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Abstract

Cascade models are central to understanding, predicting,
and controlling epidemic spreading and information propa-
gation. Related optimization, including influence maximiza-
tion, model parameter inference, or the development of vac-
cination strategies, relies heavily on sampling from a model.
This is either inefficient or inaccurate. As alternative, we
present an efficient message passing algorithm that computes
the probability distribution of the cascade size for the Inde-
pendent Cascade Model on weighted directed networks and
generalizations. Our approach is exact on trees but can be ap-
plied to any network topology. It approximates locally tree-
like networks well, scales to large networks, and can lead to
surprisingly good performance on more dense networks, as
we also exemplify on real world data.

Introduction
The Independent Cascade Model (ICM) is a cornerstone in
the study of spreading processes on networks. It has been
proven useful in the source detection of epidemic outbreaks
(Leskovec et al. 2007; Farajtabar et al. 2015; Xu and Chen
2015; Zhu, Chen, and Ying 2017), classification of fake
news (Tschiatschek et al. 2018; Vosoughi, Roy, and Aral
2018), marketing (Leskovec, Adamic, and Huberman 2007;
Kempe, Kleinberg, and Tardos 2005), or identification of
causal miRNAs for cancer (Nalluri et al. 2017). It can be
mapped to the SIR (Susceptible Infected Recovered) model
(Kermack and McKendrick 1927), which together with its
variants has served during the COVID-19 pandemic to esti-
mate associated risks in different scenarios (Chinazzi et al.
2020; Zhang et al. 2020). Due to its simplicity, the model is
well suitable to estimate a spreading process in situations of
high uncertainty. It still provides mechanistic insights that
allow to predict changes in the spreading dynamics due to
different interventions to an ongoing cascade.

The main quantity of interest is the number of infected
people, which is also called the cascade size. Finding a fea-
sible policy that minimizes the risk of large cascade sizes
poses a challenging optimization problem. It also requires to
estimate model parameters based on highly uncertain data.
Furthermore, the only information available is usually the
number of infected people, in particular, at early stages of
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the disease spreading. Another common optimization prob-
lem related to the ICM is influence maximization, i.e., the
maximization of the average cascade size by optimal selec-
tion of seeds (i.e., initial spreaders) (Kempe, Kleinberg, and
Tardos 2003). These exemplary optimization problems have
in common that they require sampling from the probability
distribution of the cascade size or variational inference ap-
proaches. Yet, sampling is computationally costly or inaccu-
rate. Variational inference usually relies on Belief Propaga-
tion (Lokhov, Mézard, and Zdeborová 2015; Lokhov 2016),
which estimates marginals in graphical models, i.e., the in-
fection probability of each node in a network and their
average. Yet, it cannot capture the strong positive depen-
dence between node activations that is due to mutual infec-
tions. For similar reasons, the average cascade size can be
a bad representation of the probability distribution, which
is often broad and multi-modal (Burkholz, Herrmann, and
Schweitzer 2018; Burkholz 2019), see also Fig. 4.

We propose an accurate and efficient alternative that is
based on message passing like Belief Propagation but fol-
lows different principles, which we term Subtree Distribu-
tion Propagation (SDP). Subtree Distribution Propagation
generalizes to discrete models with more than two states and
can capture many SIR-type spreading processes. In contrast
to Belief Propagation, we provide information on joint acti-
vations by computing the full probability distribution of the
final cascade size (instead of the average cascade size). In
addition, we obtain the infection probabilities conditional on
the cascade size (instead of the unconditional ones).

Up to our knowledge, conditional infection probabilities
have not been studied before but provide rich information
about the spreading behavior and susceptibility of nodes. 1)
They allow to identify nodes that are functionally similar
with respect to the cascade process. These similarities are
usually caused by network symmetries. In a biological set-
ting, these can imply redundant pathways and are particu-
larly relevant for deepening our understanding of diseases
like cancer (Weighill et al. 2021). 2) Hence, they define a
natural node embedding where the embedding space cor-
responds to the final cascade size distribution. Note that it
is common practice to compare node embeddings by us-
ing them to estimate the infection probabilities of nodes in
SIR-type spreading processes. As we show, these probabil-
ities can also be used to define a node embedding directly.
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3) Identifying node similarities (for instance by node clus-
tering) has also algorithmic implications. They reduce the
set of seed candidates in influence maximization or related
problems and thus speed up Greedy approaches. In some
cases, they can even enable exhaustive search (see supple-
mentary material).

As Belief Propagation, the proposed algorithms are ex-
act on trees. They require maximally O(N2) computations,
where N denotes the number of network nodes, but the run
time scales usually asO(N) on sparse networks. Paralleliza-
tion can speed this up further. As extension to general net-
works, we propose Tree Distribution Approximation (TDA).
It combines Belief Propagation (BP) with Subtree Distribu-
tion Propagation (SDP). TDA is approximate, but accurate
on locally tree-like networks (like BP). Beyond performance
gains, our algorithms have the advantage over sampling that
they provide us with functional relationships between cas-
cade model parameters and outputs, i.e. the cascade size
distribution and conditional infection probabilities. These
would allow us to also compute gradients with respect to
model parameters efficiently and thus enable first-order (in-
stead of zeroth-order) optimization approaches.

The Independent Cascade Model
The ICM models the binary, stochastic, and discrete acti-
vation dynamics of nodes in an undirected network G =
(V,E) consisting of N = |V | nodes that are connected by
links in E. Each node i is either inactive (si = 0) or active
(si = 1) and can only switch from an inactive to an ac-
tive state, but not vice versa. Initially, each node i activates
with probability pi independently of the other nodes. In the
next time step (t = 1), an active node i can trigger new ac-
tivations of its neighbors j ∈ nb(i) := {j | (i, j) ∈ E}.
Its degree di = |nb(i)| counts the number of neighbors it
has. Each neighbor j activates independently with probabil-
ity wij and can cause new activations in the next time step.
This way, a cascade keeps propagating, where several activa-
tions can happen at the same time t and each node becoming
active at t can trigger new activations only in the next time
step t + 1 but not any later times. The process ends at time
T ≤ N , when no further activations can occur. Then, the
fraction of active nodes ρ = 1/N

∑N
i=1 si(T ) defines the

final cascade size. This is the realization of a random vari-
able C with probability distribution pC(ρ), as the cascade
process is stochastic. pC(ρ) is also termed probability mass
function of C and has support {0, 1/N, ..., 1}. In summary,
an ICM is parametrized by (p,W), where the vector p has
components pi and the matrix W entries wij . Note that W
is often related to network weights and can encode directed-
ness by wij 6= wji and wij = 0.

Contributions
Our main contribution is the development of efficient mes-
sage passing algorithms that compute the final cascade size
distribution and node infection probabilities conditional on
the final cascade size for the Independent Cascade Model.
Subtree Distribution Propagation (SDP) is exact on trees and
requires O(N2) computations. Tree Distribution Propaga-
tion (TDA) applies to general networks and leads to accurate

inference of the cascade size distribution on locally tree-like
networks. Additional backpropagation computes the infec-
tion probabilities of nodes conditional on the final cascade
size. As we show in experiments, our algorithms scale favor-
ably with increasing network size and lead to speed-ups by a
factor ranging from 60− 500 in comparison with sampling.
Efficiency gains are not only relevant for modeling spread-
ing phenomena on large networks but also on smaller ones if
the cascade size distribution is required repeatedly for differ-
ent parameters, as it is common in most related optimization
approaches. We further investigate the limitations of our al-
gorithms by studying them on random graphs that are not
locally tree-like but find surprisingly good performance. In
addition, we provide examples on real world data sets, in-
cluding a dense network of miRNA signaling corresponding
to gastrointestinal cancer and a large YouTube network.

Related Literature
As diverse as spreading phenomena are the related optimiza-
tion objectives. The insight that the average cascade size
is a submodular influence function (Kempe, Kleinberg, and
Tardos 2003) has inspired many efforts to maximize this
quantity by nearly optimal seed size selection (Du et al.
2014; Y. Lokhov and Saad 2016) or network adjustments
(Wen et al. 2017). This has great applications, e.g., in mar-
keting (Morris 2000; Goldenberg, Libai, and Muller 2001;
Domingos and Richardson 2001). Other works are more
concerned with destructive aspects of cascades and their
mitigation to avoid epidemic spreading (Budak, Agrawal,
and El Abbadi 2011; Y. Lokhov and Saad 2016). Then, the
not always explicit objective is to minimize cascades or to
create boundary conditions that limit their size (Burkholz
et al. 2016; Burkholz and Schweitzer 2018a, 2019, 2018b).
In some cases, the objective can also be to keep cascades
within a specified range (Burkholz and Dubatovka 2019;
Noël, Brummitt, and D’Souza 2013). Another example for
a related optimization problem are maximum likelihood ap-
proaches to infer cascade model parameters in the context of
information propagation in social networks. Several works
assume the knowledge of full (Myers and Leskovec 2010;
Gomez-Rodriguez, Balduzzi, and Schölkopf 2011; Du et al.
2012) or at least partial (Lokhov 2016; Abrahao et al. 2013)
diffusion information, i.e., data on which node becomes in-
fected when, while the network is mostly known or has to be
learned (Hoffmann and Caramanis 2019; Gripon and Rabbat
2013). Likelihoods are analytically attainable when the time
evolution is observed. When this information is missing but
node identities are known, network recovery is sometimes
still feasible (Amin, Heidari, and Kearns 2014). However,
this kind of data is usually not available during an epidemic
outbreak. Hence, epidemic spreading models are mainly cal-
ibrated by parameter grid search and model sampling (Chi-
nazzi et al. 2020; Zhang et al. 2020) and most of the related
optimization approaches are based on average cascade sizes
and/or sampling from the cascade model.

To compute the average cascade size, faster alternatives to
sampling are provided by Local Tree Approximations (New-
man 2002) for large random networks or Belief Propaga-
tion for smaller sparse networks (Gleeson and Porter 2018;
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Y. Lokhov and Saad 2016; Burkholz 2019). For specific op-
timization problems like influence maximization, also more
efficient sampling techniques have been developed, which
reuse samples or terminate non-promising simulations in
smart ways. Prominent examples are given by RIS (Borgs
et al. 2014) and SSA (Nguyen, Thai, and Dinh 2016) sam-
pling.

Yet, as recently shown (Cheng et al. 2014; Burkholz, Her-
rmann, and Schweitzer 2018; Burkholz 2019), average cas-
cade sizes do not provide relevant summary statistics in
cases when the underlying cascade size distributions are
broad, multi-modal, and support extreme events. Examples
are provided in Fig. 4. In every case, the full probability dis-
tribution provides much richer information about a network
structure. It is also necessary for defining the likelihood of
observed cascades and related model estimation. In addi-
tion, it allows to estimate the risk of extreme events. Usu-
ally, those events are of highest interest to judge the robust-
ness of a system or to find optima (Battiston et al. 2016;
McNeil, Frey, and Embrechts 2015; Ohsaka and Yoshida
2017). For instance, (Ohsaka and Yoshida 2017) maximizes
the expected shortfall of the final cascade size with respect
to a portfolio of seeds by sampling from an ICM. Often,
very large or small cascades occur only with small proba-
bilities. This makes the optimization of tails harder, in par-
ticular, by sampling and demands alternatives. For a given
simple ICM with uniform infection probability pi = p or
threshold model and a locally tree-like network, the final
cascade size distribution can be computed by message pass-
ing (Burkholz 2019) in O(N2 log(N)). Our approach is in-
spired, even though the math is different and our algorithms
are more efficient (O(N2)). Furthermore, we can capture
general ICMs with heterogeneous weights and initial activa-
tion probabilities, while (Burkholz 2019) is restricted to the
uniform case pi = wij = p. In addition, we provide activa-
tion probabilities of nodes conditional on the final cascade
size.

Motivation: Why Cascade Size Distributions?
To motivate the benefits of taking cascade size distributions
into account, let us consider a toy example of a social net-
work, as depicted in Fig. 1, which is exposed to an epidemic
that evolves according to an ICM. Without any interven-
tions, the cascade size is distributed as visualized by the gray
histogram. The black dashed line marks the average cascade
size, which does not correspond to the most probable events
and does not prepare policy makers for the high risk of large
cascades.

Next, we assume that we can mitigate the risk with vac-
cinations. Our goal is to avoid large cascades that would ex-
ceed the available hospital capacities and to minimize the
number of deaths. Who should be vaccinated first? Nodes
1 and 2 are the best candidates with identical exposure∑

j wij . Node 1 interacts with less people but has closer
contact with them than Node 2. Interestingly, vaccinating 1,
the node with the smaller degree, would minimize the risk of
large cascades P (% ≥ 0.75), while vaccinating 2 would min-
imize the average cascade. If hospital capacities are limited,

1

2

W1j=0.8

W2j=0.4

W12=0.2

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00
r

P

scenario
1 vac.
2 vac.
no vac.

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00
r

P

scenario
1 vac.
2 vac.
no vac.

Figure 1: Comparing the average cascade size and tail risk.
The histograms show the cascade size distribution in differ-
ent scenarios for an ICM with pi = 0.2, w12 = w21 = 0.2,
wij = 0.8 within the clique of size 3, and wij = 0.4 within
the clique of size 5. Lines mark average cascade sizes. Vac-
cinating Node 2 minimizes the average cascade size, while
vaccinating Node 1 minimizes the probability of large cas-
cades P (% ≥ 0.75).

vaccinating 1 might be the most promising strategy, which
requires the estimation of the cascade size distribution’s tail.

Algorithmic Approach
Next, we describe the novel message passing algorithms that
we propose to estimate the final cascade size distribution and
conditional activation probabilities of nodes. While we focus
in our derivations on the ICM, the principle is in fact more
general and could be transferred to continuous time (Saito
et al. 2009) and different binary graphical models or more
complicated epidemic spreading processes, in which nodes
are equipped with a higher number of discrete states.

Message Passing Algorithms
Fig. 2 gives an overview of our main contribution: four vari-
ants of a message passing algorithm. The core is formed by
Subtree Distribution Propagation (SDP), which computes
the final cascade size distribution based on a rooted tree and
ICM as input. Every node is visited only once and the al-
gorithm can be parallelized according to the tree structure.
Starting in the leaves (i.e., nodes with degree dn = 1), each
node n sends information about the cascade size distribution
of the subtree Tn rooted in n to its parent p. It only requires
information by its children as input. Finally, the output is
constructed in the root. The relevant variables are visualized
in Fig. 3 C.

To compute the activation probability of nodes condi-
tional on the final cascade size, Conditional Subtree Distri-
bution Propagation (conSDP) adds a backpropagation rou-
tine to SDP. Information is sent from the root to its children
until it reaches the leaves. Thus, each node is visited twice
in total.

SDP and conSDP are exact, but are limited to trees. To
obtain an approximate variant that applies to any (simple)
networkG, we introduce (conditional) Tree Distribution Ap-
proximation (TDA) as extension of (conditional) SDP. The
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Figure 2: Overview of different message passing algorithm
variants for the final cascade size distribution. All are ex-
act on trees, where SDP coincides with TDA and ConSDP
with ConTDA. TDA and conTDA are approximative for net-
works that are different from trees. In addition, conSDP or
conTDA variants compute conditional activation probabili-
ties of nodes.

goal is to reduce G to a tree M (for instance a maximum
spanning tree (MST)) and run SDP (or conSDP) on M .
However, to compensate for the removal of edges and thus
dependencies of node activations, we increase the initial ac-
tivation probabilities p of the ICM. There, we assume that
former neighbors j have activated independently before a
node iwith a probability pji that we estimate by Belief Prop-
agation (BP). If BP does not converge, we could substitute it
by another approach such as the junction tree algorithm. For
simplicity and computational efficiency, we will only con-
sider BP. In the following, we detail the information propa-
gation equations of the respective algorithms.

Subtree Distribution Propagation
Intuition The derivation of SDP relies solely on combinato-
rial arguments respecting the right order of activations. This
order is encoded in messages that a node n sends to its par-
ent p about the number of active nodes an in the subtree
Tn, which is rooted in n (see Fig. 3 C). Messages of type
A assume that p activates (either before or after the node
n), while messages of type B consider the case that p does
not activate (at least before n). We need to distinguish these
two cases because they enable us to combine the messages
received by children efficiently.

We would like to compute the probability distribution of
the number an =

∑
i∈Tn

si of active nodes in Tn. This is
given by the sum of n’s state sn and the number of active
nodes aci in the subtrees that are rooted in n’s k children ci:
an = sn +

∑k
i=1 aci . The challenge is that the distributions

of the summands depend on each other. Yet, before the acti-
vation of n, the subtrees aci are independent. The activation
of n has an impact on the subtrees but also independently
of each other. Hence, in both cases, the probability distribu-
tion of their sum can be computed efficiently as convolution
of the right distributions associated with aci . The distribu-
tions of aci correspond to messages of type A in case that n
becomes active and messages of type B in case that n does
not. In case of the activation of n, we have to distinguish two
message subtypes, i.e., A

∑
and A0. A0 is only auxiliary to

subtract the probability of an infeasible case, in which n is
not activated by any of its children.

The messages that n receives by its children are then used
to compute the distributions of an for different cases. pna
refers to “no activation” of n, pla to “late activation” (or “no
initial activation”) of n, and pa to all cases when n activates.
pla is auxiliary to subtract from pa the case that no child
successfully triggers the activation of n. At the end of the
message passing, the cascade size distribution is computed
in the root, where no parent state needs to be considered. In
case of a final activations, either the root does not activate
with pna(a) or activates with pa(a − 1) so that a − 1 other
nodes become active. The precise algorithm is stated in the
following theorem.

Theorem 1 (SDP). The final cascade size distribution
pC(ρ) of an ICM (p,W) on a tree G with root r and N
nodes is given as output of the following message passing
algorithm. Starting in the leaves, each node n sends the
functions pBn(a), pA0

n
(a), and pAΣ

n(a) for a = 0, ..., N as
messages to its parent p. We have

pBn
(0) = 1− pn, pBn

(1) = pn(1− wnp),

pA0
n
(0) = (1− pn)(1− wpn), pA0

n
(1) = (1− pn)wpn

+ pn(1− wnp),

pAΣ
n

(0) = (1− pn)(1− wpn), pAΣ
n

(1) = pA0
n
(1) + pnwnp

for a leave n (with degree dn = 1). Otherwise, define for a
node n with k children c1, ..., ck:

pna(a) = (1− pn)pBc1
∗ · · · ∗ pBck

[a],

pla(a) = (1− pn)pA0
c1
∗ · · · ∗ pA0

ck
[a],

pa(a) = pAΣ
c1
∗ · · · ∗ pAΣ

ck
[a]− pla(a),

where ∗ denotes a convolution. An intermediate node n 6= r
(dn > 1) with kn = dn − 1 children sends the messages:

pA0
n
(a) = (1− wpn)pna(a) + wpnpla(a− 1)

+ (1− wnp)pa(a− 1), pBn
(a) = pna(c) + (1− wnp)

× pa(a− 1), pAΣ
n

(a) = pA0
n
(a) + wnppa(a− 1).

In the root, n = r with kr = dr children, the final cascade
size distribution is given as: pC(a/N) = pna(a)+pa(a−1).

Note that all operations can be performed in Fourier
space. Thus, the convolutions simplify to elementwise mul-
tiplication of vectors. The exact algorithm in Fourier space
and a proof are provided in the supplement.
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Figure 3: A. Exemplary tree with SD parameters. Link strengths are proportional to the ICM weights, node sizes to the activa-
tion probabilities. Node colors indicate cluster membership obtained from conditional activation probabilities. B. Conditional
activation probability of nodes matching the symbols in A corresponding to the cascade size distribution on top. C. Illustration
of variables in SDP.

Tree Distribution Approximation
To apply the same principle to a general network G =
(V,E) and thus SDP to a spanning tree M = (VM , EM )
of G, we have to regard the direct influence of neighbors
dn(i) = {j ∈ V | (i, j) ∈ E, (i, j) /∈ EM} on a node
i, which are not connected with i in M any more. For all
nodes, those can be estimated by Belief Propagation (BP).

Belief Propagation for the ICM Given an ICM (p,W)
on a network G, the probability pij = P (si = 1 ‖ sj = 0)
that i activates without j’s contribution is estimated as

Qi(t+ 1) = (1− pi)
∏

n∈nb(i)

(1− wnipni(t)) ,

pij(t+ 1) = 1− Qi(t+ 1)

1− wjipji(t)
, i, j = 1, ..., N,

over t = 0, . . . , R iteration steps. We initialize with the ini-
tial ICM activation probability pij(0) = pi. Note that these
equations are novel on their own and have been indepen-
dently derived by Lokhov et al. (Lokhov and Saad 2019),
who prove that they are exact on trees and that the iteration
steps t correspond to the time of the cascade process.

Next, pij = pij(R) for j ∈ dn(i) are used to adapt the
initial activation probabilities p(M) of an ICM on the span-
ning tree M (instead of G). They incorporate the influence
of deleted neighbors by assuming that they activate indepen-
dently before i with pji.

ICM on MST We define an ICM (p(M),W(M)) on M :

p
(M)
i = 1− (1− pi)

∏
j∈dn(i)

(1− wjipji), w
(M)
ij = wij

for i = 1, ..., N and (i, j) ∈ EM .

Conditional Activation Probabilities
The activation probability of a node conditional on the final
cascade size is straight forward to compute for the root at
the end of SDP (see Thm. 1) as P (sr = 1 | C = a/N) =
pa(a− 1)/pC(a/N). Yet, to obtain the same for every other

node n (that we turn into a root), we have to calculate addi-
tional messages that parents send back to their children. Af-
ter SDP, only messages from the former parent are missing,
so that pBc

p
(a), pA0c

p
(a), and pAΣc

p (a), where p is treated as a
child, while n is the new parent. Thus, starting in the root r,
each parent p backpropagates messages to their children n,
where P (sn = 1 | C = a/N) can be computed.

BackPropagation for ConSDP (or ConTDA) Using the
notation of Thm. 1, each parent p sends to its child n:

pA0c
p

(a) = (1− wnp)p
(p)
af\n(a) + wnpp

(p)
la\n(a− 1)

+ (1− wpn)p
(p)
a\n(a− 1), pBc

p
(a) = p

(p)
af\n[a] + (1− wpn)

× p(p)a\n(a− 1), pAΣc
p

(a) = pA0c
p

(a) + wnpp
(p)
a\n(a− 1),

where the contribution of n in the convolution forming p(p)x

is removed (for x ∈ {af, lf, f}). Note the swap of n and p
in comparison with Thm. 1. For all neighbors, children and
parent, the messages from SDP are combined with the new
one received by the parent as:

p(n)na (a) = pna ∗ pBc
p
[a], p

(n)
la (a) = pla ∗ pA0c

p
[a],

p(n)a (a) = (pa + pla) ∗ pAΣc
p

[a]− p(n)la (a)

and form the conditional activation probabil-
ity of n as P (sn = 1 | C = a/N) = p

(n)
a (a −

1)/
(
p
(n)
na (a) + p

(n)
a (a− 1)

)
. The precise algorithm is

stated in the supplementary material.

Algorithmic Complexity
To validate our claim that our algorithms are usually more
efficient than sampling, we have to make sure that we com-
pare with the fastest available sampler. The precise algo-
rithm is straight forward and stated in the supplement. For-
mally, its algorithmic complexity is of the same order as our
algorithms for sparse networks, i.e. O(N2), but the omitted
constant factors differ considerably.

SDP. In SDP, each node n is visited once, where mainly
the convolution of dn − 1 distributions of size N + 1 in
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Fourier space has to be computed. This can be achieved with
O(dnN) operations. In total, this adds up toO(N

∑
n dn) =

O(N2) operations, as
∑

n dn = 2 ∗ (N − 1) in a tree. Back-
propagation requires O(N2) operations for similar reasons.

TDA. TDA consists of two additional pre-processing
steps: (1) Belief Propagation and (2) the computation of a
spanning tree. (1) BP is linear in the number of edges O(m)
and is thus maximally of the same complexity as SDP (be-
cause m ≤ N2). (2) A random spanning tree suffices and
can be constructed in O(m). Finding a maximum spanning
tree with Kruskal for optimal approximation quality could
take longer for dense networks, i.e. m log(N).

In practice, for sparse networks and small number of
nodes with large degrees, TDA is usually of order O(N),
since we can compute the convolutions of distributions with
smaller support thanN on subtrees. Alternatively, one could
think of an approximate version of SDP that computes
pC(ρ) for a finite resolution (for instance on an equidis-
tant grid of [0, 1]). This could reduce also the worst case
complexity to O(N). With parallelization of computations
in nodes that have received the messages by their children,
this could be even brought down to O(h), meaning that it is
linear in the height of the input tree.

Sampling. Each sample of a cascade size can be obtained
in O(m) operations. Hence, the total run time is of order
O(NS), where S refers to the number of samples. How
large should S be? To approximate the average cascade size,
S = 104 is common (Kempe, Kleinberg, and Tardos 2003)
and we compare TDA with this choice in Fig. 6 C. TDA
achieves a speed-up by a factor of 60 − 500. Yet, depend-
ing on the cascade size distribution, 104 samples can lead to
poor approximation results. The number of required samples
is higher, since we have to estimate N free parameters and
most of these parameters are small and scale as 1/N . To ob-
tain good enough estimates of each probability, we therefore
need at least O(N) samples, where the constant depends on

the approximation error. This results in a total complexity of
O(mN), which becomes O(N2) for sparse networks. Ac-
cording to our experiments, the constant still has to be rela-
tively large.

Numerical Experiments
We perform detailed experiments on networks with different
properties like size, average degree, and clustering coef-
ficient. All computations were conducted on a MacBook
Pro with 2.9 GHz Intel Core i9 processor and 32 GB
2400 MHz DDR4 memory. Fig. 4 provides an overview.
The first row corresponds to trees of different size, while
the second row shows cascade size distributions for real
world networks. The first is a locally tree-like network
of corporate ownership relationships (Norlen et al. 2002)
with N = 4475 nodes, the second a dense correlation
network of miRNA expression profiles using data from
gastrointestinal cancer (Nalluri et al. 2017) with N = 201
nodes, and the third is a YouTube friendship network (Yang
and Leskovec 2012) consisting of N = 1134890 nodes.
ICM parameters are varied to demonstrate the diversity of
possible cascade size distributions. Usually, we assume that
all nodes activate initially with probability pi = 0.05. For
miRNAs, pi = 0.01 to mitigate extensive spreading due
to the high network density. Unless stated otherwise, we
fix the weight parameters to a social dynamics (SD) model
with wij = 0.05 + 0.5di/dj/Z and Z = maxi,j(di/dj),
in which hubs (i.e. nodes with high degrees) are more
likely to activate network neighbors but are less likely
to become activated by nodes with smaller degrees. For
variation, we also report results for the following models:
Financial systemic risk models are often concerned with
different risk diversification mechanisms (Battiston et al.
2016; Burkholz, Garas, and Schweitzer 2016). Exposure
Diversification (ED) wij = 0.05 + 0.5/dj assumes that
high degree nodes are difficult to activate by single network
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Figure 5: Run time comparisons. A&B. Mean squared error (mse) of sampling after indicated computation time for SD pa-
rameters. The ground truth is defined based on 106 samples. Red horizontal line: mse achieved by TDA. Red vertical line:
run time of TDA. Blue dotted line: Time at which sampling achieves the same mse as TDA. A. Tree (N = 181). TDA takes
0.00078 seconds. B. YouTube network (N = 1134890). C. 10 independent ER-networks of size N are created with average
degree d̄ = 2.5 (black), d̄ = 4 (red), d̄ = 10 (blue). Cascade model parameters are drawn iid as pn ∼ U [1/N, 10/N ] and
wnp ∼ U [0.05, 1]. The run time of sampling the cascade size 104 times (triangles) is compared with TDA (circles) on the same
network. Lines refer to averages over 10 networks and shaded areas to the respective 0.95 confidence region. On average, TDA
is faster by a factor ranging from 68 to 485.

Figure 6: Approximation quality of TDA displayed as log-
arithmic mean squared error (mse) compared with the re-
sult of 106 independent Monte Carlo simulations. Each data
point corresponds to one experiment. The red line refers to
the mean of 10 experiments and the gray area to the asso-
ciated 0.95 confidence interval. A. Trend with respect to in-
creasing mean degree d̄ of locally tree-like random graphs.
B. Trend with respect to increasing clustering coefficient of
a random graph.

neighbors, while in damage diversification (DD) models
high degree nodes less likely to infect a network neighbor,
for instance, reflected by the choice wij = 0.6 for di ≥ dj
and wij = 0.8. The Hub diversification (HD) model is
similar but makes hubs more difficult to activate with
wij = 0.5/dj for di < 0.1dmax and wij = 0.4 otherwise.
Last but not least, we also consider models, in which the
ICM parameters are drawn from random distributions.
Cascade size distributions are relevant. Our first obser-
vation based on Fig. 4 is that the displayed cascade size
distributions are often broad and multi-modal. This can also
be the case for large networks. For instance, Fig. 4 B&C
belong to networks of size N = 105 and N = 106

respectively. Visually, we also find good agreement between
SDP or TDA and sampling for 106 samples. To study
this in more detail we first focus on trees, for which our
algorithms are provably exact and provide us with ground
truth results. These allow us to estimate the number of

required samples for Monte Carlo (MC) simulations to
converge and, in comparison, to study the run time and
scaling of our proposed algorithms.
How many samples are required? The answer must
depend on the desired approximation quality and the
shape of the cascade size distribution. Fig. 5 A shows
the evolution of the mean squared error for an increasing
number of samples for the small tree with corresponding
SD distribution shown in Fig. 4 A. TDA and sampling
become indistinguishable with 554800 or more samples. In
comparison, the SD distribution for the YouTube network is
more concentrated. Hence, already 28300 samples achieve
a similar mean squared error as TDA (see Fig. 5 B). Yet,
TDA is 18790 times faster in case of the tree, and almost 2
times faster in case of the YouTube network.

Scaling of TDA. Without prior knowledge of properties
of the cascade size distribution, it is common practice to fix
the amount of samples. In this case, sampling has a run-time
complexity of O(N), while TDA has formally a complex-
ity of O(N2). Yet, TDA also scales as O(N) for sparse
networks with m = O(N) and bounded degrees. This is
demonstrated in Fig. 5 C, where we compare the run time
for increasing network size N and sampling with S = 104

samples. S = 104 is a common choice to estimate the av-
erage cascade size. While this is often not sufficient to esti-
mate the cascade size distribution or the probability of rare
events, TDA is still faster by factors ranging from 68− 485.
We also note that TDA scales to large networks consisting of
N = 107 nodes and needs less than 5 minutes to complete
in this case.
Approximation quality of TDA. For trees, SDP is exact.
For locally tree-like structures, i.e. networks with small clus-
tering coefficient and thus negligible number of short loops,
we expect that TDA approximates the cascade size distri-
bution well. Fig. 4 also shows excellent agreement between
TDA and sampling with S = 106 for the corporate own-
ership network and, surprisingly, even for the dense cancer
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network. The YouTube network, however, is a difficult case.
BP fails to provide a good estimates of pij and overestimates
the average cascade size. Hence, we have to define pij = pi
in TDA and estimate the average cascade size based on a
few (i.e. 100) samples. All reported results on the YouTube
network are for an accordingly shifted cascade size distri-
bution that meets this estimated average. This combination
of TDA and a few sampling steps is still much faster than
sampling alone as shown in Fig. 5 B. To analyze systemati-
cally, how deviations from a locally tree-like network struc-
ture influence the approximation quality of TDA, we present
Fig. 6. Specifically, we study the effect of increasing average
degree and thus higher network density and increased clus-
tering. Surprisingly, TDA leads to relatively good approxi-
mation results. A high average degree is less problematic as
long as the network has a small number of triangles or short
cycles. Also a relatively high clustering coefficient does not
hamper the approximation results as long as the average de-
gree is small. We vary this coefficient in Fig. 5 B when we
generate random graphs consisting of N = 1000 nodes ac-
cording to (Schank and Wagner 2005), while we try to keep
the average degree fixed. The exact parameter choices are
detailed in the supplementary material.
Conditional activation probabilities. The conditional ac-
tivation probabilities of exemplary nodes of the small tree
(Fig. 3A) are shown in Fig. 3B, as obtained by ConSDP.
Corresponding figures for the other networks can be found
in the supplement. Conditional activation probabilities vary
substantially with the cascade size and often increase non-
monotonically, different from what might be expected. They
contain rich information not only about the probability of
a node to activate but also about its role in the spreading
process. Big hubs are more predictable and are always ac-
tive above a certain cascade size. Their activation usually
marks larger cascades but does not explain the largest. These
only occur with the activation of nodes that are more diffi-
cult to reach by cascades. Nodes, which are topological in-
terchangeable, also have an identical conditional activation
probability. The identification of such symmetries is partic-
ularly interesting in the analysis of biological networks like
the cancer related miRNA network, since these hint towards
similar functions of nodes within pathways and thus redun-
dancies in the network. In addition, similar conditional ac-
tivation probabilities translate into similar effects as seeds.
Therefore, we can interpret the conditional probabilities as
node embedding which associates each node i with a vec-
tor vi with components vir+1 = P (si = 1 | ρ = r/N). Any
clustering algorithm could be employed for a dimensionality
reduction based on vi. For simplicity, we choose kmeans to
obtain 15 clusters. Node colors in Fig. 3 indicate the cluster
membership.

Discussion
The core algorithms that we have derived, Subtree Distri-
bution Propagation (SDP) and conSDP, compute the final
cascade size distribution and conditional activation proba-
bilities given a general independent cascade model (ICM)
and can therefore replace expensive sampling procedures in
related optimization problems. Furthermore, they provide a

functional relationship between model parameters and algo-
rithmic output. On their basis, efficient algorithms that com-
pute gradients can be derived. This can enable first order
optimization approaches in cases in which only zeroth order
optimization is available so far.

In addition to the cascade size distribution, we can com-
pute the activation probabilities of nodes conditional on the
final cascade size. These are particularly informative in sys-
temic risk analyses, as they allow the focus on extreme
events. In addition, they provide a node embedding that al-
lows to cluster nodes with similar functionality for the cas-
cade process.

While our algorithms are exact on trees, real world net-
works usually have additional connections. Tree Distribu-
tion Propagation (TDA) provides excellent approximation
results for locally tree-like networks.

However, if networks consist of multiple short loops,
these loops introduce stronger dependencies of activations
than TDA can capture. Highly connected nodes activate all
together with higher probability. By approximating a denser
network with a tree in TDA, we treat some nodes as con-
ditionally independent when they are not and thus under-
estimate the variance of the cascade size distribution. In
this sense, we can interpret TDA as variational approach
to obtain a proxy for the final cascade size distribution,
where TDA captures more dependencies than variational ap-
proaches based on BP alone could provide.

Future work could improve such approximations by com-
bining SDP with sampling. SDP only requires estimates of
cascade size distributions for subgraphs (considering states
of parents), which could also be sampled. As long as such
subgraphs are connected like trees, SDP can be used to com-
bine the distributions. Such an approach could speed up
sampling approaches and improve the accuracy of TDA in
highly clustered networks.

Our algorithms could also be extended to allow for dis-
tributions on the ICM parameters and could therefore aid
robust influence maximization under model parameter un-
certainty (Kalimeris, Kaplun, and Singer 2019) or Bayesian
model learning approaches.

Code Availability
The code in R, Python, and C++ is availabe on GitHub:
https://github.com/rebekka-burkholz/TDA

Supplements
Supplementary data with proofs and more details about
the presented algorithms is available at https://arxiv.org/abs/
1909.05416.
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