. 2015).

For a fair comparison, the total numbers of parameters of
all the baselines and our method are about equal, which is
shown in Table 3. We use the same parameter combination
on each dataset and also apply three different random seeds
to each experiment.

Method Boiler Air MIMIC-III
LSTM S2T 82924 46191 72106

RDC 82924 46191 72106
R-DANN 82652 46183 71479
VRADA 83532 45898 72784

Ours 82322 45636 71402

Table 3: Total numbers of parameters of all the methods in
different datasets.

Model Variants

In order to verify the effectiveness of each component of our
model, we further devise the following model variants.

• SASA-α: We remove Lα to verify the usefulness of the
segment length restriction loss.

• SASA-β: We remove Lβ to verify the usefulness of the
sparse associative structure alignment loss.

Result

Results on Boiler Fault Detection. The AUC result in the
boiler fault detection dataset is shown in Table 4. Our SASA
model significantly outperforms other baselines on all the
tasks. It’s worth mentioning that our sparse associative struc-
ture alignment model promotes the AUC score substantially
on harder transfer tasks, e.g. 1→ 2 and 3→ 2, which are re-
spectively improved by 3.95 and 2.56 points compared with
VRADA. On some easy tasks such as 1→ 3, 2→ 3, and 3→
1, though the other baselines perform well, our method still
achieves a comparable result. We also conduct the Wilcoxon
signed-rank test (Wilcoxon 1945) on the reported score, the
p-value is 0.027, which means that our method significantly
outperforms the baselines with the p-value threshold 0.05.
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Method 1→2 1→3 3→1 3→2 2→1 2→3 Avg
LSTM S2T 67.09 94.54 93.14 56.09 84.99 91.31 81.19
RDC 68.29 94.65 93.38 57.32 85.31 92.57 81.92
R-DANN 67.71 94.69 93.92 58.53 85.67 91.66 82.03
VRADA 67.59 94.88 93.65 60.59 85.96 92.62 82.55
SASA-α 70.83 95.86 94.63 60.76 87.27 93.28 83.77
SASA-β 69.76 95.01 94.56 61.31 86.78 92.84 83.38
SASA 71.54 96.39 94.77 63.15 87.76 93.59 84.53

Table 4: AUC score(%) on boiler fault detection.

Results on Air Quality Forecast. Similar to the result in
the boiler fault detection dataset, our model also achieves
great results and outperforms all the other baselines on all
tasks, which is reported in Table 1. According to the result,
we can observe that: 1) The performance between the closer
cities is better than that of farther cities. For example, since
the distance between Beijing and Tianjin is smaller than the
distance between Beijing and Guangzhou and between Bei-
jing to Shenzhen, the promotion of B → T is better than
that of B → G and B → S. This is because the cities pair
with closer distance share more common associative struc-
ture. 2) Our method still achieves the best result even the
source city is far away from the target city, e.g. Beijing and
Shenzhen, this phenomenon reflects that our sparse associa-
tive structure alignment model well extracts the associative
structure among different variables. 3)The performance is
not so notable compared with other tasks when Shenzhen is
taken as the target domain. This is because the label value
of this domain is much lower than other domains. We also
conduct the Wilcoxon signed-rank test (Wilcoxon 1945) on
the reported score, the p-value is 0.002, which means that
our method significantly outperforms the baselines with the
p-value threshold 0.05.

Results on In-hospital Mortality Prediction. We also
testify our model on MIMIC-III dataset, which is chosen
as the benchmark of time series domain adaptation in (Pu-
rushotham et al. 2017). We choose 12 variables described
in (Purushotham et al. 2018) and reproduce a similar result
of VRADA. As shown in Table 2, our model overpasses the
other comparison methods on all the transfer tasks. Some
domain adaptation tasks such as 2→ 1 and 3→ 2 are even
improved by 2.91 and 2.11 points respectively. Furthermore,
we also find that the performance between similar domains
like 1 and 2, 2 and 3, as well as 3 and 4 are better than others.
We also conduct the Wilcoxon signed-rank test (Wilcoxon
1945) on the reported score, the p-value is 0.0022, with the
p-value threshold 0.05.

Ablation Study and Visualization
The study of the usefulness of the segment length restric-
tion. In order to verify the effectiveness of sparse associa-
tive structure alignment, we remove Lα and the model is
named SASA-α. Compared the result of SASA and SASA-
α, we can find that the performance of SASA-α drops. This
is because of α represents the probability of the length of a
segment. And the duration of segments varies with domains.

ShenzhenGuangzhou

(a) Beijing (b) Shenzhen

Figure 4: The illustration of visualization of correlation
structure adjacent matrix of Beijing → Shenzhen. Deeper
the color is, the stronger the relationship is. We can find that
the structure is sparse.

With the restriction of α, we can exclude the influence of
domain-specific segments duration.

The study of the effectiveness of sparse associative struc-
ture alignment. In order to verify the effectiveness of the
segment length restriction, we remove the sparse associative
structure alignment loss. According to the experiment result
of SASA-β, we can find that the performance of SASA-β
is worse than standard SASA. This is because the sparse as-
sociative structure has been extracted, which is also more
robust than that of normal feature extractor. But the reserved
domain-specific associative relationships lead to the subop-
timal result. Note that SASA-β is still better than the other
baselines. This is because Lα aligns the offsets between dif-
ferent domains, which benefits to extracting sparse associa-
tive structure for adaptation.

Visualization of Aligned Structure. To further investi-
gate our approach, we perform the visualization of aligned
sparse associative structure over the air quality dataset and
attempt to extract the common sparse associative structure,
which is shown in Figure 4. The visualization shows the
sparse associative structures of Beijing and Shenzhen re-
spectively. The deeper the color is, the stronger the associa-
tion between two variables. we can find that (1) the associa-
tive structures from different domains are very sparse. (2) the
sparse associative structures from the source and the target
domains have many shared associative relationships, which
means that similar sparse associative structure is shared in
different domains.

Conclusion
This paper presents a sparse associative structure align-
ment model for time series unsupervised domain adapta-
tion. In our proposal, a sparse associative structure discov-
ery method, equipped with an adaptive summarization of the
series segments, is used to extract the structure of the time
series, and an MMD based structure alignment method is
used to transfer the knowledge from the source domain to
the target domain. The success of the proposed approach not
only provides an effective solution for the time-series do-
main adaptation task, but also provides some insightful re-
sults on what is transferable on the time-series data.
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Statement About The Potential Ethical Impact
The Time series domain adaptation model, which is com-
bined with the correlative relationship, is more robust than
the existing methods and yields significant performance in
unlabeled test data, which can apply in mechanical systems,
smart cities as well as healthcare. The positive implications
of applying our method include:
(1) Significant improvement of unsupervised domain adap-
tation for time series data, which reduces the requirement
for manually acquiring labeled data and make the machine
learning model available for use the in low-resource settings.
(2) Unsupervised domain adaptation for time series data is
beneficial to mitigate overfitting.
However, the negative implications of the increasingly pow-
erful artificial intelligence technology should not be ignored.
These technologies lack interpretability so it’s hard to be
trusted sometimes. Our method can figure out this circum-
stance to some extent, but it can be better if we take causality
into account.
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