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Abstract

Weight decay (WD) is a traditional regularization technique
in deep learning, but despite its ubiquity, its behavior is still
an area of active research. Golatkar et al. have recently shown
that WD only matters at the start of the training in computer
vision, upending traditional wisdom. Loshchilov et al. show
that for adaptive optimizers, manually decaying weights can
outperform adding an l2 penalty to the loss. This technique
has become increasingly popular and is referred to as decou-
pled WD. The goal of this paper is to investigate these two re-
cent empirical observations. We demonstrate that by applying
WD only at the start, the network norm stays small through-
out training. This has a regularizing effect as the effective
gradient updates become larger. However, traditional gener-
alizations metrics fail to capture this effect of WD, and we
show how a simple scale-invariant metric can. We also show
how the growth of network weights is heavily influenced by
the dataset and its generalization properties. For decoupled
WD, we perform experiments in NLP and RL where adaptive
optimizers are the norm. We demonstrate that the primary is-
sue that decoupled WD alleviates is the mixing of gradients
from the objective function and the l2 penalty in the buffers of
Adam (which stores the estimates of the first-order moment).
Adaptivity itself is not problematic and decoupled WD en-
sures that the gradients from the l2 term cannot ”drown out”
the true objective, facilitating easier hyperparameter tuning.

Introduction
The roots of weight decay (WD) go back to at least Tikhonov
[1943], and within the context of deep learning, it has been
used at least since 1987 [Hinton 1987]. Modern DNNs are
typically trained with WD [Tan and Le 2019, Huang et al.
2017]. The technique is also used in modern NLP (natural
language processing) [Ott et al. 2019, Radford et al. 2018]
but is less commonly used in reinforcement learning. De-
spite its ubiquity, there is still ongoing research on WD –
Golatkar, Achille, and Soatto [2019] have recently shown
that WD essentially only matters at the start of the train-
ing in computer vision. Additionally, Loshchilov and Hut-
ter [2017] have shown that WD interacts poorly with adap-
tive optimizers. The motivation of this paper is to investigate
and explain these recent empirical observations on WD. It is
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common to formulate WD as adding an l2 penalty 1
2λ‖w‖22

to a loss function L(w) = 1
|D|
∑
i∈D `i(w) for a dataset D

and weights w. For SGD with batch B and learning rate α
this leads to the following update

wt+1 = wt −
α

|B|∇
∑
i∈B

`i(wt)− αλwt (1)

By adding an l2 penalty term, the weights w are ”decayed”
by a factor (1−αλ) per update. Thus, it is common to use the
terms weight decay and l2 regularization interchangeably.

Background. The motivation for this work is to under-
stand two recent observations. The first observation comes
from Loshchilov and Hutter [2017], who show that for
Adam [Kingma and Ba 2014], manually decaying weights
can outperform an l2 loss. As the gradient of the l2 term
will appear both in the numerator and denominator of the
adaptive gradient step, these methods are not equivalent.
Loshchilov and Hutter [2017] dub this technique decou-
pled weight decay and perform experiments on small-scale
computer vision tasks, observing improved generalization
and increased hyperparameter stability. This strategy has be-
come increasingly popular [Wang et al. 2018, Radford et al.
2018, Carion et al. 2020, Liu et al. 2020] and is e.g. used in
the Facebook NLP repository fairseq [Ott et al. 2019]. How-
ever, the motivation for this approach is primarily empirical.
The second phenomenon we investigate is due to Golatkar,
Achille, and Soatto [2019] who show that in computer vi-
sion, applying WD only during say the first quarter of train-
ing is essentially as good as always applying it, and applying
it after the first quarter is roughly as good as never applying
it. We refer to these two schedules as early/late WD. We fo-
cus on the first quarter in this paper for concreteness but note
that the same trend holds beyond exactly the first quarter. We
will relate the observations of Golatkar, Achille, and Soatto
[2019] to the sharp/flat minima hypothesis of Keskar et al.
[2016] which essentially states that the noise in SGD biases
the network to flat minimizers which generalize well.

Our Contributions. Regarding observations of [Go-
latkar, Achille, and Soatto 2019], we show that the network
norm typically grows during the start, using WD early in
training then ensures that the gradient steps are large rela-
tive to the weights throughout training. This has a regulariz-
ing effect, but traditional metrics of generalization [Keskar
et al. 2016] do not consistently capture this. We provide
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Figure 1: (Top.) Golatkar, Achille, and Soatto [2019] have shown that for image classification, starting WD only after epoch 50
brings little benefit, whereas stopping it after epoch 50 performs on par with using it throughout the training. (Bottom.) The l2
norm of the weights increases dramatically at the start. Applying WD only during early parts of training ensures small weights
throughout the optimization process. By applying WD late, it takes many epochs for the norm to shrink. We also plot curves
for networks trained on datasets with shuffled labels and note that weight norms grow less under such settings.

a scale-invariant metric to remedy this issue. We further
demonstrate that dataset generalization properties signifi-
cantly influence weight growth. Regarding observations due
to Loshchilov and Hutter [2017], it is natural to believe
that l2 regularization and adaptivity are incompatible. We
demonstrate that across RL (reinforcement learning) and
NLP task, this is not the issue that decoupled weight decay
solves, but instead that the gradients of l2 terms can ”drown”
the gradient of the true objective function in the buffers of
Adam [Kingma and Ba 2014] (which stores estimates of the
first and second-order moments of gradients). By decoupling
the WD, the buffers are not shared between l2 regularization
and the true objective function, avoiding this mixing and fa-
cilitating hyperparameter tuning. We find no increase in ab-
solute performance over sufficiently tuned WD, suggesting
that hyperparameter stability rather than improved accuracy
might be primarily responsible for decoupled WDs popu-
larity. We conclude with lessons for practitioners regarding
tuning and using WD.

On the Temporal Dynamics of Weight Decay
For investigating observations in Golatkar, Achille, and
Soatto [2019] we replicate their experimental setup with
identical hyperparameters (listed in the Appendix), training
Resnet18 on Cifar10 and Resnet50 on Cifar100. We addi-

tionally provide experiments on tiny-imagenet [Karpathy,
Li, and Johnson 2017 (accessed 2020-01-01] using densenet
121 [Huang et al. 2017]. We consider this setting through-
out the paper. In Figure 1, we show the weight norm and
accuracy of networks with, without and with WD only af-
ter/before epoch 50 as per [Golatkar, Achille, and Soatto
2019]. We also consider a network with shuffled labels. We
see that the norms of the network grow primarily at the start.
By applying WD before epoch 50, we avoid the initial pe-
riod of growth, and the norm stays low throughout training.
Applying WD after epoch 50 results in many epochs before
the norm reaches levels comparable to using WD throughout
training.

Early/Late Weight Decay and Generalization. As per Fig-
ure 1, applying WD only at the start will ensure that the
weight norm stays low during training. However, it is not
clear why this would improve generalization; almost all net-
work layers use batch normalization and are thus invariant
under weight-rescaling. For a fixed learning rate and gradi-
ent, the effective change ∆w/w in the weights is smaller if
the weights have a larger scale – so decaying the weights in-
creases the ”effective” learning rate. A large learning rate
and small batches typically have a regularizing effect as
they induce noise into the training, and Keskar et al. [2016]
have shown that large batches lead to sharp minimizers with
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Figure 2: The sharpness of networks, typically used as a proxy for generalization, using different WD schemes. We compare four
metrics of sharpness: the largest hessian eigenvalues (compute via Yao et al. [2019], measured logarithmically), the sharpness
metric in Keskar et al. [2016] and additive/multiplicative perturbations. All metrics except multiplicative perturbations fail to
consistently explain the differences in generalization of Figure 1. The loss under multiplicative perturbations increases when
WD isn’t used, suggesting that a sharp minima hypothesis might explain observations of [Golatkar, Achille, and Soatto 2019].

poor generalization. Their explanation, which has garnered
much attention [Li et al. 2018], is essentially that networks
with sharp minima generalize worse as they are more sen-
sitive to the inherent shift between test/train surface. Keskar
et al. [2016] uses the following metric of sharpness (with
ε = 5e−4) for loss L(·) at a point x

max
y∈Cε

L(x+ y)− L(x)

L(x) + 1

Cε = {y ∈ Rn| − ε(1 + |xi|) ≤ yi ≤ ε(1 + |xi|)]}
(2)

In practice, L(x + y) is maximized by first-order methods.
Another common metric of sharpness is the largest eigenval-
ues of the Hessian [Iyer et al. 2020, Dinh et al. 2017]. In Fig-
ure 2, we plot these metrics and see that they typically give
wrong or inconsistent results – for example, the sharpness
metric of Keskar et al. [2016] suggests that disabling WD
yields flat minima which should generalize well – the oppo-
site of what we observe. We note that these metrics depend
upon the scale of the network, and as per Figure 1, we know
that networks without WD have larger norms. This motivates
us to consider metrics of sharpness which are invariant under
weigh scaling. We consider a simple scale-invariant metric
– multiplicative perturbations of the network weights

S(γ) = E
[
L(w � (1 + γδ))

]
δ ∼ N(0, I) (3)

That is, we scale each weight wi by (1 + γδi) where δi is a
standard normal variable, the intuition being that this metric
measures how the loss changes to small multiplicative per-
turbations, say γ ≈ 0.1. Note that this yields a metric simi-
lar to eq. (2), with the chief difference being in how ”small
perturbations” are defined. The expectation is computed by
sample averages.

Figure 2 illustrates this metric (referred to as ”multiplica-
tive”), showing that it gives results consistent with Golatkar,
Achille, and Soatto [2019]. We also show the results of
an additive perturbation, which is analogous to multiplica-
tive ones except that we take w + γδ. Note that it fails to
capture generalization. Thus, we show that the explanation
that sharp networks generalize worse can be applied to the
empirical observations on early/late WD due to Golatkar,
Achille, and Soatto [2019] if one is careful regarding what is
meant by sharpness. Our experiments also suggest that the
effects of early/late WD are primarily mediated by modi-
fying the effective learning rate ∆w/w. To further solidify
this hypothesis, we train networks without WD, but inspired
by Zhang et al. [2018], we manually scale the weights after
each epoch to match the norm of another network trained
with WD. Figure 3 shows that just scaling the weight norms
is enough to achieve the results of Golatkar, Achille, and
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Figure 3: Learning curves for DNNs trained without WD with weights scaled to match norms in Fig. 1, and the original learning
curves that these DNNs are made to match. Scaling the weights roughly matches the performance of various WD schedules,
suggesting that WD mediates the observations of Golatkar, Achille, and Soatto [2019] through a simple scaling mechanism.

Soatto [2019]. See the Appendix for further experiments
without batch normalization and discussion.

On Causes for Weight Growth. We have seen how apply-
ing WD early results in small weights throughout training
on computer vision datasets, increasing the effective learn-
ing rate ∆w/w. It is natural to believe that the network norm
always grows during early parts of training, we here demon-
strate that that’s not the case. Instead, the tendency of weight
norms to grow is related to the dataset and its generaliza-
tion properties. In Figure 1, we see that the weight norm of
a network with shuffled labels stays almost constant during
training. It’s natural to wonder if the gradient norm might
simply be smaller for shuffled labels, but this turns out to not
be true, see the Appendix. Indeed, the weights of networks
trained on shuffled labels move significantly, just not in the
radial direction, which would increase the weight norm, see
the Appendix. With shuffled labels, the dataset has the same
images, but training on such a dataset will not generalize to a
test set. This suggests that dataset generalization properties
have an important influence on weight norms, which in turn
modulates effective learning rates. To understand why the
weights grow differently using original or shuffled labels,

let us consider the weight norm change for an SGD update

‖wt+1‖2 − ‖wt‖2 = α2‖∇`t‖2︸ ︷︷ ︸
square term

+ 2α〈−∇`t, wt〉︸ ︷︷ ︸
cross term

(4)

There are two terms responsible for the increasing weights,
a term that only depends on the gradient update and a cross
term relating the direction of the gradient and the weights.
In Figure 4, we illustrate how these two terms vary during
optimization and find that the cross term is responsible for
the lions share of the weight growth. Let us further divide
the loss function into two parts representing the correct class
and the normalization constant used in softmax

`t(x) =
1

|B|
∑
i∈B xi,label[i]︸ ︷︷ ︸

`pos

− log
(∑

j exp(xij)
)︸ ︷︷ ︸

`neg

(5)

By linearity we of course have∇`t = ∇`pos+∇`neg and thus
〈∇`t, wt〉 = 〈∇`pos, wt〉+ 〈∇`neg, wt〉. In Figure 5 (top) we
show how these two terms vary during optimization, observe
that −∇`pos points along the weights while −∇`neg points
away from the them. In light of Figure 4, we conclude that
weight norms increases due to the gradient pointing roughly
in the radial direction w, scaling up many weights wi. Can
this interpretation explain why shuffled labels lead to no
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Figure 4: The contributions to the change in weight norm for the square and cross terms, defined in (4). The cross term dominates
and thus the norm grows primarily in the radial direction, scaling up subsets of the weights that align with the gradient.
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Figure 5: (Top.) We divide the cross entropy loss into two parts as per (5). The cosine between the weight vectorw and−∇`pos is
positive whereas the cosine between w and −∇`neg is negative. This suggests that network norm increases as subset of weights
responsible for correct predictions grow in magnitude. (Bottom.) cos(w,−`pos) with `pos defined as per (5). We see that for a
network with shuffled labels the gradient barely points in the radial direction, which would lead to less growth as per Figure 4.

weight growth? We first note that ∇`neg is invariant under
label permutations, and thus seek to look at ∇`pos. Figure
5 (bottom) instead plots cos(−∇`pos, wt) for the standard
network and a network with shuffled labels. There we see
a striking difference, for the network trained on the original
labels, the gradient typically points along thew whereas gra-
dients for networks using shuffled labels do not. To explain
this, consider e.g. the last mini-batch b we encounter in the
first pass over the dataset. If we use the original labels, all
images of e.g. dogs we have seen previously will likely push
the network weights to increase the prediction probability of
any dog pictures in batch b. Scaling up these weights will
then decrease the loss. If we use shuffled labels however,
simply scaling up network weights should not decrease the
loss on batch b, since there is no generalization from dog
pictures in previous batches. While an example with shuf-
fled labels might seem artificial, the phenomenon of datasets
influencing the weight norm growth happens in more natu-
ral settings such as RL. In the Appendix we show that the
network norm differ substantially between games when us-
ing identical hyperparameters for DQN [Mnih et al. 2015].
Thus, if norm growth is dataset dependent, the observations
of [Golatkar, Achille, and Soatto 2019] might only hold for
datasets with good generalization.

On Weight Decay for Adaptive Optimizers
Loshchilov and Hutter [2017] have proposed decoupled
weight decay for adaptive optimizers, where one decays
the weights by (1 − αλ) instead of adding a l2 penalty

to the loss. We investigate this scheme in two contexts
where adaptive optimizers are ubiquitous, NLP and RL. We
first consider translation of the IWSLT’14 German to En-
glish dataset [Cettolo et al. 2014] using transformer archi-
tectures [Vaswani et al. 2017] with code and default hy-
perparameters from the publicly available fairseq codebase
[Ott et al. 2019]. We consider λ ∈ {1e−3, 1e−4, 1e−5},
where the middle parameter is the default parameter used in
fairseq, see the Appendix for all hyperparameters. Secondly,
we also consider the RL agent DQN [Mnih et al. 2015],
using the publically available dopamine codebase [Castro
et al. 2018] with their default hyperparameters (see the Ap-
pendix), trained on a handful of Atari games, most having
been highlighted in previous work [Mnih et al. 2016]. The
three rightmost plots in Figure 7 shows that for translation,
WD under-performs decoupled WD except for the smallest
value of λ. Similarly, Figure 6 shows that decoupled WD
typically gives a sizable improvement in DQN, whereas WD
can have a markedly deleterious effect on performance. To
investigate why standard WD fails whereas decoupled WD
succeeds, let us consider the buffer that Adam maintains to
estimate the first moment of the gradient, which for loss
function ` and l2 loss is updated as

mt+1 ← (1− β1)mt + β1∇`+ β1λwi (6)

In the leftmost plot of Figure 7, we consider the NLP task
with WD turned off and show the distribution of the quantity
|mi|
|wi| for weight wi, which roughly measures the strength of
the gradient signal over the weight. The analogue illustration
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Figure 6: Learning curves for various Atari games with WD (λ = 0.0001). We compare decoupled WD [Loshchilov and
Hutter 2017], original WD, no WD and an Adam variant with separate buffers for the WD and gradient signal. Original WD
underperforms, whereas separating the buffers performs on par with decoupled WD. This suggests that the mixing of WD signal
with the gradients, rather than the adaptivity itself, is responsible for the poor performance of normal WD in this setting.

for DQN is found in the Appendix. In both these cases, we
see that the distribution of absolute values of this quantity
(plus ε for numerical stability) on a log scale, and see that
1) that the gradient signal is weak compared to the weight
and 2) the scales are different by orders of magnitude for
different weights. This means that the ratio between the gra-
dients from the true objective function (the gradient signal)
and the gradients from an l2 penalty differs significantly be-
tween individual weights wi. To avoid the WD signal dom-
inating over the gradient signal in (6), one would need to
set λ comparable to the smallest gradient signal. However,
this might result in a very small value for the parameter
with the largest gradient signal. Thus, effectively, the suit-
able ranges of λ are dictated by the strength of the gradient
signal. We can make this idea more precise with a scaling
argument. For l2 regularized Adam with weight wi and gra-
dient strength gi, equal to say the absolute value of an expo-

nential average of the gradients, should shrink until we reach
a steady state where λwi ≈ gi. If we assume that the ratio
mi/(

√
m2 + ε) of the Adam buffers are O(1) (i.e. the first

moment and the square of the second moment are compara-
ble), the effective update ∆wi/wi would be O(αλ/gi). For
decoupled weight decay, the weights would shrink only un-
til λwi = O(1) since Adam without WD is invariant under
scaling of the gradient gi. Thus the relative update ∆wi/wi
would be O(αλ). The important distinction is that the rel-
ative updates for decoupled WD only scales with hyperpa-
rameters we have control over, whereas for l2 regularization
it depends upon the dataset gradient signal which we cannot
control, do not know a priori, and which might vary between
parameters as per Figure 7.

This hypothesis predicts that the mixing of the WD sig-
nal and the gradient signal inside the Adam buffers is the
important distinction between decoupled WD and l2 regu-
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Figure 7: The leftmost figure illustrates the quantiles of log |miwi | during training of a transformer [Vaswani et al. 2017]. They
vary roughly two orders of magnitude, suggesting that the gradients for different parameters differ substantially. The three
following figures illustrate the translation quality, measured in bleu, for three different values of λ and three different weigh
decay schemes. Standard WD underperforms unless λ is taken small whereas separating the buffers matches decoupled WD.
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Beamr Breako Enduro Pong Qbert Seaq Spaceinv Timep λ

orig 2293 52 488 19 9624 4230 892 1379 0.0
decoupled 2843 77 545 22 11430 2956 1144 3136 1e−3
WD 579 1 62 -27 356 140 346 822 1e−3
separated 3310 62 560 22 11369 1283 969 1784 1e−3

decoupled 2406 48 501 20 8733 3043 1018 2146 1e−4
WD 666 1 298 -14 4746 614 522 1480 1e−4
separated 2535 57 502 21 10400 4231 889 1790 1e−4

decoupled 2481 58 517 21 10108 3358 956 699 1e−5
WD 2375 114 230 16 11181 4856 1153 2821 1e−5
separated 2367 47 565 21 8625 3055 846 2359 1e−5

WD 3257 89 589 21 11134 5095 1158 6707 1e−6
WD 2947 49 475 21 9867 3953 748 4633 1e−7
WD 2761 56 505 20 8384 4758 649 1927 1e−8

Table 1: Average scores over three seeds for various Atari games and WD schemes. Standard WD consistently fails whereas
most but not all games benefit from decoupled WD. Adding separate buffers, which stores estimates of the first and second order
moments of the gradients, for the normal gradient and weight decay signal gives performance roughly matching decoupled WD.
See the Appendix for learning curves with standard deviations.

larization, and not the adaptivity itself. By allowing sepa-
rate buffers in Adam (for both the first and second-order
moments) for the gradients of the true objective and an l2
penalty, we can investigate if the signal mixing indeed is
the problem. We thus consider Adam with duplicate buffers
mi,m

′
i, vi, v

′
i for the gradient and WD signal, see the Ap-

pendix for a formal description. Note that as the gradient of
the weight decay term appears in both the numerator and
denominator of the buffers, the magnitude of the update for
this scheme is invariant if the weight is rescaled, which is
different from decoupled WD. Table 1 and Figure 6 shows
the result of this experiment for DQN, and we see that sep-
arating the buffers indeed leads to performance comparable
to decoupled WD. Similarly, we can see for translation in the
three rightmost plots of Figure 7 that separating the buffers
matches the performance of decoupled WD. We see that for
sufficiently small λ, normal WD indeed does give an im-
provement in DQN. But what λ is sufficiently small differs
by at least an order of magnitude between games. Certain
games (e.g., Enduro or Pong) requires λ ≤ 1e−6 to give a
comparable performance of no WD, whereas 1e−4 suffices
for Timepilot. WD thus requires tuning λ, whereas decou-
pled WD is stable as observed by [Loshchilov and Hutter
2017]. We also note that WD sometimes outperforms de-
coupled WD, albeit with highly tuned λ, suggesting that
the popularity of decoupled WD might be due to hyperpa-
rameter stability rather than absolute performance improve-
ment. Indeed, state-of-the-art image classification network
efficientnet [Tan and Le 2019] does not use decoupled WD
for its adaptive optimizer.

Discussion
Related work. Weight decay has a long history as a regu-
larizer in machine learning [Hinton 1987, Krogh and Hertz
1992]. The hypothesis that flat minima generalize is well-

known [Hochreiter and Schmidhuber 1997], and has been
proposed to explain why large batch learning fails to gener-
alize [Keskar et al. 2016]. The most prominent critique of
the sharp-minima hypothesis comes from Dinh et al. [2017],
who proves that one can increase the sharpness of any given
minima by reparametrizing the network. Similar criticism
can be found in theoretical PAC-Bayes work [Tsuzuku, Sato,
and Sugiyama 2019, Rangamani et al. 2019, Yi et al. 2019,
Neyshabur et al. 2017], that only provides experiments for
large-vs-small batch sizes where standard sharpness metrics
work well in practice. Van Laarhoven [2017] noted how WD
would increase the relative size of gradient updates. This
perspective was empirically substantiated in Zhang et al.
[2018] who showed that this is the primary mechanism by
WD improves generalization and also argues for the condi-
tioning effect of decoupled WD. Zhang et al. [2018] is the
only previous work on decoupled WD that we are aware of,
whereas they primarily replicate experiments of [Loshchilov
and Hutter 2017] and discuss the KFAC optimizer, we focus
on explaining why decoupled WD improves hyperparameter
stability. We do not know any work explaining the observa-
tions of [Golatkar, Achille, and Soatto 2019].
Lessons for practitioners. Our work points towards a few
directly actionable insights. 1) Decoupled WD is useful in
q-learning despite not being broadly used. However, dif-
ferent environments may need a separate WD parameter
due to their different generalization behavior, suggesting
the need for adaptive versions of WD. 2) Different datasets
have norms that grow differently. Consequently, one should
not näively transfer WD parameters between datasets, espe-
cially when they have different generalization properties. 3)
If standard WD is used, one should pay close attention to
the scale between gradient and WD signal when tuning λ. 4)
Since the weight norm is the most important factor when us-
ing WD, one can apply WD only every few batches to save
computational resources. A toy example of this on cifar10
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is shown in the Appendix, where WD is applied only every
128 batches with no performance cost. While WD rarely is
the computational bottleneck, it cannot effectively be paral-
lelized in a mirrored distributed strategy. Applied to more
computationally intensive regularization such as Xie et al.
[2019], this strategy might lead to substantial savings for
larger models.

Conclusions. We have investigated recent empirical ob-
servations regarding WD. We observe that applying WD at
the start increases the effective learning rate, which biases
the network to less sharp minima. We also demonstrate that
the primary distinction between decoupled weight decay and
l2 regularization is the sharing of buffers in Adam.
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