
Sample-Specific Output Constraints for Neural Networks

Mathis Brosowsky 1,2, Florian Keck 2, Olaf Dünkel 2, Marius Zöllner 1,2

1FZI Research Center for Information Technology,
2Karlsruhe Institute of Technology,

{brosowsky, zoellner}@fzi.de, {florian.keck, olaf.duenkel}@student.kit.edu

Abstract
It is common practice to constrain the output space of a neu-
ral network with the final layer to a problem-specific value
range. However, for many tasks it is desired to restrict the
output space for each input independently to a different sub-
domain with a non-trivial geometry, e.g. in safety-critical ap-
plications, to exclude hazardous outputs sample-wise. We
propose ConstraintNet—a scalable neural network architec-
ture which constrains the output space in each forward pass
independently. Contrary to prior approaches, which perform
a projection in the final layer, ConstraintNet applies an input-
dependent parametrization of the constrained output space.
Thereby, the complete interior of the constrained region is
covered and computational costs are reduced significantly. For
constraints in form of convex polytopes, we leverage the ver-
tex representation to specify the parametrization. The second
modification consists of adding an auxiliary input in form of a
tensor description of the constraint to enable the handling of
multiple constraints for the same sample. Finally, Constraint-
Net is end-to-end trainable with almost no overhead in the
forward and backward pass. We demonstrate ConstraintNet on
two regression tasks: First, we modify a CNN and construct
several constraints for facial landmark detection tasks. Second,
we demonstrate the application to a follow object controller
for vehicles and accomplish safe reinforcement learning in
this case. In both experiments, ConstraintNet improves per-
formance and we conclude that our approach is promising for
applying neural networks in safety-critical environments.

Introduction
Deep neural networks (NNs) have become state-of-the-art
in many competitive learning challenges. Crucial for this
success is the learning of complex non-linear relationships
implicitly from data. However, frequently additional domain
knowledge exists in form of explicit relationships, e.g. sym-
metry conditions for human pose estimation (Márquez-Neila,
Salzmann, and Fua 2017) or identified sets of safe outputs
(Gros, Zanon, and Bemporad 2020). Imposing such relations
as constraints on NNs is promising to achieve safety (Gros,
Zanon, and Bemporad 2020), to reduce the black-box charac-
ter (Cui et al. 2020), to stabilize the training (Lezcano-Casado
and Martínez-Rubio 2019), to upgrade the performance, or
to improve the data efficiency (Li and Srikumar 2019).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

hθ(x, g(s))

φ(z, s)
g(s)

x

s

ŷ ∈ C(s)

z

Figure 1: Approach to construct ConstraintNet for a class of
constraints C = {C(s)⊂Y|s ∈ S}. A final layer φ without
learnable parameters maps the output of previous layers z=
hθ(x, g(s)) on the constrained output space C(s) depending
on the constraint parameter s. The previous layers hθ get a
representation g(s) of s as an additional input to the data
point x. This enables ConstraintNet to deal with different
constraints for the same x.

We focus on embedding sample-specific output constraints
in the NN architecture. Prior research is known from deep re-
inforcement learning with safe action sets (Dalal et al. 2018).
These approaches perform a projection on the constrained
region in the final layer by solving an optimization problem.
However, the projection layer maps output violations only on
the boundary of the constrained region and has a significant
computational overhead. With ConstraintNet, we propose an
NN architecture which overcomes this limitation and requires
almost no additional computational costs.

Instead of performing a projection, ConstraintNet applies
an input-dependent parametrization of the constrained out-
put space in the final layer, the so-called constraint guard
layer (see Figure 1). Thereby, less computational costs are
required and the complete interior of the constrained region is
covered. The second crucial design choice of ConstraintNet
consists of an auxiliary input in form of a tensor description
of the chosen constraint. Thereby, we are to the best of our
knowledge the first proposing a method capable to handle
multiple constraints for the same input. This is beneficial
for many applications. E.g. constraints in form of bounding
boxes for a facial landmark detection do not need to be cen-
tered perfectly and may vary in size and shape. Altogether,
the constraint guard layer encodes a precise description of a
class of constraints in the NN architecture, e.g. convex poly-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6812

tope with five vertices, and a specific constraint from this
class can be chosen via the additional input in each forward
pass independently.

ConstraintNet addresses safety-critical applications in par-
ticular. Instead of monitoring the output of the NN with a
second algorithm and intervening when safety-critical be-
havior is detected, the constraints restrict the output to safe
solutions in the first place. E.g. in an NN-based trajectory
planner constraints can be leveraged for collision avoidance.
Apart from safety-critical applications, output constraints are
applicable wherever a partition into valid and invalid output
domains is given by an external source, e.g. by a human ex-
pert, map data, a rule-based model, or even a second NN. For
the NN-based trajectory planner, further output constraints
can be applied to ensure consideration of navigation instruc-
tions. In medical image processing, the constrained region
can be annotated by a human expert to restrict the localization
of an anatomical landmark.

We evaluate ConstraintNet on a facial landmark detection
task with constraints in form of bounding boxes covering
the face. Further, we analyze relative constraints, e.g. that
the positions of the eyes are above the nose-landmark for
anatomical reasons. Furthermore, we apply ConstraintNet on
a follow object controller for vehicles and leverage output
constraints for safe deep reinforcement learning. Our main
contributions are:

• leveraging an input-dependent parametrization of the con-
strained output space for imposing hard output constraints,

• proposing a compact parametrization for convex polytopes
based on the vertex representation,

• setting the output constraint in each forward pass indepen-
dently via specifying a tensor description of the constraint
(multiple constraints for the same sample applicable),

• clear improvements in runtime over performing a projec-
tion while upgrading the performance.

Related Work
An ongoing challenge in machine learning is to combine the
implicit and data-driven learning of patterns with explicit
and a priori known relations. However, in certain learning
tasks the incorporation of domain knowledge is crucial for
the consistency, interpretability, stability, and performance
of the application as well as the trust into the output. E.g.
a traditional facial landmark detector aims to predict land-
marks consistently to a global shape pattern for robustness
against occlusion, illumination, hairstyle, and accessoires.
The frequently used constrained local models refine indepen-
dent local appearance information with a global shape pattern
(Zadeh, Baltrušaitis, and Morency 2017). The first step can
be performed e.g. with an NN and the second step can be con-
sidered as an advanced post-processing and optimization step.
However, it would be advantageous to solve this end-to-end
in a single forward pass.

In recent years, we observe increasing attention in research
regarding imposing constraints on NNs. This allows to in-
corporate a priori known and intended relations. The con-
tributions are spread over a variety of applications and deal

with different types of constraints. We identify three main
categories of methods.

Methods of the first category add a loss term to penalize
constraint violations. This is also known as soft constraints,
since the NN is only encouraged to satisfy constraints. How-
ever, constraint violations might still occur. In Karpatne et al.
(2017), physical relationships are incorporated by such a loss
term to improve a lake temperature model. A second group
consists of approaches that modify the optimizer in training.
In Márquez-Neila, Salzmann, and Fua (2017), constraints
are included by solving in each training step a linearized
version of the Lagrangian dual problem. In their paper, the
approach is evaluated on a human pose estimation task with
symmetry conditions. Methods of the third category ensure
constraint satisfaction by construction of the NN architec-
ture. In Li and Srikumar (2019), an approach is proposed
to impose logical statements on neurons with assigned se-
mantics. A manually designed distance function is added to
the pre-activation score to realize logical expressions. In the
following, we show further methods of the third category and
relate them to ConstraintNet.

A central design choice for imposing constraints is to ap-
ply a parametrization. In this way, the output or an interme-
diate variable of the NN can be constrained to a problem-
specific value range. A simple example is the softmax func-
tion which generates only valid parameters of the categori-
cal distribution. However, more complex parametrizations
can be constructed. In Lezcano-Casado and Martínez-Rubio
(2019), the Lie-algebra and the exponential map is leveraged
to parametrize the special orthogonal group. Thereby, the
kernel matrices of recurrent NNs are constrained and the
vanishing and exploding gradient problem can be reduced.
In Cui et al. (2020), a vehicle model is leveraged to generate
a parametrization of only kinematically feasible trajectories.
However, all these approaches parametrize a globally fixed
subspace C={φ(z)|z ∈ Z}. To the best of our knowledge,
we are the first leveraging input-dependent parametrizations
for adjustable output constraints C(s) in NNs:

C(s) = {φ(z, s)|z ∈ Z}, (1)

with s being a vector description of the constraint.
As we already mentioned in the introduction, approaches

from deep reinforcement learning (Dalal et al. 2018; Gros,
Zanon, and Bemporad 2020) propose to realize output con-
straints by projecting the output of the NN nθ on a safe set
C(s), i.e. the element with the minimal distance:

n⊥,θ(x) = arg min
y∈C(s)

1

2
‖y − nθ(x)‖2. (2)

The projection can be considered as an optimization problem
and the more generally studied differentiable optimization
layers (Agrawal et al. 2019; Amos and Kolter 2017) are ap-
plicable. However, solving the optimization problem requires
additional computational overhead. In the experiments sec-
tion, we compare ConstraintNet with this projection-based
approach.

6813

v(2)
v(3)

v(1)
concat{v(i)}

z σ(z)

v(1) v(2) v(3)

x

g(s)

s

φ(z, s)

φ =
∑

i σi(z)v
(i)(s)

· · · · · ·

ŷ

·
σ1

·
σ2

+ ·
σ3

+

Figure 2: Construction of ConstraintNet by extending a CNN. For illustration purposes, we show a nose landmark detection on
an image x with an output constraint in form of a triangle, i.e. a convex polytope with three vertices {v(i)(s)}3i=1. The constraint
parameter s specifies the chosen constraint and in this case consists of concatenated vertex coordinates. A tensor representation
g(s) of s is concatenated to the output of an intermediate convolutional layer and extends the input of the next layer. Instead of
creating the final output for the nose landmark with a 2-dimensional dense layer, a 3-dimensional intermediate representation z
is generated. The constraint guard layer φ applies a softmax function σ on z and weights the three vertices of the triangle with
the softmax outputs. This guarantees a detection ŷ within the specified triangle.

Neural Networks with Sample-Specific Output
Constraints

This section is structured as follows: (1) First of all, we de-
fine sample-specific output constraints and ConstraintNet
formally. (2) Next, we propose our approach to create the ar-
chitecture of ConstraintNet. This approach requires a specific
layer without learnable parameters for the considered class
of constraints, the constraint guard layer. (3) We model this
constraint guard layer for constraints in the form of convex
polytopes and sectors of a circle. Furthermore, we derive the
layer for constraints on different output parts. (4) For train-
ing ConstraintNet, we propose to sample specific constraints
from valid sets, then standard stochastic gradient descent al-
gorithms are applicable. Finally, (5) we present the supported
constraint types and possible generalizations to give an idea
about the broad applicability.

Sample-Specific Output Constraints

Consider an NN nθ : X → Y with learnable parameters
θ ∈ Θ, input space X and output space Y . We introduce
an output constraint as a subset of the output space C ⊂ Y
and a class of output constraints as a parametrized set of
them C= {C(s)⊂Y : s∈S}. S is a set of parameters and
we call an element s ∈ S constraint parameter. We define
ConstraintNet as an NN fθ :X×S→Y with the constraint
parameter s ∈ S as an additional input and the guarantee
to predict within C(s) by design of the NN architecture, i.e.
independently of the learned weights θ:

∀θ∈Θ ∀s∈S ∀x∈X : fθ(x, s) ∈ C(s). (3)

Furthermore, we require that fθ is (piecewise) differentiable
w.r.t. θ so that backpropagation and gradient-based optimiza-
tion algorithms are amenable.

Network Architecture
Construction Approach. We propose the approach visual-
ized in Figure 1 to create the architecture of ConstraintNet for
a specific class of constraints C. The key idea is a final layer
φ : Z×S→Y without learnable parameters which maps the
output of the previous layers z∈Z on the constrained output
space C(s) depending on the constraint parameter s. Given a
class of constraints C={C(s)⊂Y : s∈S}, we require that
φ fulfills:

∀s∈S ∀z∈Z : φ(z, s) ∈ C(s). (4)
When φ is furthermore (piecewise) differentiable w.r.t. z we
call φ constraint guard layer for C. The constraint guard
layer φ has no adjustable parameters and therefore the logic
is learned by the previous layers hθ with parameters θ. In
the ideal case, ConstraintNet predicts the same true output
y for a data point x under different but valid constraints.
This behavior requires that hθ depends on s in addition to
x. Without this requirement, z=hθ(·) would have the same
value for fixed x, and φ would project this z for different but
valid constraint parameters s to different outputs in general.
We transform s into an appropriate representation g(s) and
consider it as an additional input of hθ, i.e. hθ :X×g(S)→Z .
For the construction of hθ, we propose to start with a common
NN architecture with input domain X and output domain Z .
In a next step, this NN is extended by adding an input for
g(s). We propose to concatenate g(s) to the output of an
intermediate layer since it provides information with a high
level of abstraction. Finally, we construct ConstraintNet for
the considered class of constraints C by applying the layers hθ
and the corresponding constraint guard layer φ subsequently:

fθ(x, s) = φ
(
hθ(x, g(s)), s

)
. (5)

The required property for φ in Eq. (4) implies that Con-
straintNet predicts within the constrained output space C(s)
according to Eq. (3). Furthermore, the constraint guard layer
propagates gradients and backpropagation is applicable.

6814

Construction by Modifying a CNN. Figure 2 illustrates
the construction of ConstraintNet by using a convolutional
NN (CNN) for the generation of the intermediate variable
z=hθ(x, g(s)), where hθ is a CNN. As an example, a nose
landmark detection task on face images is shown. The output
constraints are triangles randomly located around the nose,
i.e. convex polytopes with three vertices. Such constraints
can be specified by a constraint parameter s consisting of the
concatenated vertex coordinates. The constraint guard layer
φ for convex polytopes is modeled in the next section and
requires a 3-dimensional intermediate variable z ∈ R3 for
triangles. The previous layers hθ map the image data x∈X
on the 3-dimensional intermediate variable z∈R3. A CNN
with output domain Z = RN can be realized by adding a
dense layer with N output neurons and linear activations.
To incorporate the dependency of hθ on s, we suggest to
concatenate the output of an intermediate convolutional layer
by a tensor representation g(s) of s. Thereby, we extend the
input of the next layer in a natural way.

Constraint Guard Layer for Different Classes of
Constraints
Convex Polytopes. We consider convex polytopes P in
RN which can be described by the convex hull of M vertices
{v(i)}Mi=1 of dimension N :

P
(
{v(i)}Mi=1

)
=
{∑

i

piv
(i) : pi≥0,

∑

i

pi=1
}
. (6)

We assume that the vertices v(i)(s) are functions of the
constraint parameter s and define output constraints via
C(s) = P({v(i)(s)}Mi=1). The constraint guard layer for a
class of these constraints C = {C(s) : s ∈ S} can be con-
structed with z∈RM :

φ(z, s) =
∑

i

σi(z)v
(i)(s). (7)

σi(·) denotes the ith component of the M -dimensional soft-
max function σ : RM→RM . The required property of φ in
Eq. (4) follows directly from the properties 0<σi(·)<1 and∑
i σi(·)=1 of the softmax function. However, the boundary

of the convex polytope is not reachable exactly but up to arbi-
trary accuracy because σi(·) 6=1. Note that φ is differentiable
w.r.t. z.

Sectors of a Circle. Consider a sector of a circle O with
center position (xc, yc) and radius R. We assume that the
sector is symmetric w.r.t. the vertical line x=xc and covers
Ψ radian. Then, the sector of a circle can be described by the
following set of points:

O(xc, yc, R,Ψ) =
{
r ·(sinϕ, cosϕ)+(xc, yc)∈R2 :

r∈ [0, R], ϕ∈ [−Ψ/2,+Ψ/2]
}
. (8)

With s=(xc, yc, R,Ψ), the output constraint can be written
as C(s) =O(xc, yc, R,Ψ). The following constraint guard
layer with an intermediate variable z∈R2 fulfills Eq. (4) for
a class of these constraints C={C(s) : s∈S}:

Algorithm 1 Training algorithm for ConstraintNet. The con-
straint parameter si for a data point (xi, yi) is sampled from
a set of valid parameters Syi ={s∈S : yi∈C(s)}.

procedure TRAIN({xi, yi}Ni=1)
θ ← random initialization
for batch do

Ibatch ← get_indices(batch)
for i ∈ Ibatch do

si ← sample(Syi)
ŷi ← fθ(xi, si) . ConstraintNet

end for
L(θ)← 1

|Ibatch|
∑
i∈Ibatch

l(yi, ŷi)+λR(θ)

θ ← update(θ,∇θL)
end for
return θ

end procedure

φ(z, s) = r(z1)·
(
sinϕ(z2), cosϕ(z2)

)
+(xc, yc), (9)

with r(z1)=R·sig(z1) andϕ(z2)=Ψ·(sig(z2)−0.5). Note
that we use the sigmoid function sig(t)=1/(1+exp(−t)) to
map a real number to the interval (0, 1).

Constraints on Output Parts. We consider an output
y = (y(1), . . . , y(K)) ∈ Y = Y(1)×· · ·×Y(K) with K parts
y(k) (k∈{1, . . . ,K}). Each output part y(k) should be con-
strained independently to an output constraint C(k)(s(k)) of a
part-specific class of constraints C(k) ={C(k)(s(k))⊂Y(k) :
s(k) ∈ S(k)}. This is equivalent to constrain the overall
output y to C(s) = C(1)(s(1))×· · ·×C(K)(s(K)) with s =
(s(1), . . . , s(K)). The class of constraints for the overall out-
put is then given by C = {C(s)⊂Y : s∈S(1) × · · · × S(K)}.
Assume that the constraint guard layers for the parts φ(k) are
given, i.e. for C(k). Then, an overall constraint guard layer φ,
i.e. for C, can be constructed by concatenating the constraint
guard layers of the parts:

φ(z, s) =
(
φ(1)(z(1), s(1)), . . . , φ(K)(z(K), s(K))

)
, (10)

with z = (z(1),. . . ,z(K)). The validity of the property in
Eq. (4) for φ w.r.t. C follows immediately from the validity
of this property for φ(k) w.r.t. C(k).

Training
In supervised learning, the parameters θ of an NN are
learned from data by utilizing a set of input-output pairs
{(xi, yi)}Ni=1. However, ConstraintNet has an additional in-
put s∈S which is not unique for a sample. The constraint
parameter s provides information in form of a region restrict-
ing the true output. Therefore, the constraint parameter si
for a sample (xi, yi) could be any element of a set of valid
constraint parameters Syi ={s∈S : yi∈C(s)}. We propose
to sample si from this set Syi to create representative input-
output pairs (xi, si, yi). This sampling procedure enables
ConstraintNet to be trained with standard gradient descent

6815

a)

x̂n
l(x) u(x)

b)

x̂le

x̂re

l(x) u(x)

l(x)

u(x)

c)

ŷrel(y)
u(y)

ŷn

ŷle

l(y)

u(y)

l(y)

u(y)

Figure 3: Combining the bounding box constraints with rela-
tive relations between landmarks is equivalent to constrain-
ing the output parts ŷ(1) = x̂n to the line segment in a),
ŷ(2) =(x̂le, x̂re) to the triangle in b), and ŷ(3) =(ŷn, ŷle, ŷre)
to the pyramid in c).

algorithms for NNs as shown in Algorithm 1. Note that many
input-output pairs can be generated for the same data point
(xi, yi) by sampling different constraint parameters si. There-
fore, ConstraintNet is forced to learn an invariant prediction
for the same sample under different constraint parameters.

Supported Constraints and Generalizations
In general, an output constraint C is applicable if a differ-
entiable parametric equation φ exists for C. Consequently,
the presented constraints are exemplary and our goal is to
encourage the construction of own constraint guard layers de-
pending on the problem at hand. The following ideas should
give a glimpse of ConstraintNet’s broad applicability.
• ConstraintNet can be generalized to classification tasks by

constraining the logit space.
• To ensure the satisfaction of each constraint of a set
{Ci}i∈I , we propose to parametrize the intersection C=⋂
i∈I Ci. E.g. in the following of the paper, in the facial

landmark detection task we combine bounding box con-
straints with relative constraints in this way (compare
Eqs. (11, 12, 13)).

• To ensure the satisfaction of at least one constraint of a
set {Ci}i∈I , we propose to predict within each Ci. For the
decision whether Ci covers the ground truth, associated
probabilities can be predicted with an additional softmax
layer. E.g. then, non-convex polytopes are feasible by par-
titioning the polytope into a triangle (convex polytope)
mesh.

• ConstraintNet is also capable to deal with unbounded re-
gions. E.g. for predicting ŷ ∈R above a threshold b, we
propose the constraint guard layer φ(z, s) = exp(z)+b
with the constraint parameter s=b given by the threshold.

Figure 4: Learning curves for ConstraintNet, the projection-
based approach and ResNet50. The plots show the mean
squared error as a function of the training progress up to
the point when overfitting begins. a) For bounding box (bb)
constraints and additional enforcing of relations between
landmarks (bb+rel). b) For triangle (4) and sector of a circle
constraints (O).

Experiments
In this section, ConstraintNet is applied to facial landmark
detection tasks and a follow object controller for vehicles.
The output constraints for the facial landmark detection tasks
restrict the solution space to consistent outputs, whereas the
constraints for the follow object controller are modeled to
improve safety.

Consistent Facial Landmark Detection1

In this experiment, we consider a facial landmark detection
on images of the Large-scale CelebFaces Attributes (CelebA)
dataset (Liu et al. 2015) and evaluate ConstraintNet for differ-
ent classes of constraints. Each image of the CelebA dataset
pictures one face.

Modified ResNet50 Architecture. We construct Con-
straintNet by modifying ResNet50 (He et al. 2016) according
to Figure 2 and the approach described in the previous section.
The modifications comprise adapting the output dimension
of the final dense layer with linear activations to match the re-
quired dimension of z, adding the constraint guard layer φ for
the considered class of constraints C, and concatenating the
representation g(s) of the constraint parameter s to the output
of an intermediate layer. As intermediate layer, we choose the
22nd layer which is roughly in the middle of ConstraintNet
and followed by further 27 convolutional layers. It is known
that the first convolutional layers recognize image features
with a low-level of abstraction, e.g. edges. The idea is to add
g(s) later when already high-level abstractions are extracted.
However, it would be interesting to analyze if optimizing the
layer for g(s) would improve performance further. We de-
fine g(s) as tensor and identify channels c∈{1, . . . , dim(s)}

1https://github.com/mbroso/constraintnet_facial_detect

6816

Method (Constraint) MSE(x̂n) MSE(ŷn) MSE(x̂le) MSE(ŷle) MSE(x̂re) MSE(ŷre) MSE(ŷ) Runtime

ConstraintNet (bb) 2.17±0.04 1.63±0.05 1.88±0.05 1.92±0.06 2.06±0.06 1.57±0.04 11.23±0.16 (33.2± 0.2) s
projection (bb) 1.84±0.06 1.71±0.10 2.00±0.10 2.03±0.08 2.93±0.09 1.48±0.06 11.99±0.35 (64.8± 0.5) s
ConstraintNet (bb+rel) 1.43±0.05 1.76±0.05 1.80±0.04 1.62±0.06 1.69±0.04 1.39±0.03 9.70±0.10 (33.7± 0.4) s
projection (bb+rel) 1.62±0.06 1.95±0.09 1.78±0.06 1.74±0.08 1.91±0.05 1.43±0.06 10.44±0.25 (67.5± 0.8) s
ResNet50 (None) 3.28±0.76 2.40±0.34 3.78±0.80 2.20±0.22 3.82±0.78 1.93±0.27 17.42±2.89 (32.9± 0.2) s

ConstraintNet (4) 1.44±0.03 1.59±0.04 – – – – 3.03±0.05 (34.2± 0.7) s
projection (4) 1.63±0.04 1.66±0.06 – – – – 3.30±0.08 (295.5± 0.8) s
ConstraintNet (O) 2.17±0.05 4.15±0.14 – – – – 6.33±0.15 (33.4± 0.4) s
ResNet50 (None) 4.24±0.53 3.78±0.37 – – – – 8.02±0.67 (32.9± 0.2) s

Table 1: Mean squared error (MSE) for facial landmark detection with ConstraintNet, ResNet50 with projection layer, and pure
ResNet50 on test set of CelebA dataset. Results are shown for constraints in form of bounding boxes (bb), additional constraints
to enforce a relative arrangement (bb+rel), triangle (4), and sector of a circle constraints (O). The average covered area of the
triangle constraints is (2345± 6) px2 and the area of the sector of the circle constraints (2040± 8) px2. Further, the runtimes for
performing predictions on all instances of the test set of the CelebA dataset are shown. The times are measured on a Lambda
Quad (CPU: 12x Intel Core i7-6850K 3.6 GHz, GPU: 4x Nvidia 12 GB Titan V, RAM: 128 GB) using one of the four dedicated
graphics cards. All average values and the standard deviations are evaluated over 30 test runs.

with the components of the constraint parameter s, then we
set all entries within a channel to a rescaled value λc ·sc of
the corresponding constraint parameter component.

Constraints. We introduce constraints to confine the land-
mark detections for the nose (x̂n, ŷn), the left eye (x̂le, ŷle),
and the right eye (x̂re, ŷre) to a bounding box which might
be given by a face detector. The bounding box is specified by
a left l(x), a right u(x), a top l(y), and a bottom u(y) boundary.
Note that the y-axis starts at the top of the image and points
downwards. Confining the landmark detections to a bound-
ing box is equivalent to constrain x̂n, x̂le, x̂re to the interval
[l(x), u(x)] and ŷn, ŷle, ŷre to the interval [l(y), u(y)] indepen-
dently. These intervals are 1-dimensional convex polytopes
with the interval boundaries as vertices. Thus, the constraint
guard layers for the components are given by Eq. (7) and
the overall constraint guard layer φ(z, s) can be constructed
according to Eq. (10).

We extend the bounding box constraints to model relations
between landmarks. As an example, we enforce that the left
eye is in fact to the left of the right eye (x̂le≤ x̂re) and that
the eyes are above the nose (ŷle, ŷre≤ ŷn). To combine the
bounding box constraints Cbb with the relative constraints
Crel, we parametrize the intersection of both constraints Cbb∩
Crel. This intersection can be written as three independent
constraints for the output parts ŷ(1) = x̂n, ŷ(2) = (x̂le, x̂re),
ŷ(3) =(ŷn, ŷle, ŷre):

C(1)(s(1)) = {x̂n∈R : l(x)≤ x̂n≤u(x)}, (11)

C(2)(s(2)) = {(x̂le, x̂re)∈R2 : x̂le≤ x̂re,
l(x)≤ x̂le, x̂re≤u(x)}, (12)

C(3)(s(3)) = {(ŷn, ŷle, ŷre)∈R3 : ŷle, ŷre≤ ŷn,
l(y)≤ ŷn, ŷle, ŷre≤u(y)}, (13)

with constraint parameters s(1) = s(2) = (l(x), u(x)) and
s(3) = (l(y), u(y)). {C(k)}3k=1 are convex polytopes and vi-

sualized in Figure 3. Thus, the constraint guard layers for
the parts and the total one are given by Eq. (7) and Eq. (10),
respectively. In other words, for each output part a softmax
layer is applied in parallel to generate the weights for the ver-
tices of the convex polytopes in Figure 3. The first softmax is
of dimension two, the second one of dimension three, and the
third one of dimension five. Finally, each of the three output
parts is generated by an average weighting of the vertices of
the polytopes with the generated softmax probabilities.

Furthermore and for demonstration purposes, we only de-
tect the nose landmark and constrain the detection to a tri-
angle or a sector of a circle. The constraint guard layers for
triangles and sectors of a circle are given by Eq. (7) and
Eq. (9), respectively. Figure 2 visualizes ConstraintNet for
triangle constraints.

Training and Results. For a fair comparison, we create a
baseline by substituting the constraint guard layer of Con-
straintNet with a differentiable optimization layer in form
of a projection (Agrawal et al. 2019). The projection layer
outputs an element within the constrained region with the
shortest Euclidean distance to its input according to Eq. (2).
Analogous to ConstraintNet, the projection-based approach
gets g(s) as an additional input and is trained end-to-end.
Further, we compare to ResNet50 without constraints. Fig-
ure 4 shows the learning curves of ConstraintNet and the
projection-based approach for the different output constraints.
For further comparison, the learning curve of pure ResNet50
is depicted which is trained for the same task without con-
straints. ConstraintNet and the projection-based approach are
trained according to Algorithm 1 with randomly generated
bounding boxes, triangles, and sectors of a circle. We observe
that ConstraintNet and the projection-based approach con-
verge significantly faster than the ResNet50 baseline. This
can be explained by the added domain knowledge in form of
output constraints. The projection-based approach requires
even fewer epochs than ConstraintNet. However, the total
training time is higher due to longer runtimes per epoch. The

6817

0 2 4 6 8 10
Time steps (1e5)

−0.6

0.0

0.6

1.2

A
ve

ra
ge

re
tu

rn
(1

e5
)

Unconstrained

Clipped unconstrained

ConstraintNet

Figure 5: Learning curves for ConstraintNet and (clipped)
unconstrained FOC. Bold lines show the average episode
return over six trials, shaded regions the standard deviation.
The maximum returns (vertical lines) are reached at time step
0.3e5, 3.95e5, and 5.25e5.

exact runtimes are given in the supplementary material which
is accessible on Github2. For an invariant prediction of the
same input under varying constraints, ConstraintNet learns an
intermediate representation z which depends on the constraint
parameter s. Whereas this mechanism requires training the
same input-output pairs under varying constraints, we have
the following arguments for our design choice: (1) This tech-
nique enforces ConstraintNet to incorporate the constraint
parameter. (2) Diverse decision paths for the same sample can
support regularization (Opitz and Shavlik 1995). (3) Learning
this additional relationship can be shared between all samples.
(4) To reduce training time and to avoid permutations, in all
experiments in the paper we defined an order on the vertices.

Besides training, we also apply the randomly generated
constraints for evaluation on the test set. Table 1 shows the
mean squared error on the test set for ConstraintNet and the
projection-based approach with different output constraints.
Further, results are shown for ResNet50 without constraints.
ConstraintNet reaches for all considered constraints lower
mean squared errors than the projection-based approach. The
comparison to ResNet50 without constraints shows that both
methods utilize the information encoded in the constraint.
This is in accordance with the observation that the perfor-
mance for constraints which enforce an additional relative
arrangement improve over just bounding box constraints. In
comparison to original ResNet50, ConstraintNet requires al-
most no additional time for predicting facial landmarks on the
complete test set. Contrary, the projection-based approach
solves an optimization problem for each instance and the
runtimes are significantly higher.

Output Constraints on a Follow Object Controller
for Safe Reinforcement Learning3

Adaptive cruise control (ACC) is a common driver assistance
system for longitudinal control. The follow object controller
(FOC) is part of the ACC and is activated when a vehicle
appears ahead. We call the vehicle with active FOC ego ve-

2https://github.com/mbroso/constraintnet_facial_detect
3https://github.com/mbroso/constraintnet_foc

0 2 4 6 8 10
Time steps (1e5)

0

15

30

45

60

C
ra

sh
ra

te
(%

) Unconstrained

Clipped unconstrained

ConstraintNet

Figure 6: Average crash rate during training over six trials for
ConstraintNet (slightly shifted for visualization) and (clipped)
unconstrained FOC. The crash rate is defined as fraction
of interrupted episodes with a maximum duration of five
minutes due to a collision with the target vehicle.

hicle and the vehicle ahead target vehicle. The output of the
FOC is a demanded acceleration aego,dem with the goal to
keep a velocity-dependent distance to the target vehicle un-
der consideration of comfort and safety aspects. We choose
a desired distance corresponding to a time gap of 2 s with a
modification to reach a distance of 3.2 m when stopping. The
input x of the FOC consists of several sensor measurements:
the distance to the target vehicle, the relative acceleration and
velocity of the target vehicle and the acceleration and veloc-
ity of the ego vehicle. Improving the FOC explicitly based
on expert knowledge and classical control theory leads to
models with an increasing number of adjustable parameters.
Adjusting these parameters is non-trivial. This motivates the
idea to implement the FOC as an NN aego,dem =nθ(x) and
learn the parameters θ in a reinforcement learning setting
(Desjardins and Chaib-draa 2011).

Modified Fully Connected Neural Network. Implement-
ing the FOC with a common NN comes at the ex-
pense of losing safety guarantees. However, ConstraintNet
aego,dem =fθ(x, s) allows to confine the demanded accelera-
tion aego,dem to a safe interval [amin, amax] in each forward
pass independently. We utilize an NN with three fully con-
nected layers to generate the intermediate variable z ∈R2.
Each layer consists of 256 neurons. The interval [amin, amax]
is an 1-dimensional convex polytope and the constraint guard
layer is given by Eq. (7). I.e. a 2-dimensional softmax layer
generates the weights for interpolating between amin and
amax. For the representation g(s), we choose a simple nor-
malization procedure. Instead of inserting g(s) at an interme-
diate layer, we add it to the input due to the small size of the
NN.

Constraints. The upper bound amax restricts the acceler-
ation to avoid collisions. For deriving amax, we extrapolate
the trajectory of the target vehicle, consider a response time
for the demanded acceleration, and require that a breaking
maneuver without violating maximum jerk and deceleration
bounds does not lead to an undershooting of a minimum
distance to the target vehicle. The derivation of this bound is
related to the Responsibility-Sensitive Safety model (Shalev-

6818

NN for policy Time steps (1e5) MCrashRate MSafety MDiscomfort MTrackErr

ConstraintNet 10.0 0.0± 0.0% 0.88± 0.01 0.61± 0.04 1.1± 0.3
Unconstrained (clipped) 10.0 (10.0) 0.7±0.9% (0.0%) 0.81±0.04 (0.85) 0.63±0.04 (1.52) 2.1±1.2 (4.8)

ConstraintNet 3.95 0.0± 0.0% 0.88± 0.01 0.69± 0.07 1.2± 0.3
Unconstrained (clipped) 5.25 (0.3) 3.7±4.6% (0.0%) 0.75±0.04 (0.76) 0.53±0.05 (1.04) 1.6±0.2 (3.7)

Table 2: For ConstraintNet and a (clipped) unconstrained NN used as policy, the table shows the average value and the standard
deviation of the crash rate MCrashRate (lower means safer), a safety metric MSafety (higher means safer), a metric measuring the
discomfort MDiscomfort (lower means more comfortable), and a tracking metric MTrackErr (lower is better). For each trial, a
training is performed with the specified number of time steps (compare Figure 5), then the metrics are evaluated on 100 episodes
with a maximum duration of five minutes.

Shwartz, Shammah, and Shashua 2017), however with re-
laxed assumptions. The minimum acceleration amin is mod-
eled to prevent driving in reverse direction. Furthermore,
amin is clipped to restrict the maximum deceleration to the
operational limits of the ACC according to ISO15622 (The
International Organization for Standardization 2018).

Training and Results. We train the FOC in a simulator
with a variety of different traffic scenarios: target vehicle with
constant and varying speed, stop-and-go traffic, randomly oc-
curring lane changes of the target vehicle, and cutting-in
vehicles. In terms of reinforcement learning, the ego vehicle
represents the agent and the FOC the policy. For training,
we choose the Twin Delayed DDPG (TD3) algorithm (Fu-
jimoto, Van Hoof, and Meger 2018), a deep reinforcement
learning algorithm for continuous control problems. We use
ConstraintNet and a corresponding fully connected NN with-
out constraints for the policy. In a third policy, we additionally
clip the demanded acceleration of the unconstrained NN to
the safe interval. Contrary to sampling the constraint parame-
ter (Algorithm 1), one valid constraint parameter is computed
per sample and given by s = (amin, amax). We design the
reward function to take functional, safe, and comfortable
driving into account. The modeling of functional and safe
behavior is based on Desjardins and Chaib-draa (2011) and
extended by a punishment of the demanded acceleration and
jerk of the ego vehicle to increase driving comfort. For evalu-
ation, we analyze several metrics: The crash rate MCrashRate

indicates the percentage of interrupted episodes due to a col-
lision with the target vehicle. Further, we define a safety
metric (MSafety), a discomfort metric (MDiscomfort), and the
tracking error (MTrackErr):

MSafety = 〈min(
mint∈[1,T] τt

τset
; 1)〉 ∈ [0, 1], (14)

MDiscomfort = 〈m1
1

T

T∑

t=1

a2ego,t +m2
1

T

T∑

t=1

j2ego,t〉, (15)

MTrackErr = 〈m0
1

T

T∑

t=1

(τset − τt)2〉. (16)

Here, t is the index for the time step within an episode [1, T],
τ is the current time gap, τset = 2 s is the set time gap, and
m0 =1 s−2, m1 =1 s4 m−2, m2 =0.5 s6 m−2 are weighting

factors for the tracking error, the squared acceleration aego,
and the squared jerk jego. The metrics are averaged over 100
episodes and each episode has a maximum duration of five
minutes corresponding to T = 3000 timestamps.

Figure 5 shows the average episode return during training.
The ConstraintNet-based training converges fast and shows
the most stable results. Figure 6 compares the crash rates
of the three policies during training and shows that the cho-
sen constraints prevent collisions efficiently. In rare cases,
collisions might still occur due to a closely cutting in vehicle.

Table 2 summarizes several evaluation metrics measured
after training. ConstraintNet performs with the lowest track-
ing error and reaches the best safety scores. Most comfortable
driving is reached with an unconstrained NN at the expense
of a high crash rate.

Conclusion
In this paper, we have presented ConstraintNet—a scalable
neural network architecture with the capability to constrain
the space of possible predictions in each forward pass inde-
pendently. The validity of the output constraints has been
proven and originates from the design of the architecture.
Aiming to reach researchers of different domains, we focused
on a general mathematical formalization which is applicable
to output constraints of arbitrary parameterizable geometries.
For output constraints in form of convex polytopes, we pro-
posed a parametrization based on the vertex representation.
Our experiments on facial landmark detection tasks have
shown improved performance and clearly reduced runtimes
over performing a projection on the constrained output re-
gion with a differentiable optimization layer. Furthermore,
ConstraintNet is applicable to safety-critical applications by
defining appropriate safe sets as output constraints. e.g. to
include safety rules of the Responsibility-Sensitive Safety
model (Shalev-Shwartz, Shammah, and Shashua 2017) for
self-driving cars. As an example, we considered a follow
object controller, applied ConstraintNet as policy, and trained
it with a deep reinforcement learning algorithm. By defining
safe sets with explicit rules, rear-end collisions have been
efficiently avoided. Furthermore, ConstraintNet improved the
stability of the learning behavior and performance. In future
research, we plan to investigate more complex output con-
straints and to explore constraints between different outputs
in multi-task learning.

6819

Acknowledgments
We thank especially Daniel Slieter, Christian Hubschneider,
and Eric Wahl for the valuable and inspiring discussions
and the continuous feedback to previous versions of this
manuscript. We also thank the team of the Innovation Cam-
pus from the Porsche AG for feedback, input, and profound
discussions.

Ethical Impact
Major achievements in challenging learning tasks have re-
sulted in a broad attention of neural networks and artificial
intelligence in research, technology, politics and society. Con-
trary, the black-box behavior of neural networks (Gilpin et al.
2018; Rudin 2019) limits their further expansion and reduces
the trust of the society in these algorithms (Toreini et al. 2020).
With ConstraintNet, we propose a general methodology to
mitigate the potential risk of the black-box by excluding haz-
ardous outputs in the first place. However, the identification
of reasonable output constraints needs to be carefully deter-
mined, biases the data-driven decision process and might be
misused. In the following, we discuss the potential benefits
and risks.

The output constraints of ConstraintNet are promising for
the implementation and verification of requirements in neural
networks. This is important for applying neural networks
in safety-critical technology, e.g. for ensuring compliance
with norms and standards (Nistér et al. 2019; Shalev-Shwartz,
Shammah, and Shashua 2017; The International Organiza-
tion for Standardization 2019). In this paper, ConstraintNet
has been applied to a follow object controller for vehicles
and appropriate constraints have been proven to prevent col-
lisions efficiently. As a more complex application, a motion
planner for an autonomous driving system may be consid-
ered. In this case, ConstraintNet would predict parameters
of a trajectory (e.g. the curvature) for a given representation
of the environment. However, only a subset of the trajec-
tory parameter space (e.g. an interval of curvatures) would
correspond to safe trajectories (e.g. in line with traffic reg-
ulations and collision free w.r.t. objects in the environment
representation). The output constraints could be utilized to
constrain the prediction of ConstraintNet only to trajectory
parameters corresponding to safe trajectories. We conclude
that ConstraintNet increases safety and promotes trust.

Verifiable output constraints might contribute to expand
the range of applications for neural networks and increase the
level of industrial automation further, e.g. when applied to
driving functions in self-driving cars. On the one hand, this is
beneficial and products or services become affordable for a
broader class of the population. On the other hand, industrial
automation often replaces human jobs.

Furthermore, there is a risk of misusing output constraints
or applying them wrongly by accident with harmful implica-
tions, e.g. leading to a manipulation or discrimination (Baro-
cas, Hardt, and Narayanan 2019; Hardt, Price, and Srebro
2016). This is conceivable in a data-driven assessment of
individuals or an automated selection of applicants for ad-
mission. However, conventional neural networks might learn
discriminatory behavior as well. In future research, it would

be interesting to investigate if output constraints can even
help to achieve fairness.

Note, modeling output constraints inherently requires bal-
ancing between positive and negative impacts. Finally, we
strongly recommend a responsible and careful design of out-
put constraints when applying ConstraintNet.

References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Zico Kolter, J. 2019. Differentiable Convex Optimiza-
tion Layers. In Advances in Neural Information Processing
Systems 32, 9562–9574.

Amos, B.; and Kolter, J. Z. 2017. OptNet: Differentiable
Optimization as a Layer in Neural Networks. In Proceedings
of the 34th International Conference on Machine Learning,
136–145.

Barocas, S.; Hardt, M.; and Narayanan, A. 2019. Fairness
and Machine Learning. fairmlbook.org, accessed 8/14/2020.

Cui, H.; Nguyen, T.; Chou, F.-C.; Lin, T.-H.; Schneider, J.;
Bradley, D.; and Djuric, N. 2020. Deep Kinematic Models
for Kinematically Feasible Vehicle Trajectory Predictions.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 10563–10569.

Dalal, G.; Dvijotham, K.; Vecerik, M.; Hester, T.; Paduraru,
C.; and Tassa, Y. 2018. Safe Exploration in Continuous
Action Spaces. In arXiv preprint arXiv:1801.08757.

Desjardins, C.; and Chaib-draa, B. 2011. Cooperative Adap-
tive Cruise Control: A Reinforcement Learning Approach.
IEEE Transactions on Intelligent Transportation Systems 12:
1248–1260.

Fujimoto, S.; Van Hoof, H.; and Meger, D. 2018. Addressing
Function Approximation Error in Actor-Critic Methods. In
Proceedings of the 35th International Conference on Machine
Learning, 1587–1596.

Gilpin, L. H.; Bau, D.; Yuan, B. Z.; Bajwa, A.; Specter, M.;
and Kagal, L. 2018. Explaining Explanations: An Overview
of Interpretability of Machine Learning. In Proceedings of
the IEEE 5th International Conference on Data Science and
Advanced Analytics, 80–89.

Gros, S.; Zanon, M.; and Bemporad, A. 2020. Safe Rein-
forcement Learning via Projection on a Safe Set: How to
Achieve Optimality? In arXiv preprint arXiv:2004.00915.

Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of Op-
portunity in Supervised Learning. In Advances in Neural
Information Processing Systems 30, 3323–3331.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.

Karpatne, A.; Watkins, W.; Read, J.; and Kumar, V. 2017.
Physics-guided Neural Networks (PGNN): An Applica-
tion in Lake Temperature Modeling. In arXiv preprint
arXiv:1710.11431.

6820

Lezcano-Casado, M.; and Martínez-Rubio, D. 2019. Cheap
Orthogonal Constraints in Neural Networks: A Simple
Parametrization of the Orthogonal and Unitary Group. In Pro-
ceedings of the 36th International Conference on Machine
Learning, 3794–3803.
Li, T.; and Srikumar, V. 2019. Augmenting Neural Networks
with First-order Logic. Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics 292–
302.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep Learning
Face Attributes in the Wild. In Proceedings of the IEEE
International Conference on Computer Vision, 3730–3738.
Márquez-Neila, P.; Salzmann, M.; and Fua, P. 2017. Im-
posing Hard Constraints on Deep Networks: Promises and
Limitations. In arXiv preprint arXiv:1706.02025.
Nistér, D.; Lee, H.-L.; Ng, J.; and Wang, Y. 2019. The Safety
Force Field. In NVIDIA White Paper.
Opitz, D. W.; and Shavlik, J. W. 1995. Generating Accurate
and Diverse Members of a Neural-Network Ensemble. In
Advances in Neural Information Processing Systems 8, 535–
541.
Rudin, C. 2019. Stop explaining black box machine learning
models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence 1: 206–215.
Shalev-Shwartz, S.; Shammah, S.; and Shashua, A. 2017. On
a Formal Model of Safe and Scalable Self-driving Cars. In
arXiv preprint arXiv:1708.06374.
The International Organization for Standardization. 2018.
Adaptive Cruise Control. In ISO 15622.
The International Organization for Standardization. 2019.
Road vehicles — Safety of the intended functionality. In
ISO/PAS 21448.
Toreini, E.; Aitken, M.; Coopamootoo, K.; Elliott, K.; Ze-
laya, C. G.; and van Moorsel, A. 2020. The relationship
between trust in AI and trustworthy machine learning tech-
nologies. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 272–283.
Zadeh, A.; Baltrušaitis, T.; and Morency, L.-P. 2017. Convolu-
tional Experts Constrained Local Model for 3D Facial Land-
mark Detection. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, 2519–2528.

6821

