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Abstract

Machine Learning models should ideally be compact and ro-
bust. Compactness provides efficiency and comprehensibil-
ity whereas robustness provides resilience. Both topics have
been studied in recent years but in isolation. Here we present
a robust model compression scheme which is independent
of model types: it can compress ensembles, neural networks
and other types of models into diverse types of small mod-
els. The main building block is the notion of depth derived
from robust statistics. Originally, depth was introduced as a
measure of the centrality of a point in a sample such that
the median is the deepest point. This concept was extended
to classification functions which makes it possible to define
the depth of a hypothesis and the median hypothesis. Algo-
rithms have been suggested to approximate the median but
they have been limited to binary classification. In this study,
we present a new algorithm, the Multiclass Empirical Me-
dian Optimization (MEMO) algorithm that finds a deep hy-
pothesis in multi-class tasks, and prove its correctness. This
leads to our Compact Robust Estimated Median Belief Opti-
mization (CREMBO) algorithm for robust model compres-
sion. We demonstrate the success of this algorithm empir-
ically by compressing neural networks and random forests
into small decision trees, which are interpretable models, and
show that they are more accurate and robust than other com-
parable methods. In addition, our empirical study shows that
our method outperforms Knowledge Distillation on DNN to
DNN compression.

1 Introduction
Large models, such as Deep Neural Networks (DNNs)
and ensembles achieve high accuracy on diverse prob-
lems (Caruana, Karampatziakis, and Yessenalina 2008; Us-
manim 2018). However, their size presents a challenge in
many cases because of their resource requirements and their
incomprehensibility (Lage et al. 2019). The lack of inter-
pretability of large machine learning models is a limita-
tion especially for applications that require critical deci-
sion making such as medical diagnostics (Kononenko 2001;
Caruana et al. 2015) and hiring decisions (Hamilton 2018).
Small models are efficient in terms of computational cost
and memory footprint while also being more interpretable.
When small models are required, it has been shown that
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compressing a large model often outperform models that
were trained small from the get-go (Buciluǎ, Caruana, and
Niculescu-Mizil 2006).

In model compression (Buciluǎ, Caruana, and Niculescu-
Mizil 2006), a large model M is first trained and then com-
pressed into a smaller model m. Most compression schemes
are designed for specific classes of functions (Cheng et al.
2017). DNN compression schemes include parameter prun-
ing and quantization (Gong et al. 2014; Srinivas and
Babu 2015), low rank factorization and sparsity (Rigamonti
et al. 2013; Denil et al. 2013), and Knowledge Distillation
(KD) (Hinton, Vinyals, and Dean 2015) where temperature
is used on M ’s predictions to create ’soft’ predictions on
which m is trained on. There are also schemes that convert
one class of functions to another class, for example, DNNs
to Soft Decision Trees (SDT) (Frosst and Hinton 2017) or
to gradient boosted trees (Che et al. 2016), and trees to
DNNs (Banerjee 1997).

In this work, we present a new compression scheme that
can compress almost any type of Machine Learning (ML)
model to almost any type of smaller model. To be able to
work with diverse learning models, we use the large model
M as an oracle to train a small model m. However, in the
compression step we avoid using common training tech-
niques that minimize a loss function over the training data
generated by the oracle (Buciluǎ, Caruana, and Niculescu-
Mizil 2006) since such processes are sensitive to perturba-
tions (Gilad-Bachrach and Burges 2013) and thus are not
robust. Instead, we use M to generate a belief, which is the
conditional probability p(Y = y|X = x) and use methods
based on maximizing predicate depth (Gilad-Bachrach and
Burges 2013).

In our context a belief is a distribution p(Y = y|X = x)
where y is one of the possible classes and x is a record.1
Intuitively, a model m has a predicate depth d if for every
(or most) points x it holds that p (m(x)|x) ≥ d. When d
is large, the model is robust to slight changes in the prior
belief p (Gilad-Bachrach and Burges 2013). Therefore, in
our method, we extract a belief from large model M and
train a small model m by finding a model with a large pred-
icate depth from a class of small models. Following (Gilad-

1We sometimes use the shorthand notation p(y|x) to denote
p(Y = y|X = x).
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Bachrach and Burges 2013), we call the model with the
largest predicate depth, the median.

The median has robustness properties by design and com-
pactness is achieved by restricting the search to classes of
small models. An algorithm for approximating the median
hypothesis was introduced in (Gilad-Bachrach and Burges
2013) but it is limited to binary classification. To implement
our procedure, we first present the Multiclass Empirical Me-
dian Optimization (MEMO) algorithm for finding the deep-
est model out of a function class F of multi-class classifiers.
Second, we present the Compact Robust Estimated Median
Belief Optimization (CREMBO) algorithm for model com-
pression by finding a deep model when F is a class of com-
pact models.

After deriving the algorithms and proving their proper-
ties we present an empirical evaluation of these methods
and compare them to existing methods. We first demonstrate
the ability of our method to compress both Random Forests
(RF) (Ho 1995) and DNNs to small decision trees (Quinlan
1986) since they are compact and interpretable (Lage et al.
2019; Bénard et al. 2020). Then we show that for DNN to
DNN compression CREMBO outperforms the commonly
used KD compression scheme on several model architec-
tures. Our empirical study shows that CREMBO generates
models that are more accurate and more robust than any
comparable method.

To the best of our knowledge, this is the first work
to study robustness of model compression methods. Our
main contributions presented in this paper are: The novel
CREMBO algorithm for robust model compression. The
CREMBO algorithm is the first to use the concept of deep
hypotheses for compression, it is a flexible algorithm, al-
lowing for compression of diverse model types. Our em-
pirical evaluation shows that it succeeds in creating com-
pact models that are more robust and more accurate than
any other comparable method. In addition, we present the
MEMO algorithm which extends the ability to find the
median hypothesis to multi-class classifiers. Our code is
available at https://github.com/TAU-MLwell/Rubust-Model-
Compression.

The rest of the paper is organized as follows: We present
the predicate depth and preliminaries in Section 2. In Sec-
tion 3 we detail the MEMO algorithm with proofs. In Sec-
tion 4 we describe the CREMBO algorithm and in Section 5
we report our experiments and results. We conclude the pa-
per with a discussion of the results.

2 Background and Notations
Tukey (1975) presented depth as a centrality measure of a
point in a sample. The Predicate depth is an extension of
the Tukey depth that operates on the space of classification
functions. The predicate depth, as defined for binary classi-
fication tasks (Gilad-Bachrach and Burges 2013), measures
the agreement of a function f with the majority vote on x.
A deep function will always have a large agreement with
its prediction among the class F . The median hypothesis is
defined as the deepest possible function.

Definition 1. (Gilad-Bachrach and Burges 2013) Let F be

a function class and let Q be a probability measure over F .
The predicate depth of f on the instance x ∈ X with respect
to Q is defined as

DQ(f | x) = Pg∼Q[g(x) = f(x)]

The predicate depth of f with respect to Q is defined as

DQ(f) = inf
x∈X

DQ(f | x)

A common measure of stability is the breakdown
point (Hampel 1971). The breakdown point measures how
much Q must change in order to produce an arbitrary
value of the statistic. The rationale of using deep hypothe-
ses to achieve robustness derives from a result presented
in (Gilad-Bachrach and Burges 2013), showing that the
breakdown point of the median hypothesis is proportional to
its depth while the breakdown point of hypotheses acquired
in the standard procedure of minimizing some loss functions
(MAP hypothesis) is in fact zero. Another advantage of us-
ing deep hypotheses is that deeper hypotheses have better
bounds on their generalization error.

In practice it might be infeasible to calculate the depth
function and find the median hypothesis. However, it can be
approximated using the empirical depth function:

Definition 2. (Gilad-Bachrach and Burges 2013) Given a
sample S = {x1, ..., xm} s.t. xi ∈ X , a sample T =
{f1, ..., fn} s.t. fj ∈ F and a function f . The empirical
depth on instance xi ∈ X with respect to T is defined as

D̂T (f |xi) =
1

n

∑
j

1fj(xi)=f(xi)

The empirical depth with respect to T is defined as

D̂S
T (f) = min

i
D̂T (f |xi)

The empirical depth, as introduced in Definition 2, uses
a sample of records S and a sample of hypotheses T to get
an empirical estimate of the agreement between members of
the hypothesis class. However, generating the sample T is a
challenging task; for example, if the hypothesis class is the
class of DNNs, many of them need to be trained to be able to
estimate the empirical depth. Note, however, that T is only
used for estimating the probability p(y|x) for a given record
x and a class y and therefore it is sufficient to assume that
there is an oracle O(x, y) that given a point x and a class
y returns the fraction of the hypotheses that predict label y
for point x. This allows us to redefine the empirical depth as
follows:

D̂O(f |xi) = O(xi, f(xi)) (1)

D̂S
O(f) = min

i
D̂O(f |xi) (2)

The previous definitions of D̂T (f |xi), D̂S
T (f) presented in

Definition 2 are a special case of these definitions in which
the oracle is O(x, y) = 1

n

∑
j 1fj(x)=y where fj ∈ T .
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3 Multi Class Empirical Median
Optimization

We now present the Multiclass Empirical Median Op-
timization (MEMO) algorithm. MEMO finds a function
f that maximizes the empirical depth, that is f =

arg maxf∈F D̂
S
O(f) for multi-class classifiers. As men-

tioned in Section 2, a deep function will have an agreement
with a large fraction of the hypotheses (or posterior belief)
on its predictions. Another way to look at it is to say that
whenever it makes a prediction, it avoids predictions which
are in small minorities according to the belief p(y|x).

Note first that for a given point x, the depth D̂O(f |x)
takes its values in the set {O(x, y) : y ∈ Y } where Y is the
set of classes (possible labels). Hence, for any given record x
the depth takes values in a set of size at most |Y |. Therefore,
given a sample S the set of depth values is:

{
D̂S
O(f) : f ∈ F

}
⊆ {O(x, y) : x ∈ S, y ∈ Y } .

Hence, its size is at most |S||Y |. Therefore, finding the deep-
est function f ∈ F can be completed by searching for
the largest value d ∈ {O(x, y) : x ∈ S, y ∈ Y } for which
there exists f ∈ F such that D̂S

O(f) ≥ d. Assuming that we
know how to verify whether there exists a function f with
a depth of at least d, the deepest function can be found by
using binary search, in log |S|+ log |Y | steps.

The remaining challenge for finding a deep hypothesis in
the multi-class case is designing the procedure where given
a sample S and a desired depth d returns f ∈ F such that
D̂S
O(f) ≥ d if one exists and returns ”fail” otherwise. Let

Yi ⊆ Y be the set of classes for which O(xi, y) ≥ d, xi ∈
S. In Theorem 1 we show that D̂S

O(f) ≥ d if, and only
if, f(xi) ∈ Yi for every xi ∈ S. Therefore, the procedure
we are looking for is a learning algorithm that receives a
sample S = {xi, Yi}mi=1 and learns a function f such that
∀i f(xi) ∈ Yi. This learning problem is different from the
standard classification problem, it can be implemented as a
multi-label learning problem at the training phase whereas
on inference, only the class with the highest probability is se-
lected. Modifying the learning algorithms for decision trees
or DNNs to support this is relatively easy.

These observations allow us to introduce the Multiclass
Empirical Median Optimization (MEMO) algorithm (Algo-
rithm 1) and to prove its correctness in Theorem 1. In terms
of performance, the number of iterations required by the
MEMO algorithm for the binary search is

log (|{O(xi, y) : xi ∈ S, y ∈ Y }|) (3)

The size of the set in (3) is bounded by the number of
unique values that the oracle can return, which can be very
small. Consider, for example, the case of compressing a
Random Forest. One natural way to implement the oracle
O is to say that O(x, y) is the fraction of the trees in the
forest which predict that the class is y for some x ∈ S. In
this case, the number of unique values that O can return is
at most |M |+ 1 where |M | is the number of trees in the for-
est. Therefore, the number of iterations required when using

Algorithm 1: Multiclass Empirical Median Opti-
mization (MEMO) Algorithm

Input:
• A sample S ∈ Xm

• An oracle O(x, y)

• A learning algorithm L which given a sample of the form
Ŝ = {(xi, Yi)}mi=1 where Yi ⊆ Y returns a function
f ∈ F consistent with it if such a function exists and
”fail” otherwise.

Output: A function f ∈ F and the depth D̂S
O(f)

1 begin
2 Let Θ← {d1 < d2 < . . . < dm} =

sort ({O(xi, y) : xi ∈ S, y ∈ Y })
3 Run binary search over Θ unique values to find

the largest threshold d for which the following
procedure does not fail:

4 begin
5 for i=1,...,m do
6 Yi = {y ∈ Y s.t. O(xi, y) ≥ d}
7 Let Ŝ ← {(xi, Yi)}mi=1

8 Let f ← L(Ŝ)
9 Return f

10 Return f, d

MEMO to compress a Random Forest is log(|M |+1). When
compressing models such as DNNs, the large model M re-
turns a score for each class that can be converted into prob-
abilities using softmax which the oracle can use as its return
value. In this case, the number of unique values is bounded
by the fidelity in which the values are encoded. If b bits are
used to describe the scores, there would be at most 2b unique
values that the oracle can return and the number of iteration
would be bounded by b. Therefore, even if a DNN is used
as large model, and 32 bits numbers are used to represent
its outputs, the number of iterations required by the MEMO
algorithm will be ≤ 32.
Theorem 1. If F 6= ∅ then the MEMO algorithm will return
a function f∗ and a depth d∗ such that

d∗ = D̂S
O(f∗) = max

f∈F
D̂S
O(f)

Proof. Recall that D̂S
O(f) = minx∈S (O(x, f(x))) and

therefore, for every f ∈ F , D̂S
O(f) is in the set of thresholds

Θ defined in Algorithm 1. Furthermore, since d1 is the min-
imal possible threshold then ∀f ∈ F , D̂S

O(f) ≥ d1. There-
fore, the binary search will always return some function f
for some threshold d.

Assume that Ŝ was generated with threshold d. If there
exists f ∈ F such that D̂S

O(f) ≥ d then for every x ∈ S,
O(x, f(x)) ≥ d and therefore L will not fail. However, if
d > maxf D̂

S
O(f), there is no f ∈ F s.t. ∀x ∈ S, f(x) ∈

{y ∈ Y s.t. O(x, y) ≥ d} and L will fail. Therefore, the bi-
nary search will always terminate when finding the maximal
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d for which there exists f ∈ F with D̂S
O(f) ≥ d and since

this is the maximal value with this property, it has to be that
d∗ = maxf D̂

S
O(f).

To see that d∗ = D̂S
O(f∗) recall that from the definition

of L it follows that ∀x ∈ S, f∗(x) ∈ {y ∈ Y s.t. O(x, y) ≥
d∗} and therefore d∗ ≤ D̂S

O(f∗) but from the maximal prop-
erty of d∗ we also know that d∗ ≥ D̂S

O(f∗) which completes
the proof.

To prove the robustness of MEMO we use the breakdown
point as a measure of robustness (Hampel 1971). We adjust
the definition to our setting in the following way:
Definition 3. The breakdown point of a compression algo-
rithm C with the oracle O and a sample S is

breakdown(C,O, S) = max
f∈F

min
O′s.t.C(O′,S)=f

‖O −O′‖∞

Definition 3 implies that the breakdown point is the
amount of change to the oracle that is required to allow the
compression algorithm to generate an arbitrary model where
the change is measured in total variation distance. The fol-
lowing theorem proves the robustness of MEMO:
Theorem 2. Let O be an oracle and S be a sample. Let
d̂ be the depth returned by the MEMO algorithm. If p∗ =
minx∈S,y∈Y O(x, y), then the breakdown point of MEMO
with the oracle O and the sample S is at least (d̂−p∗)/2.

Proof. The proof follows from Theorem 1 and uses the
same technique as Theorem 9 in (Gilad-Bachrach and
Burges 2013): if x∗ ∈ S and y∗ ∈ Y are such
that p∗ = O(x∗, y∗) and m = C(O, S) and m′ =
C(O′, S) then if m′(x∗) = y∗ then there exists x ∈ S

such that O′(x,m(x)) ≤ O′(x∗, y∗). Hence, d̂ − p∗ ≤
(O(x,m(x))−O′(x,m(x))) + (O′(x∗, y∗)−O(x∗, y∗))
Therefore, at least one of the r.h.s. terms in the last inequality
must be greater than (d̂−p∗)/2

Note that the robustness here adds to robustness induced
by the soft-max used to generate the oracle from the model
M which is the only source of robustness for KD.

4 Compact Robust Estimated Median Belief
Optimization

One nice property of the MEMO algorithm is that it does not
require the oracleO to return the true probabilities p(y|x). It
is sufficient that the oracle will return O(x, y) = g (p (y|x))
where g is some monotone increasing function. In this case,
the algorithm will return the deepest function f∗ regardless
of the choice of the function g. However the returned depth
will be modified by g; it would be g(d∗) where d∗ here refers
to the true depth; i.e., the one that would have been com-
puted if g was the identify function.

In model compression, we compress some large model
M into a smaller model m. Since we use M to construct
the oracle O it is essential that M returns probabilities or,
as discussed above, some monotone increasing function of
these probabilities. This can be achieved, for example, by
using a softmax layer at the end of a DNN or by taking the

agreement probabilities of an ensemble (see a discussion in
Section 6 about additional methods). These conversions al-
low the use of model M as the oracle O. To achieve com-
pression, the search for a deep function is made in a class of
small modelsF . In this setup, running the MEMO algorithm
will find a compact function with the largest depth. However,
the limited capacity of the function class F combined with
some possible outliers in the data may make the constraints
too stringent. One way to see that is to note that when the
dataset S increases in size, more and more constraints are
added to the MEMO algorithm, which decreases the max-
imal possible depth and therefore the depth function, as a
method to distinguish between good and bad models, loses
its dynamic range. This may make it hard to distinguish be-
tween functions that will generalize well and other functions
that will not. To overcome this issue, we relax the constraint
such that instead of requiring that ∀x ∈ S, O(x, f(x)) ≥ d
we require that the condition holds for most x ∈ S. To this
end, we define the δ-insensitive empirical depth:
Definition 4. Let O be an oracle, let S = {x1, ..., xm} ∈
Xm be a sample and let δ ∈ [0, 1]. The δ-insensitive empir-
ical depth of f with respect to O is

D̂S,δ
O (f) = max

T⊆S,|T |≥(1−δ)|S|
D̂S
O(f)

The δ-insensitive empirical depth requires that function
f will have a large agreement with O on all but a set of
instances at a proportion smaller or equal to δ. In the lan-
guage of robust statistics, the δ-insensitive empirical depth
can be considered as a trimmed estimator (Daszykowski
et al. 2007).

The Compact Robust Estimated Median Belief Optimiza-
tion (CREMBO) algorithm (Algorithm 2) handles the trade
off between robustness and accuracy by optimizing with re-
spect to the δ-insensitive empirical depth. Unfortunately, op-
timizing with respect to this measure is harder and therefore
the CREMBO algorithm is not guaranteed to find the deepest
hypothesis with respect to the δ-insensitive empirical depth
function and instead finds an approximation.

The CREMBO algorithm finds a function with large δ-
insensitive empirical depth that performs well on a valida-
tion set. It starts with the solution provided by the MEMO
algorithm. This provides an initial depth d∗ that can be
achieved with δ = 0. The algorithm increases the required
depth and for each threshold d of the depth it generates
the set of allowed labels Yi = {y ∈ Y s.t. O(xi, y) ≥
d}, ∀xi ∈ S much like in the MEMO algorithm. However,
since the depth is greater than the depth of the empirical
median returned by the MEMO algorithm, there is no hy-
pothesis in F that is consistent with this sample. Therefore,
it allows the learning algorithm to return a hypothesis that
is consistent with most of the training points but not all of
them.

Since we do not know what a good value would be for δ
up-front, a validation set is used by CREMBO to compare
the hypotheses returned for different depth thresholds and
select the best one. The selection criteria may be, accuracy,
F1 or the AUC for example. The CREMBO algorithm uses
linear search on the thresholds to find m. In cases where
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Algorithm 2: Compact Robust Estimated Median
Belief Optimization (CREMBO)

Input:
• A sample S ∈ Xm

• An oracle O(x, y)

• A validation set Z ∈ (X × Y )u

• The median hypothesis f∗, a set of sorted thresholds Θ
and depth d∗ computed by the MEMO algorithm
(f∗,Θ, d∗ ←MEMO())
• A learning algorithm A that given a sample of the form
Ŝ = {(xi, Yi)}mi=1 where Yi ⊆ Y trains a function
f ∈ F and returns it
• Evaluation metric V , that given a function f and a

validation set Z returns the set score
• A step size ∆

Output: A deep compact function f ∈ F
1 begin
2 best← V (f∗,Z)
3 f ← f∗

4 D ← Θ[Θ ≥ d∗][:: ∆] // Get all values
in Θ larger than d∗ with ∆
interval

5 for d in D do
6 for i=1,...,m do
7 Yi = {y ∈ Y s.t. O(xi, y) ≥ d}
8 Ŝ ← {(xi, Yi)}mi=1

9 h← A(Ŝ)
10 score← V(h, Z)
11 if score > best then
12 f ← h
13 best← score

14 Return f

there are many threshold values it is possible to perform
the search with steps of size ∆. This way, the number of
iterations needed for the algorithm is |{O(xi,y): xi∈S, y∈Y }|

∆ .
Using different search methods such as line search can re-
duce the number of iterations exponentially (Grippo, Lam-
pariello, and Lucidi 1986).

5 Experiments
We evaluate the CREMBO algorithm using two sets of ex-
periments. On the first set of experiments we evaluate the
generalization and robustness of the CREMBO algorithm
(Section 5.1). On the second set, we test CREMBOs abil-
ity to create accurate compact models on the DNN to DNN
compression task and compare it to KD (Section 5.2).

5.1 Compressing to Interpretable Models
To evaluate the CREMBO algorithm as a robust model com-
pression scheme, we conducted two experiments, a gener-

Dataset Instances Attributes Classes

Dermatology 366 33 6
Heart 304 13 5
Arrhythmia 452 279 16
Breast cancer 569 30 2
Iris 150 4 3

Table 1: Dataset statistics

alization experiment in which the compressed models ac-
curacy and win rate were evaluated using 10-fold cross-
validation and a robustness experiment where the com-
pressed models were evaluated on the level of their agree-
ment. In each experiment two types of models were com-
pressed, a Random Forest model (RF) (Ho 1995) which is an
ensemble model and a Deep Neural Network (DNN). Both
models were compressed with the CREMBO algorithm to
a small, fixed depth decision tree, the median tree (MED).
These trees were compared to two other same depth trees:
benchmark tree (BM), which is trained on the original train-
ing data Strain = {(xi, yi)}mi=1 and a student tree (ST),
trained on labels generated from the large model (teacher)
predictions Steacher = {(xi,M(xi))}mi=1.

We evaluated the CREMBO algorithm on five classifica-
tion tasks (Table 1) from the UCI repository (Dua and Graff
2017). To implement the DNNs we used PyTorch (Paszke
et al. 2017). The DNNs are all fully connected with two hid-
den layers of 128 units with ReLu activation functions. They
were trained with an ADAM optimizer with default parame-
ters and batch size of 32 for 10 epochs. For the Random For-
est and decision tree models we used scikit-learn (Pedregosa
et al. 2011) package. The Random Forest model was trained
with 100 trees with a maximal depth of 12 and balanced
weights. All the decision tree models were trained with a
maximal depth of 4, so they are small and interpretable, and
balanced weights.

Generalization To evaluate the generalization ability of
the compressed models we used 10-fold cross-validation
(CV). In each round 9 folds are used as the training set
Strain and the remaining fold is used as a test set. We first
train the large model M and a benchmark tree on Strain,
then using M predictions we create Steacher and train the
student tree. To find the median tree, we split Strain into a
train and validation sets, S′train, Sval, with a random 15%
split and run the CREMBO algorithm. The accuracy on the
test set is calculated for all models and later averaged on all
rounds. In addition, we measure the win rate for each model.
The win rate is the percentage of rounds in which a model
outperformed the other models. We repeated the experiment
20 times and the average results are provided in Table 2, and
Table 3. The results show that for Random Forest compres-
sion, the median tree had the best accuracy and win rates by
a considerable margin on all datasets except for the Breast
cancer dataset on which the benchmark tree had better ac-
curacy by a relatively small margin. For DNN compression,
there were similar results for the Dermatology, Heart, Ar-
rhythmia and Breast cancer datasets. On the first three, the
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Accuracy Win rate

Dataset RF BM ST MED BM ST MED

Dermatology 98.05 82.26 82.18 90.62 2 22.5 75.5
Heart 56.24 38.93 38.93 52.6 0 0.5 99.5
Arrhythmia 70.89 9.36 7.7 54.79 0 0 100
Breast cancer 96 93.25 93.13 92.47 13.5 32 54.5
Iris 94.53 92.53 92.53 94.66 0 12 88

Table 2: Accuracy and win rate results (in percentage) over 10-fold CV of benchmark tree (BM), student tree (ST) and median
tree (MED) averaged over 20 experiments where the compressed model is a Random Forest (RF)

Accuracy Win rate

Dataset DNN BM ST MED BM ST MED

Dermatology 97.56 82.2 82.22 89.55 6 25.5 68.5
Heart 64.27 38.87 49.6 52.4 0.5 33 66.5
Arrhythmia 70.41 9.46 15.33 55.6 0 6.5 93.5
Breast cancer 93.87 93.21 94.03 92.68 25.5 45 29.5
Iris 36.92 92.33 92.06 91.19 13.5 15 71.5

Table 3: Accuracy and win rate results (in percentage) over 10-fold CV of, benchmark tree (BM), student tree (ST) and median
tree (MED) averaged over 20 experiments where the compressed model is a Deep Neural Network (DNN)

median tree outperformed the other trees and on the last it
was less accurate. An interesting result emerged for the Iris
dataset. The DNN is clearly overfitted, since it has an aver-
age accuracy score of only 36.92% on the test sets. The stu-
dent tree was hardly affected since the DNN predictions on
the training set were very accurate. On the other hand, there
was a negative impact on the median tree since the belief
probabilities p(y|x) provided by the DNN were not accurate
enough. Nevertheless, the median tree still had the highest
win rate and much higher accuracy on the test sets than the
larger DNN model.

Robustness In Theorem 2 we were able to prove the ro-
bustness of MEMO to changes in the oracle. Here, we evalu-
ate robustness empirically by training the big model M with
different training sets and measuring the impact on the com-
pressed models. To measure similarity between compressed
models we say that models agree on x if they make the same
prediction on this point, regardless of the correctness of this
prediction. In the experiment we divided the dataset into a
train and test sets with a random 15% split. To simulate data
perturbations, we used 10-fold CV on the training set. On
each round, we took 9 of the 10 folds to be Strain while the
remaining fold was omitted. The training process of large
model M and the trees was done in the same manner as in
the generalization experiment. We measured the agreement
of same type trees across rounds on the test set and aver-
aged the score. This experiment was repeated 20 times and
the average scores are presented in Table 4. The median tree
was more robust on 7 out of 10 test settings (4 out of 5 when
compressing to trees and 3 out of 5 when compressing to
neural nets), in some cases with very large margins. On the
other 3 cases it was close to the other techniques in terms of
robustness.

The results from the generalization and the robustness ex-
periments show that the CREMBO algorithm is able to com-
press Random Forests and DNNs to small decision trees
that are more accurate and robust than same sized trees
trained with comparable methods on a variety of datasets.
The average accuracy improvement over datasets (in abso-
lute percentage) was 13.76% for RF compression and 9.57%
for DNN compression and the average robustness improve-
ments were 12.7% and 7.8% for RF and DNN compression
respectively. We note that our results are statistically signif-
icant.

5.2 DNN to DNN Compression
DNN to DNN compression is a highly studied filed (Bu-
ciluǎ, Caruana, and Niculescu-Mizil 2006). To test our
method’s ability to compress large DNNs to compact DNNs,
we used CREMBO to compress large DNNs to compact
DNNs and compared them to baseline models, i.e., models
trained small from the get-go, and to compact models gen-
erated with Knowledge Distillation (KD). We compressed
two types of large DNNs, ResNet18 (He et al. 2016) and
VGG16 (Simonyan and Zisserman 2014) to two compact
DNNs, LeNet-5 (LeCun et al. 1998) and MobileNetV2 (San-
dler et al. 2018). Where LeNet-5 is a very small DNN and
MobileNetV2 is a compact DNN designed to run on mo-
bile devices. The models were trained on the CIFAR-10
dataset (Krizhevsky, Hinton et al. 2009). The number of pa-
rameters and baseline results of all models on CIFAR-10 are
presented on Table 6.

The training process was the same for all DNNs. We used
ADAM optimizer, batch size of 128, learning rate of 0.01
for 60 epochs and then learning rate of 0.001 for another 30
epochs. We first trained the large DNNs (M ) on the training
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Random Forest DNN

Dataset BM ST MED BM ST MED

Dermatology 91.89 91.9 92.18 91.88 90.01 92.67
Heart 63.04 63.08 70.29 63.17 60.76 68.51
Arrhythmia 32.76 32.17 89.91 32.63 21.03 72.72
Breast cancer 94.7 94.85 95.91 94.71 93.3 92.63
Iris 99.52 99.65 97.85 99.47 96.67 94.44

Table 4: Agreement results (in percentage) of benchmark tree (BM), student tree (ST) and median tree (MED) averaged over
20 experiments where the large models compressed are Random Forest (left) and Deep Neural Network (right)

M m T Baseline(m) KD CREMBO

ResNet18 LeNet-5 20 70.76 71.53 72.27
VGG16 LeNet-5 5 70.76 70.49 72.43
ResNet18 MobileNetV2 5 91.97 92.17 92.19
VGG16 MobileNetV2 5 91.97 92.15 92.35

Table 5: Accuracy results (%) for large model M compression to small model m with Knowledge Distillation (KD) and
CREMBO on CIFAR-10. Baseline accuracy for the small model m and Temperature (T) used are provided

Model # Parameters Accuracy (%)

resnet18 11173962 93.15
VGG16 14728266 92.22
MobileNetV2 2296922 91.97
LeNet-5 62006 70.76

Table 6: Number of model parameters and baseline accuracy
on CIFAR-10

set. Then we divided the training set to a train and valida-
tion set with a random 10% split. We used the validation set
for the CREMBO algorithm and to find the best KD temper-
ature value out of [3, 5, 8, 20] for each model. After finding
the best temperature values, CREMBO and KD were used to
compress M to compact DNNs (m). We implemented KD
as in (Hinton, Vinyals, and Dean 2015) using both soft and
regular targets as recomended in (Hinton, Vinyals, and Dean
2015). The results of our experiments are presented in Ta-
ble 5.

The results show that CREMBO improves the baseline
and outperforms KD on all tested models. This is another
testimony for CREMBO’s flexibility and ability to compress
large models to compact models that generalize well.

6 Conclusions
In this study we presented a novel robust model compres-
sion scheme for multi-class classifiers that can compress va-
riety of large models, such as DNNs and ensembles, into
compact models. To ensure robustness it uses tools from
robust statistics; namely, the statistical depth and trimmed
estimators. We presented the MEMO algorithm, a new al-
gorithm for finding the empirical median hypothesis in the
multi-class setting. For model compression we introduced
the CREMBO algorithm. CREMBO uses a trimmed version

of the depth function to search for deep hypotheses in a class
of compact classifiers and therefore achieve both robustness
and compression. We demonstrated the ability of CREMBO
to compress both DNNs and ensembles into small decision
trees which are more accurate and robust than trees trained
with comparable methods. This is useful for different ex-
plainability purposes since small trees are comprehensible
while ensembles and DNNs are much harder to interpret.
The robustness and accuracy of the compressed model en-
sure that it represents the large model it captures well.

Compressing models is also advantageous in other sce-
narios, such as when a model is to be used on a device
with limited resources or when latency is critical. This is
especially true for large DNNs which are known for their
large size and computing demands. To this end, we evalu-
ated CREMBO’s ability to compress large DNNs to compact
DNNs and showed that CREMBO outperforms KD.

Although CREMBO works for a variety of model types,
it is possible to add model specific variations to further im-
prove results. For example, adding temperature to CREMBO
in DNN to DNN compression. DNNs predictions tend to be
overconfident and in general not well-calibrated (Guo et al.
2017). This means that the posterior probabilities we get
from M can be overconfident as well. Adding temperature
has been said to improve calibration (Guo et al. 2017). This
variation can be seen as a combination of KD and CREMBO
in which the allowed labels get weighted according to the
soft predictions. We leave this and other possible variations
for future work.

References
Banerjee, A. 1997. Initializing neural networks using decision
trees. Computational learning theory and natural learning systems
4: 3.

Bénard, C.; Biau, G.; Da Veiga, S.; and Scornet, E. 2020. In-

6694



terpretable Random Forests via Rule Extraction. arXiv preprint
arXiv:2004.14841 .
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