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Abstract

Multi-view time series classification (MVTSC) aims to im-
prove the performance by fusing the distinctive tempo-
ral information from multiple views. Existing methods for
MVTSC mainly aim to fuse multi-view information at an
early stage, e.g., by extracting a common feature subspace
among multiple views. However, these approaches may not
fully explore the unique temporal patterns of each view in
complicated time series. Additionally, the label correlations
of multiple views, which are critical to boosting, are usu-
ally under-explored for the MVTSC problem. To address the
aforementioned issues, we propose a Correlative Channel-
Aware Fusion (C2AF) network. First, C2AF extracts compre-
hensive and robust temporal patterns by a two-stream struc-
tured encoder for each view, and derives the intra-view/inter-
view label correlations with a concise correlation matrix. Sec-
ond, a channel-aware learnable fusion mechanism is imple-
mented through CNN to further explore the global correlative
patterns. Our C2AF is an end-to-end framework for MVTSC.
Extensive experimental results on three real-world datasets
demonstrate the superiority of our C2AF over the state-of-
the-art methods. A detailed ablation study is also provided to
illustrate the indispensability of each model component.

Introduction
Time series classification (TSC) is becoming a popular re-
search topic recently, which provides more comprehensive
information for the changing world. Many algorithms are
proposed for modeling time series data in different applica-
tion domains, e.g., transportation (Yao et al. 2018), health-
care (Harutyunyan et al. 2017), and human action (Wang,
Ding, and Fu 2019, 2018). However, compared with static
data such as images, the complicated dynamic patterns con-
tained in time series make TSC a challenging problem. For-
tunately, owing to the advanced sensing techniques, ob-
jects or events can be observed through multiple modali-
ties, which brings in multi-view time series data to improve
the classification performance. For example, RGB, depth,
and skeleton are three common modalities for human action
recognition. They provide more comprehensive information
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Figure 1: Multi-view temporal data has distinctive patterns
in each view such as the attention scores. Intra-view and
inter-view label correlations are crucial to improve multi-
view performance.

to depict human actions than each single view. For another
example, several types of human body signals are recorded
as different modalities in health-care applications, such as
magnetic resonance imaging (MRI) and electrocardiograph
(ECG). These multi-view signals could monitor different
physical states simultaneously. Generally, multi-view time
series provide view-specific information from different an-
gles and facilitate with each other for higher learning per-
formance over an individual view.

Multi-view learning (MVL) has drawn significant atten-
tion, since utilizing complementary information from dif-
ferent views has great potential to boost the final learning
performance. MVL is successfully applied in many appli-
cations (Xu, Tao, and Xu 2013; Nie et al. 2016; Nie, Cai,
and Li 2017; Tao et al. 2019; Zhang et al. 2019). Previous
algorithms could be roughly divided into three groups (Xu,
Tao, and Xu 2013): (1) co-training; (2) multiple kernel learn-
ing; and (3) subspace learning. Specifically, the co-training
methods integrate multi-view data via maximizing the com-
mon mutual information of different views; the multiple ker-
nel learning methods design specific learning kernels for
each view and then combine them together; and the sub-
space learning methods seek for the common latent sub-
space shared by multiple views. Although these methods
have achieved promising results, it is not straightforward to
directly employ them for TSC due to the dynamic temporal
patterns in time series.

Existing TSC methods focusing on single-view time se-
ries have been widely explored under two cases: univari-
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Figure 2: Multi-view temporal data are set as input simultaneously to train the end-to-end C2AF network. A two-stream en-
coder extracts view-specific temporal patterns. Intra-view/inter-view label correlations are captured by correlation matrices.
The channel-aware learnable fusion integrates and fully utilizes multi-view label correlations for performance improvement.

ate (Cuaresma et al. 2004) and multivariate (Zheng et al.
2014; Hüsken and Stagge 2003). On the one hand, the uni-
variate TSC mainly studies the distance measurement be-
tween two time series such as (Marteau and Gibet 2014). On
the other hand, many research attempts are also made for
handling the multivariate time series. To name a few, Bankó
and Abonyi (2012) revised the dynamic temporal wrapping
(DTW) method, and Cui, Chen, and Chen (2016) utilized
the CNNs to model time series. Nevertheless, only a few
methods are proposed for solving multi-view and multivari-
ate TSC. For instance, Li, Li, and Fu (2016) proposed a dis-
criminative bilinear projection framework to build a shared
subspace for multi-view temporal data. Zadeh et al. (2018)
designed a fusion strategy based on LSTM networks. Yuan
et al. (2018) proposed an attention mechanism to model
multi-view time series. It is worth noting that, all these meth-
ods adopt an early fusion strategy, e.g., integrating multi-
view information by learning a common feature subspace,
which may not fully explore the view-specific distinctive
patterns and ignore the multi-view label correlations.

To handle the above issues, we propose a Correlative
Channel-Aware Fusion (C2AF) network for the multi-view
time series classification (MVTSC) task. Our C2AF jointly
leverages the view-specific distinctive temporal patterns ex-
isting in feature spaces and the multi-view correlations in
label spaces (see Figure 1), to boost the classification per-
formance. Specifically, our model first applies a two-stream
temporal encoder to extract robust temporal features, fol-
lowed by a classifier for each view. By this means, the raw
label information is first obtained. After that, the multi-view
label correlations are captured by a concise correlation ma-
trix. Finally, a channel-aware learnable fusion mechanism is
designed to globally integrate the label correlations and tune
the entire network. The main contributions of our paper are
summarized as below.

• We propose an end-to-end MVTSC network, namely
C2AF, to jointly capture view-specific temporal patterns
by two-stream encoders and automatically fuse the multi-
view label correlations.

• We design a channel-aware learnable fusion mechanism,
which provides an effective late fusion strategy for the

MVTSC problem and adopts a concise implementation
via convolutional neural networks.

• We conduct substantial experiments on three real-world
datasets to show the effectiveness of our C2AF, and pro-
vide detailed ablation studies to demonstrate the indis-
pensability of each model component.

Related Work
Time Series Classification
Time series data are collected and analyzed in several do-
mains (Xing, Pei, and Keogh 2010; Cao et al. 2017; Jin and
Dong 2016). Generally, the methods for time series clas-
sification (TSC) task can be categorized into three groups:
(1) feature based classification; (2) sequence distance based
classification; and (3) model based classification. Feature
based algorithms such as (Kadous and Sammut 2005; Ye
and Keogh 2009) extract a feature vector from time series
and then apply traditional methods, e.g., K-Nearest neighbor
(KNN) (Fukunaga and Narendra 1975) and support vector
machine (SVM) (Cortes and Vapnik 1995), to make classifi-
cation. Further, deep neural network has great capacity to fit
non-linear mapping and extract complicated temporal fea-
tures for classification (Karim et al. 2019). Reservoir com-
puting (Bianchi et al. 2018) is proposed based on recurrent
neural networks to learn the representations for multivariate
TSC. Distance based methods aim to design distance func-
tions to measure the similarity of a pair of time series. After
obtaining a reasonable distance metric, we apply conven-
tional algorithms to further make classification. For exam-
ple, DTW (Xi et al. 2006) is a typical distance based algo-
rithm which is eligible for time series with different lengths.
Other distance based models are also proposed for TSC such
as (Wei and Keogh 2006; Dorle et al. 2020; Ratanamahatana
and Keogh 2004; Keogh and Kasetty 2003). Model based
methods assume that all time series belonging to each class
are generated by a potential generative model. During the
training stage, the corresponding parameters of the poten-
tial model are learned and the test samples are classified
based on the likelihood. To name a few, hidden markov
model (HMM) (Rabiner 1989) is widely used in TSC for
speech recognition. Naive bayes sequence classifier (Rish
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et al. 2001) is another typical model based method which
observes the feature independent assumption. In our work,
we focus on multi-view time series classification (MVTSC)
which is not fully explored by above methods.

Multi-View Learning
Multi-view learning (MVL) attracts more attention in re-
cent decades. The distinctive patterns extracted from dif-
ferent views mutually support with each other to benefit fi-
nal performance. MVL is widely used in several tasks such
as object classification (Qi et al. 2016), clustering (Bickel
and Scheffer 2004; Zhang et al. 2020; Wang et al. 2018),
semi-supervised learning (Hou et al. 2010), action recog-
nition (Cai et al. 2014), and face recognition (Li et al.
2002). Fusing information from multiple views is an ef-
fective way to leverage mutual-support patterns for perfor-
mance improvement in MVL (Swoger et al. 2007; Bruno
and Marchand-Maillet 2009). Fusion strategies can be cate-
gorized into three groups (Atrey et al. 2010): (1) feature fu-
sion; (2) decision fusion; and (3) hybrid fusion. Feature fu-
sion (early fusion) (Wang et al. 2017; Louis-Philippe, Rada,
and Payal 2011) focuses on merge distinctive information
from different views in feature space. Decision fusion (late
fusion) (Wörtwein and Scherer 2017; Tao et al. 2017, 2020;
Zhou et al. 2012) aims to fuse the multiple decisions in label
space. Hybrid fusion is a combination strategy of early fu-
sion and late fusion. However, most fusion strategies lever-
age the multi-view information directly instead of through
a learnable way, which may not fully explore the comple-
mentary patterns of multiple views. Further, most of them
are not designed for temporal data. Deploying them on time
series directly will ignore temporal dynamic patterns. In
our work, we propose a novel Correlative Channel-Aware
Fusion (C2AF) network for MVTSC. Our proposed C2AF
extracts robust temporal representations and fully explores
the multi-view latent correlations through a learnable fusion
strategy.

Methodology
Preliminary
LetX = {Xv}Vv=1 be the multi-view time series data, where
Xv ∈ RT×Dv

refers to the v-th view feature matrix. For
∀v, T and Dv represent the time series length and feature
dimensions, respectively. Let Y ∈ RK be the correspond-
ing label, where K denotes the number of classes. All the
views in X share the same label Y . In this study, we fo-
cus on multi-view time series classification (MVTSC) by
leveraging multi-view complementary information through
a Correlative Channel-Aware Fusion (C2AF) network. Our
C2AF consists of two parts, global-local temporal encoder
and channel-aware learnable fusion.

Global-Local Temporal Encoder
Dynamic and complicated temporal pattern is the key fac-
tor to tackle time series data. It usually provides discrim-
inative characteristics to guarantee high quality classifica-
tion. In our C2AF approach, obtaining comprehensive and

robust temporal representations for each view is indispens-
able, which provides reliable label information and benefits
fusion process. We propose a global-local temporal encoder
to fully explore the temporal context. It consists of a global-
temporal encoder Eg and a local-temporal encoder El. We
obtain view specific representations by

Hv = q(Hv
g , H

v
l )

Hv
g = Eg(X

v;φvg)

Hv
l = El(X

v;φvl ),

(1)

where Hv ∈ Rdv is the encoded representations for Xv ,
Hv
g /H

v
l represents the Eg/El output, q denotes a com-

mon fusion operation (we use concatenation operation in our
work), and Eg , El are two networks with learnable parame-
ters φvg and φvl , respectively. We update φvg and φvl by mini-
mizing the following loss:

Lv =
N∑
i=1

`(Yi, Ŷ
v
i ), (2)

where ` represents the cross-entropy loss and N is the num-
ber of samples. Ŷ vi = Cv(H

v
i ) is the prediction for the i-th

sample. Cv : Rdv → RK is the v-th view specific classifier
achieved by a linear mapping.

Global-Temporal Encoder Next, we will introduce Eg
and El with more details. The Eg and El are deployed
for each view. For convenience, we omit the subscript v
in the rest of this section. We adopt recurrent neural net-
works (RNN) to parameterize our global-temporal encoder
Eg , as RNN is well validated as an effective way to explore
the temporal context for time-series. Particularly, we employ
the LSTM (Hochreiter and Schmidhuber 1997) as the cell,
which is given by

ft = σg(Wfxt + Ufht−1 + bf ),

it = σg(Wixt + Uiht−1 + bi),

ot = σg(Woxt + Uoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ σc(Wcht + Ucht−1 + bc),

ht = ot ◦ σh(ct),

(3)

where xt is t-th representation in sequence input X (1 ≤
t ≤ T ). ft, it, ot, ct, and ht serve as forget gate, input gate,
output gate, cell state, and hidden state at time t, respec-
tively. ct−1 and ht−1 represent cell and hidden states at time
t − 1. σg , σc, σh are activation functions, and ◦ represents
the element-wise product. In Eq.(3), W∗, U∗ and b∗ are all
learnable weights, ∀∗ ∈ {f, i, o, c}.

To further enhance the global temporal representation, we
leverage attention mechanism to integrate the hidden states
sequence. By using attention, we explicitly learn the dy-
namic correlations cross different time points, and obtain the
global temporal representation Hg by

Hg =
T∑
t=1

ωtht, (4)

where ω = {ωt} is the learnable attention weights.
By using Eqs. (3-4), we formulate our Eg as LSTM with

attention mechanism, and have φg = {{W∗, U∗, b∗}, ω},
∗ ∈ {f, i, o, c}.
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Local-Temporal Encoder Different from the global-
temporal encoder, we utilize convolutional neural networks
(CNN) to formulate our local-temporal encoder El, as CNN
works well on probing patterns from local-characterized
data. Specifically, we apply a set of 1D convolutional filters
to extract local patterns in X following the similar strategy
in temporal convolutional networks (TCN) (Lea et al. 2016).
Let M be the number of CNN layers and Fm ∈ RTm×Dm

be the output of the m-th layer (1 ≤ m ≤ M ). Tm and Dm

denote the corresponding temporal and feature dimensions,
respectively. Given F0 = X , we compute Fm by

Fm = BN{γm,βm}(ReLU(Wm ∗ Fm−1 + bm)), (5)

where Wm ∈ RDm×Dm−1×∆T is the weight of convolu-
tional filter, bm ∈ RDm is the bias. ∆T represents the size
of temporal sliding window and ∗ represents the convolu-
tion operation. In Eq. (5), BN{γm,βm} refers to the batch
normalization block (Ioffe and Szegedy 2015) with learn-
able parameters γm and βm. It is used to further improve the
effectiveness and stability of El.

To avoid the over-fitting issue and diminish the number of
parameters, a global average pooling layer (Lin, Chen, and
Yan 2013) is deployed after each convolutional block. By
using these methods, we efficiently extract local temporal
information and obtain high-level representation Hl by

Hl = g(FM ), (6)

where g is the global average pooling layer.
Through applying Eqs. (5-6), we concretize our El as

CNN with batch normalization and global average pooling,
and have φl = {Wm, bm, γm, βm}Mm=1.

Channel-Aware Learnable Fusion
Efficiently fusing mutual-support information from multi-
view predicted labels Ŷ v (1 ≤ v ≤ V ) is the central fact
of performance improvement. In our model, we propose a
channel-aware learnable fusion mechanism to sufficiently
capture and utilize the label correlations. It takes advantage
of intra-view and inter-view label correlations to achieve
better multi-view learning results. Specifically, we construct
a graph based correlation matrix to probe intra-view/inter-
view label correlations and a CNN based fusion module to
integrate global patterns. Next, we introduce the channel-
aware learnable fusion with more details.

Label Correlation Matrix We adopt a graph based strat-
egy to capture the intra-view and inter-view label correla-
tions, respectively. The intra-view label correlation matrix
for each view v is given by

Gv,v = Ŷ v · Ŷ v>, (7)

where Gv,v ∈ RK×K is the correlation matrix derived by
multiplying the predicted label Ŷ v ∈ RK×1 and its trans-
pose Ŷ v> ∈ R1×K for 1 ≤ v ≤ V . Each element in
Gv,v represents the intra-view pair-wise label correlations
for view v. We integrate V intra-view label correlations by
concatenating them together as follow:

rintra = [G1,1, G2,2, ..., GV,V ], (8)

Algorithm 1 The procedure of training C2AF algorithm.

Input: batches of {X , Y }, number of view V , number of
training steps S

Output: prediction of each view Ŷ v and final result Ŷ f
1: for each i ∈ [1, S] do
2: for each v ∈ [1, V ] do
3: sample a batch data Xv from view v
4: forward Xv into Eg and El
5: compute Hv and Ŷ v through Eq. (1) and Cv
6: update φvg , φvl and Cv using Eq. (2)
7: end for
8: forward Ŷ v, v ∈ 1, 2, ..., V into Ef
9: compute Ŷ f through Eq. (11) and Cf

10: update φf and Cf using Eq. (13)
11: end for
12: return Ŷ v and Ŷ f

where rintra ∈ RK×K×V is the intra-view correlation ten-
sor and [·] is the concatenation operation.

Similarly, the inter-view label correlation matrix for each
pair of views is given by

Gu,w = Ŷ u · Ŷ w>, (9)

where Gu,w ∈ RK×K is the correlation matrix derived by
multiplying the predicted label Ŷ u ∈ RK×1 from view u

and the transpose of predicted label Ŷ w ∈ R1×K from view
w for ∀u,w ∈ V, u 6= w. Each element in Gu,w represents
the inter-view pair-wise label correlations for view u and w.
Considering all the possible combinations of view-pair, we
integrate

(
V
2

)
inter-view label correlations by concatenating

them together as follow:

rinter = [G1,2, G1,3, ..., GV−1,V ], (10)

where rinter ∈ RK×K×(V
2) represents the inter-view corre-

lation tensor.
By using Eqs. (7-8) and Eqs. (9-10), we extract the intra-

view and inter-view label correlations as two multi-channel
tensors rintra and rinter.

Channel-Aware Fusion Multi-view label correlations are
extracted and represented by label correlation matrices. The
informative patterns of label correlations are reserved in
each element instead of a local area of these matrices, but
still contained in the same place across different channels of
rintra and rinter. Hence, we employ a CNN structure with
1 × 1 kernels as a channel-aware extractor to globally inte-
grate cross-view correlative information. It is given by

r = Ef ([rintra, rinter], φf ), (11)

where r ∈ RK×K×Nk is the fusion matrix. Ef is the CNN
based fusion encoder parameterized by φf , withNk kernels.
We formulize the fusion encoder Ef by

r(o)
p,q = f(b(o) + 〈W (o), [rintra, rinter]p,q〉), (12)
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Dataset EV-Action NTU RGB+D UCI

RGB Depth Skeleton Three-view RGB Depth Skeleton Three-view View1 View2 Two-view

MFN 0.5752 0.3978 0.6603 0.4769 0.6830 0.7630 0.6854 0.8159 0.5563 0.7141 0.7260
RC classifier 0.5990 0.5790 0.7850 0.6130 0.7829 0.8013 0.6765 0.8270 0.7660 0.7700 0.8190

MLSTM-FCN 0.6814 0.6914 0.7613 0.7555 0.7760 0.7929 0.6778 0.8284 0.8754 0.9246 0.9208

Concat-LSTM - - - 0.7325 - - - 0.8330 - - 0.8290
Concat-CNN - - - 0.6132 - - - 0.8295 - - 0.8919
Label-Concat 0.7124 0.7134 0.7585 0.8206 0.7304 0.8113 0.7235 0.8402 0.8643 0.8535 0.9090
Label-Average 0.7285 0.7114 0.7505 0.8156 0.7214 0.8090 0.7402 0.8319 0.8699 0.8559 0.8728

Label-Max 0.7575 0.7044 0.7615 0.8026 0.7239 0.8006 0.7287 0.8221 0.8704 0.9052 0.9113
C2AF (Ours) 0.7615 0.7284 0.7645 0.8406 0.7248 0.8034 0.7347 0.8688 0.8656 0.9027 0.9314

Table 1: Classification performance on three datasets

where r(o)
p,q is the (p, q) element of r(o) ∈ RK×K×1 which is

the o-th component of multi-channel tensor r (1 ≤ o ≤ Nk).
W (o) ∈ R1×1×(V+(V

2)) and b(o) ∈ R1×1 are the learnable
weights and bias of 1× 1 filter. [rintra, rinter]p,q represents
the (p, q) element of cross-view correlation tensor concate-
nated by rintra and rinter. f is the activation function.

Through Eqs. (11-12), we formulate our fusion encoder
Ef , and have φf = {W, b}. We update φf by minimizing
the following loss:

Lf =
N∑
i=1

`(Yi, Ŷ
f
i ), (13)

where Ŷ fi = Cf (Tflatten(ri)) is the prediction for the i-th
sample. Tflatten is a flatten operation to transfer feature ma-
trix ri into a vector, and Cf : RDf → RK is the final classi-
fier achieved by a linear mapping with Df = K ×K ×Nk.
During the training, we alternatively optimize the set of loss
Lv for each view and Lf for the final classifier. The training
procedure of our C2AF is summarized in Algorithm 1.

Experiments
Experimental Setting
Datasets We utilize three real-world multi-view time se-
ries datasets to prove the model effectiveness.
• EV-Action (Wang et al. 2019) is a multi-view human ac-

tion dataset. We choose RGB, depth, and skeleton views
for our multi-view time series experiments. EV-Action
contains 20 human common actions and 53 subjects per-
forming each action 5 times, so that we have 5300 sam-
ples in total. We choose the first 40 subjects for training
and the rest 13 subjects for test.

• NTU RGB+D (Shahroudy et al. 2016) is a large-scale
dataset for multi-view action recognition. It includes
56000 action samples in 60 classes performed by 40 sub-
jects. We choose the RGB, depth, and skeleton views
for our experiments. We use the cross-subject benchmark
provided by the original dataset paper, which contains
40320 samples for training and 16560 samples for test.

• UCI Daily and Sports Activities (Asuncion and New-
man 2007) is a multivariate time series dataset, which
includes the sensor data of 19 human actions. There are

45 sensors placed on subject’s body. Each activity is per-
formed by 8 subjects and has 480 samples. We follow the
same mutli-view experimental setting from (Li, Li, and Fu
2016) in our model evaluation.

Baseline Methods Several comparison approaches in-
cluding the state-of-the-art methods are deployed to demon-
strate our model effectiveness.

• MLSTM-FCN (Karim et al. 2019) is a novel deep frame-
work proposed to handle multivariate time series data,
which achieves promising performances on extensive
real-world time series datasets.

• RC Classifier (Bianchi et al. 2018) proposes a reservoir
computing (RC) framework to encode multivariate time
series data as a vectorial representation in an unsuper-
vised fashion, which has a relatively low computational
cost during handling temporal data.

• MFN (Zadeh et al. 2018) designs a memory fusion mech-
anism as an early fusion approach to tackle with multi-
view time series.

• Concat-LSTM/Concat-CNN fuses multi-view time se-
ries using concatenation operation as input for LSTM and
CNN. We use them as two early fusion baselines.

• Label-Concat/Label-Average/Label-Max fuses the pre-
dicted labels from multiple views using concatenation, av-
erage pooling, and max pooling, respectively. We utilize
them as three late fusion baselines.

To adopt MLSTM-FCN and RC classifier for MVTSC, we
concatenate multi-view time series along with the feature
dimension as a multivariate time series for model input.
MFN is designed for multi-view learning, we use it di-
rectly for model evaluation. We report the single-view and
multi-view performances simultaneously for comparison ex-
cept Concat-LSTM and Concat-CNN as they cannot provide
single-view output.

Data Preprocessing We utilize the same strategy to pre-
process multi-view data for EV-Action and NTU RGB+D as
they both have RGB, depth, and skeleton views. Specifically,
we align all the samples into the same 60 length with cut-
ting and repeating strategies for longer and shorter samples.
Next, we adopt TSN (Wang et al. 2016) to extract frame-
level features for RGB view with pre-trained BNIncepction
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Figure 3: Comparisons between our model and late fusion
baselines which prove that our channel-aware fusion is an
effective and efficient fusion strategy. Shadow lines denote
the exact performances per batch step, while the solid lines
indicate the smoothed performances.

Setting CCA MvDA MDBP C2AF (Ours)

Multi-view 25.90 67.24 78.96 93.14

Table 2: Comparison with traditional methods on UCI

backbone. The depth view is transferred into RGB format
firstly using HHA algorithm (Gupta et al. 2014) and extract
fetures using exactly the same strategy as RGB view. For
skeleton view, we concatenate 3D coordinates of 25 joints
at each time point as frame-level features. Specifically, in
order to easily handle the large-scale skeleton data in NTU
RGB+D dataset, we use VA-LSTM (Zhang et al. 2017) as
the backbone to preprocess the 3D coordinates data. As a
summary, for EV-Action and NTU RGB+D datasets, RGB,
depth, and skeleton data are extracted as frame-level features
with 60 temporal length and 1024, 1024, and 75 feature di-
mensions, respectively.

We follow the same data preprocessing procedure in (Li,
Li, and Fu 2016) for UCI Daily Sports dataset. As a sum-
mary, the sensor data are set as View1 and View 2 with 125
temporal length, 27 and 18 feature dimensions, respectively.

Implementation
As shown in Figure 2, the frame-level features of each view
are set as input of global-local temporal encoder simultane-
ously to obtain the view-specific representations. The out-
puts of global-temporal encoder and local-temporal encoder
are concatenated as the input of view-specific classifier Cv .
Each Cv is trained by optimizing its corresponding loss
Lv . The predicted label from different views Ŷ v construct
two sets of correlation matrices for capturing intra-view and
inter-view label correlations. The cross-view correlative ten-
sor is derived by stacking all the correlation matrices and fed
into channel-aware learnable fusion module. Fused feature
vector is set as input to train classifier Cf for final predic-
tion through optimizing Lf . We set 128 as batch size. The
Adam optimizer (Kingma and Ba 2014) is utilized for opti-
mization and the learning rates are set as 0.0001 for all the
view-specific and final classifiers synchronously. During the

Figure 4: Ablation study on channel-aware learnable fusion.
Shadow lines denote the exact performances per batch step,
the solid lines indicate the smoothed performances.

training process, the classifiers of all views Cv are trained
firstly to obtain the initial classification results which makes
a concrete foundation for the learnable fusion module. Next,
the final classifier Cf is trained based on the initial predicted
labels. After that, Cv and Cf are trained alternatively dur-
ing the whole training process and we report the single-view
and final performances simultaneously. Our model is imple-
mented using Tensorflow with GPU acceleration.

Performance Analysis
Classification performances for three datasets are shown in
Table 1. For EV-Action dataset, the skeleton view is the
most informative view achieving the best single-view per-
formance. Other methods obtain comparable even better per-
formances on single-view, however, our proposed model
achieves the best multi-view performance. MFN cannot
make early fusion efficiently to improve multi-view perfor-
mance on EV-Action dataset which indicates the early fusion
of MFN is not capable of handling high dimensional tem-
poral data. However, our C2AF will not suffer from this is-
sue since we focus on extracting label correlations for multi-
view fusion. RC classifier and MLSTM-FCN achieve com-
petitive results on skeleton view but cannot effectively fuse
multi-view information. The comparisons with three sim-
ple late fusion methods prove our learnable fusion is a more
effective fusion strategy. We visualize the comparisons be-
tween late fusion baselines and our C2AF in Figure 3, which
shows the performance variations along with batch steps.

For NTU RGB+D dataset, the depth is the most informa-
tive view. All other approaches leverage the multi-view data
to improve the final performance. However, our C2AF fully
explores the multi-view latent correlations and still achieves
the best MVTSC performance.

For UCI dataset, View2 always obtains better results for
single-view compared with View1. Other methods achieve
competitive results for single-view but cannot outperform
our fusion strategy. MFN improves the multi-view perfor-
mance compared with single-view, however, it is still lower
than our model. MLSTM-FCN obtains high performance for
both single-view and multi-view, however, it cannot utilize
multi-view data sufficiently for further improvement. Our
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Figure 5: Confusion matrices for each single view and multi-view fusion on EV-Action dataset. The colorbar shows the color
of corresponding prediction number. Being darker on the diagonal and being lighter off the diagonal indicate a better perfor-
mance. The first 10 classes are performed by subjects themselves (e.g., standing, walking, and jumping). The last 10 classes are
performed with interactive objects (e.g., moving table, reading book, and throwing ball).

Dataset EV-Action UCI
View RGB Depth Skeleton View1 View2

Local Only 0.6263 0.6192 0.7735 0.8730 0.9001
Global Only 0.7104 0.7084 0.7665 0.7194 0.8292

Table 3: Temporal encoder ablations

proposed model achieves the best multi-view performance.
Moreover, several traditional approaches are proposed for

multi-view learning, which focus on extracting the common
features of multiple views. However, they cannot be effi-
ciently applied on large-scale datasets (e.g., EV-Action and
NTU RGB+D). To compare C2AF with these approaches,
we provide comparison experiments on UCI dataset as
shown in Table 2. It includes three traditional methods:
MDBP (Li, Li, and Fu 2016), MvDA (Kan et al. 2015), and
CCA (Hotelling 1992). We find that leveraging on the great
learning capacity of DNN, our C2AF achieves the significant
improvements compared with other approaches.

Ablation Study
We prove the necessity of each model component by con-
ducting detailed ablation study. First, we use global and local
temporal encoder individually to make view-specific classi-
fication on two datasets as shown in Table 3. Global encoder
works better on EV-Action, while local encoder is better for
UCI. Hence, our two-stream structure is indispensable to
handle diverse time series data. It takes advantages of global
and local encoders to obtain robust temporal representations.

We divide our learnable fusion module into several parts
to make ablations. The whole fusion module can be sep-
arated as two parts, label correlative matrix and channel-
aware fusion. Further, the label correlative matrix can be di-
vided into intra-view and inter-view parts. The experimen-
tal results are shown in Table 4. Intra-view Only/Inter-
view Only represents we only use intra-view/inter-view ma-
trices. Channel-aware Fusion Only means we remove all
the correlative matrices and concatenate predicted label vec-
tors together as input to channel-aware fusion which proves
the necessity of our whole correlative matrices. Ours with-
out Channel-aware fusion indicates that we directly flatten
all the correlation matrices into one feature vector as input

Settings EV-Action UCI

Intra-view Only 0.8146 0.9206
Inter-view Only 0.8036 0.9279

Channel-aware Fusion Only 0.8046 0.9095
Ours without Channel-aware fusion 0.8206 0.9256

C2AF (Ours-complete) 0.8406 0.9323

Table 4: Channel-aware learnable fusion ablations

to final classifier. The results illustrate each model compo-
nent cannot obtain the best performance individually, while
the complete C2AF achieves the best accuracy. We visual-
ize the performance curves of ablation in Figure 4, which
shows the performance variations along with batch steps. To
better understand how the learnable fusion process benefits
the MVTSC, we show the classification confusion matrices
for each single view and multi-view fusion on EV-Action
in Figure 5. In EV-Action, classes can be divided into two
groups (Wang et al. 2019): the first 10 actions are performed
by subjects themselves, and the last 10 actions are performed
interactively with other objects. RGB and depth views can
accurately distinguish if the action is interactive, but eas-
ily make mistakes within each group. Skeleton view is not
sensitive to the interactive objects so that it still makes mis-
takes cross these two groups. But its results are generally
better than RGB and depth. We observe that our method
takes full advantages of different views: it fuses the patterns
from RGB and depth views to distinguish accurately if the
action is interactive; it also benefits from the skeleton view
to reduce the mistakes occurred within each group, so that
our C2AF achieves the most reasonable results.

Conclusions
In this study, we propose a novel end-to-end Correlative
Channel-Aware Fusion (C2AF) network for multi-view time
series classification (MVTSC) problem. A global-local tem-
poral encoder is developed to extract robust temporal repre-
sentations for each single-view, and a learnable fusion strat-
egy is proposed to fully explore the multi-view label infor-
mation and boost the final performance. Extensive experi-
ments on three public datasets prove the effectiveness of our
model. A detailed ablation study further validates the neces-
sity of each component in the proposed C2AF network.
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