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Abstract

The teacher-student framework aims to improve the sample
efficiency of RL algorithms by deploying an advising mech-
anism in which a teacher helps a student by guiding its ex-
ploration. Prior work in this field has considered an advising
mechanism where the teacher advises the student about the
optimal action to take in a given state. However, real-world
teachers can leverage domain expertise to provide more infor-
mative signals. Using this insight, we propose to extend the
current advising framework wherein the teacher would pro-
vide not only the optimal action but also a qualitative assess-
ment of the state. We introduce a novel architecture, namely
Advice Replay Memory (ARM), to effectively reuse the ad-
vice provided by the teacher. We demonstrate the robustness
of our approach by showcasing our experiments on multiple
Atari 2600 games using a fixed set of hyper-parameters. Ad-
ditionally, we show that a student taking help even from a sub-
optimal teacher can achieve significant performance boosts
and eventually outperform the teacher. Our approach outper-
forms the baselines even when provided with comparatively
suboptimal teachers and an advising budget, which is smaller
by orders of magnitude. The contributions of our paper are 4-
fold (a) supplementing student’s knowledge by providing the
state category (b) introduction of ARM to effectively reuse
the advice throughout learning (c) ability to achieve signifi-
cant performance boost even with a coarse state categoriza-
tion (d) enabling the student to outperform the teacher.

Introduction
Recent advances in deep learning and their combination
with conventional Reinforcement Learning (RL) techniques
have shown promising results in solving complex decision-
making problems. Although there have been many success-
ful RL applications, scaling up to large state spaces remains
a challenge. In many real-world settings like autonomous
driving (Michels, Saxena, and Ng 2005) and robot naviga-
tion (Matarić 1997), learning time is very expensive. Trans-
fer Learning (Taylor and Stone 2009) alleviates this problem
by using domain expertise to accelerate the learning speed.

The Teacher-Student framework (Torrey and Taylor 2013)
is one such paradigm, where a domain expert (teacher) helps
accelerate the student’s learning by providing advice on the
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action to take in a given state. Recently, there have been
several enhancements to this framework. Many extensions
model the teacher as an RL agent solving an MDP to make
the student learn as fast as possible (Fachantidis, Taylor, and
Vlahavas 2019; Omidshafiei et al. 2019; Zimmer, Viappiani,
and Weng 2014). In all these approaches, the teacher trans-
fers the information in the form of action advice.

Although such guided exploration helps the student to
converge faster, real-world teachers typically do not guide
the student only about the best possible action in a partic-
ular situation. Instead, they may also provide a qualitative
assessment of how preferable the given situation is (Gupta
et al. 2019). Such richer advising can help the student re-
late better to the environment by learning about favorable
states and making better use of this knowledge in the fu-
ture. Using this insight, we believe that all the above ad-
vising frameworks can benefit via better utilization of the
teacher’s knowledge. In particular, the proposal is to make
the information provided by the teacher richer by advising
the student not just on the best action to take in a state but
also about how promising that state is.

One way the teacher can provide such information is by
partitioning the state space into a set of (qualitative) cate-
gories. On being queried, along with the optimal action to
take, the teacher can inform the student about the state’s cat-
egory as per the teacher’s estimate. To utilize the advice of
this nature, the student will have to process the advice into
a form that is compatible with its learning algorithm. The
student is an RL agent, learning to optimize its performance
using numerical feedback. Hence we assume that it can in-
terpret and adapt to numerical values. Therefore, the student
would need to map the space of qualitative classes to a nu-
merical space using a well-defined mathematical function.
Since many RL agents use value function approximators to
model their policies, it would be beneficial to define this
function as an approximation to V(s) (the state’s value). In
the case of Q-learning agents, this would directly provide
the value of the optimal action, which is Q(s, a) where a is
the optimal action in the given state s. The student can use
these mapped values to guide its learning.

In this paper, we use these values to move the student’s
Q-Network in the right direction. This means, the student
moves its V (s) (Q(s, a) for the optimal action a) values in
the direction of this approximate value. Due to the spatial
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nature of updates in Q-learning, this value will be gradu-
ally propagated to all the states near s. Hence if the stu-
dent obtains the approximate values of multiple states in
the early stages, it can have a better idea of the prospects
of following different trajectories, allowing it to make more
informed decisions. In order to effectively reuse the infor-
mation provided in the advice, we introduce a novel archi-
tecture namely the Advice Replay Memory (ARM). ARM
stores the advice tuples so that the agent can repeatedly
relive these experiences over time and refresh what it has
learned from the advice.

It may not always be feasible in real-world scenarios
to have access to an optimal teacher for complex tasks.
Even when used with sub-optimal teachers, our approach al-
lows students to achieve significant performance boosts and
eventually outperform them. Moreover, real-world teacher-
students can have limited advice budgets due to communica-
tion constraints. Our approach considerably outperforms the
baselines, even when restricted to an advice budget smaller
by an order of magnitude.

Most of the existing work in the teacher-student frame-
work follows an interactive setting, where the student can
potentially query the teacher at any time during the learn-
ing period. However, in certain settings, the teacher might
not be available to guide the student at all times. Hence,
we present an interesting ”non-interactive learning” setting
where the teacher can compose a batch of advice tuples and
provide it to a student at the beginning of its learning period.
From thereon, even if the teacher goes offline or does not pay
any attention, the student might still be able to gain reason-
able performance boosts. The unique design of our approach
presents a natural way to work in such settings, as opposed
to the existing teacher-student paradigms.

We also investigate an interesting use case where the stu-
dent, while learning on its own, is incapable of achieving the
scores attained by the teacher. It can be because of the better
network architecture or higher resources of the teacher. We
believe that this use case is particularly useful in real-world
situations. The student can be a hand-held device with lim-
ited resources, which can benefit from querying a server (the
teacher) with higher resources.

We begin with an RL agent in the teacher’s role, but
we prefer advising mechanisms that can potentially be
used with human teachers as well. It limits us to human-
expressible teaching methods since they can generally pro-
vide only a coarse view of the environment. It also prevents
the student from starting with the teacher’s knowledge or
assuming any access to the teacher’s internal architecture.
Furthermore, it requires teachers to be able to guide students
that may learn and perceive their environment differently.

We demonstrate the performance of our approach on three
domains from the Arcade Learning Environment (Bellemare
et al. 2013), namely Qbert, Boxing and Seaquest. We believe
that our approach can extend the existing Teacher-Student
frameworks (Amir et al. 2016; Fachantidis, Taylor, and Vla-
havas 2019; Torrey and Taylor 2013; Zimmer, Viappiani,
and Weng 2014), where only the action is communicated
as advice.

Related Work
In episode sharing, the teacher communicates successful
episodes to accelerate a student’s learning (Tan 1993). A
confidence-based approach was proposed in (Chernova and
Veloso 2007), where the student learns only from expert
demonstrations without receiving any reward signal from the
environment. Instead of giving teacher’s synthesized infor-
mation, these approaches simply provide crude information
like teacher’s trajectories. Reward shaping uses an artificial
reward signal to guide the agent in a more controlled fash-
ion (Ng, Harada, and Russell 1999). However, it requires
detailed knowledge of the states’ potential, which might be
hard to represent in the form of a shaped reward (Randløv
and Alstrøm 1998). In contrast, our approach only requires
a coarse categorization of a limited number of states.

In the teacher-student framework, the teacher helps to ac-
celerate the student’s learning by providing advice on the
action to take in a given state. In the student-initiated ad-
vising paradigm (Clouse and Utgoff 1992), the student asks
the teacher for advice whenever its confidence in a state is
low. The teacher responds with the optimal action to take
in that state. Torrey considered a teacher-initiated advising
paradigm (Torrey and Taylor 2013) with a limited advice
budget. Here, the teacher continuously monitors the stu-
dent’s decisions until the advice budget runs out. Amir pro-
posed a jointly-initiated advising mechanism (Amir et al.
2016), where the student decides when to ask for teacher’s
advice based on one of the student-initiated approaches. The
teacher then decides whether to provide advice based on one
of the teacher-initiated advising approaches.

This framework was further extended by relaxing the need
to have expert advisors in the MAS setting, where simulta-
neously learning agents advise each other, and the roles of
teacher and student are interchangeable (Da Silva, Glatt, and
Costa 2017). An advice reuse strategy was proposed wherein
the student stores all the states where the teacher advised
the action to take (Zhu et al. 2020). This approach fails to
generalize the received knowledge to unseen states since the
previously advised action is reused only if the same state
is revisited. A Q-Values sharing framework was proposed
wherein the advisee simply copies the adviser’s Q-Values
into its Q-Table when advised in a given state (Zhu et al.
2019). The bookkeeping nature of these approaches limits
them to work with simple domains that can be discretized
via techniques like tile coding. There have also been efforts
to model teachers as RL agents that try to make the student
learn as fast as possible (Fachantidis, Taylor, and Vlahavas
2019; Zimmer, Viappiani, and Weng 2014). The approach of
modeling teachers as RL agents has also been extended to
cooperative multi-agent settings (Omidshafiei et al. 2019).

In contrast to our approach, the advising mechanisms
mentioned above allow the teacher to advise the student
solely about the optimal action to perform. Although Q-
Values sharing explores a form of richer advising, but the
strict requirement of having Q-Table makes it infeasible for
complex domains. All these approaches can potentially ben-
efit by utilizing the teacher’s knowledge better in the form
of richer advising, i.e., the teacher provides a qualitative as-
sessment of the state along with the optimal action to take.
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Background
The following subsections provide brief background on
standard RL algorithms and the teacher-student framework.

Q-Learning and Deep Q Network (DQN)
One of the most popular algorithms for solving sequential
decision problems is Q-learning (Watkins and Dayan 1992;
Watkins 1989). It tries to estimate the optimal value of every
state-action pair Q(s, a). The optimal value of an action a
in a state s, Q∗(s, a), is defined as the expected cumulative
sum of future rewards on taking a in s and following the
optimal policy thereafter.

DQN (Mnih et al. 2015) combines the representation
learning power of deep neural networks with the Q-Learning
objective to approximate the Q-value function. The off-
policy nature of the algorithm ensures that DQN can avoid
correlated updates, using an experience replay memory (Lin
1992). The loss function for DQN is given by:

L(θ) =s,a,r,s′ [(yDQN −Q(s, a; θ))2] (1)
with:

yDQN = (r + λmax
a′

Q(s′, a′; θ′)) (2)

Here, L represents the expected TD error corresponding
to current parameter estimate θ. θ′ and θ represent the pa-
rameters of the target network and the online network re-
spectively. The gradient descent step is as follows:

∇θL(θ) =s,a,r,s′ [(yDQN −Q(s, a; θ))∇θQ(s, a; θ)] (3)

Teacher Student Framework
The teacher-student framework (Clouse and Utgoff 1992;
Torrey and Taylor 2013) aims at accelerating a student’s
training through advice on action to take from an experi-
enced teacher. The student queries the teacher in a given
state, and the teacher advises it about the action to take in
that state. The student simply performs the action suggested
by the teacher.

In the student initiated advising (Clouse and Utgoff 1992),
the student decides when to ask the teacher for advice. There
are many heuristics like Ask Uncertain where the student
asks for advice whenever its confidence in a state is low. If
in a given state, the expected rewards associated with all the
actions are close to each other, then the student is indifferent
about which action to choose. The confidence metric for the
student in a given state is given in equation (4).

In the teacher-initiated advising (Torrey and Taylor 2013),
the teacher identifies when to advise the student. For identi-
fying when to advise, the teacher used several heuristics like
Mistake Correcting Advising and Importance Advising i.e.,
advising when state importance is more than a threshold. In-
tuitively, a state is considered important if taking a wrong
action in that state can lead to a significant decrease in fu-
ture rewards. In the case of agents using TD algorithms, the
state importance metric is given in equation (5).

C(s) = max
a

Qstudent(s, a)−min
a
Qstudent(s, a) (4)

I(s) = max
a

Qteacher(s, a)−min
a
Qteacher(s, a) (5)

In jointly Initiated Strategies (Amir et al. 2016), the stu-
dent decides when to ask the teacher for advice based on
one of the student-initiated heuristics. Then, the teacher de-
cides whether to provide advice based on one of the teacher-
initiated advising heuristics.

Approach
We propose to extend the existing Teacher-Student ap-
proaches by making the teacher advise the student not just
on the best action to take in a state but also provide a qualita-
tive assessment of how promising that state is. As discussed
earlier in the Introduction, since the student is an RL agent
using DQN, we need to project these qualitative assessments
to a numerical form representing that state’s value.

One way in which the teacher can provide qualitative in-
formation is by partitioning the state space into a set of quali-
tative categories. State characterization can be done based on
the quality of the outcomes achieved by following the best
possible sequence of actions starting from that state. It natu-
rally induces a relative ordering between the states based on
their categories. Since the teacher is an RL agent, it can esti-
mate the maximal (Vhigh) and the minimal (Vlow) long-term
returns that its policy can achieve starting from any random
state.

Given these global bounds (Vhigh, Vlow) and the category
of a particular state s, the student can map it to a numerical
value. Let there be a set of n categories C = {c1, c2....cn},
where ci � ci+1, ∀i=1...n−1 i.e. ith category is preferable
over (or has higher associated long term reward than) all the
succeeding categories. We define a function ψ(ci) to project
from the space of these qualitative categories to a numerical
space. The projected values should be an approximate rep-
resentation of V (s), the value of the state as given below:

ψ(ci) =
[ω ∗ i] + [ω ∗ (i− 1)]

2
(6)

Here, ω = (Vhigh − Vlow)/n i.e. the gap between 2 suc-
cessive categories. ψ maps ci to n equally spaced values
from the range defined by Vhigh and Vlow. The more pre-
ferred category is given a higher value. This mapped value
equivalently gives us an approximation of the value of the
most preferred action suggested by the teacher. For the rest
of the paper, we assume that ψ(s) denotes ψ(cs) where cs is
the category assigned to state s by the teacher.

Since ψ(s) gives the approximate value for Q(s, a)
(where a the is most preferred action suggested by the
teacher), it provides a reasonable estimate of the direction
in which the agent should move its Q-network. Due to the
high level of generalization over the state space in DQN,
doing large updates in the direction of ψ(s) might lead to
overfitting and instability. Also, it would be wasteful to use
these values only once and then forget about them. The stu-
dent must also give proper importance to the experiences it
gathers by following its own policy. It needs to smoothen the
training over both the experiences due to its own policy and

6655



the experiences due to the teacher’s advice. To balance the
learning of these experiences with the normal updates, the
student needs to steadily move its network in the direction
of these approximate values(ψ(s)) throughout its learning.

To handle this, we introduce an additional replay mem-
ory called the Advice Replay Memory (ARM). It stores the
advice tuples (state, action, category) for every teacher’s
advice. The student can repeatedly relive the experiences
due to the teacher’s advice over time. Thus, the student’s
network needs to minimize an additional loss L′ due to the
ARM tuples. It is given by:

L′(θ) =s,a [(ψ(s)−Q(s, a; θ))2] (7)

As typical to DQN agents, the student also has to mini-
mize a loss L due to the tuples in D, the experience replay
memory. This loss is the same as given in equation (1). To
smoothen the training over both kinds of experiences, at ev-
ery training step, the student randomly samples a mini-batch
from each of these memories and computes the losses for
them. The gradients for the losses L and L′ are as follows:

∇θL(θ) =s,a,r,s′ [(yDQN −Q(s, a; θ))∇θQ(s, a; θ)] (8)

∇θL′(θ) =s,a [(ψ(s)−Q(s, a; θ))∇θQ(s, a; θ)] (9)

Due to the random initialization of DQN, initially, the
state-action values predicted by the student would be some-
what random and would differ a lot from ψ(s). It makes
the loss L′ computed due to the tuples from ARM quite
large. On the other hand, due to the spatial nature of updates
in DQN, the difference in the values predicted by the net-
work and the expected targets (r + maxaQ(s′, a)) would
be smaller, making the loss L computed due to the tuples
from D comparatively smaller. If we compute the combined
loss for L′ and L, L′ would tend to dominate over L, and
the network would almost neglect the updates due to tran-
sition tuples (s, a, r, s′). It can make the network unstable
and lead to chaotic behavior. To ensure smooth learning of
the network, we take a weighted average of L′ and L. The
combined loss and its gradient are given by:

Ltotal = (1− α) ∗ L+ α ∗ L′ (10)

∇θLtotal(θ) = (1− α) ∗ ∇θL(θ) + α ∗ ∇θL′(θ) (11)

This weighted average makes our algorithm robust to the
large differences that might be there in the predicted val-
ues and the values given by the teacher. The value of α, the
advice ratio, was determined using a grid search. The sen-
sitivity of our algorithm to the α parameter is presented in
detail in the appendix.

Initially, the student leverages the teacher’s knowledge to
boost its performance, but eventually, its own policy would
reach high quality and even outperform the teacher’s. There-
fore, the student needs to reduce the relative importance of
the teacher’s advice over time. To balance the effect of trans-
ferred knowledge and its own learning experiences, it starts

decaying α. The student can use any decay policy δ, which
can be as simple as exponential decay. As shown in our
experiments below, the student following our approach can
perform reasonably well even with sub-optimal teachers and
eventually outperforms the teacher.

Algorithm 1 Advising Model using State Categorization
Require: Advice Replay Memory: ARM , Experience
Replay Memory: D, advice ratio: α, α-decay policy: δ

1: Initialize: s1 ← getInitialState()
2: for t = 1, T do
3: a← getAction(st)
4: Sample minibatch b1 from ARM
5: Sample minibatch b2 from D
6: L′ ← loss due to tuples in b1 as per equation (7)
7: L← loss due to tuples in b2 as per equation (1)
8: Ltotal ← (1− α) ∗ L+ α ∗ L′
9: Perform a gradient descent step on Ltotal according

to equation (11)
10: Execute a, observe reward r and next state st+1

11: store transition (st, a, r, st+1) in D
12: decay α using decay policy δ
13: end for

The complete algorithm is given in algorithm 1. The rou-
tine getAction(s) returns the action to be taken by the stu-
dent in the state s. If the teacher advises an action, the stu-
dent appends the appropriate tuple to the Advice Replay
Memory. Hs(s) is the student’s heuristic function to decide
when to ask for advice. It returns true if the student has to
ask for advice in the state s. Similarly, Ht(s) is the teacher’s
heuristic function to decide when to give advice. Figure 1
illustrates the overall setup.

Experimental Analysis
We experimentally showcase the effectiveness of our ap-
proach by extending Amir’s framework (Amir et al. 2016).
However, as discussed in the introduction, we believe that
our approach can naturally extend other advising mecha-
nisms as well as (Fachantidis, Taylor, and Vlahavas 2019;
Stolle and Precup 2002; Torrey and Taylor 2013; Zimmer,
Viappiani, and Weng 2014), where the action is communi-
cated as advice. In particular, we show that richer advising
about a state’s category can significantly improve student’s
performance. Additionally, we demonstrate the effect of re-
ceiving advice from a sub-optimal teacher and show that the
student can still achieve significant performance improve-
ment and eventually outperform the teacher.

Hyper-parameters and Setup
For experimental purposes, for each game, we train an agent
for 30 million steps and checkpoint it every 100,000 steps.
After training, the checkpoint where the agent could attain
70% of the highest score is selected as the teacher for that
particular game. The values of advice ratio α and the batch
size were fixed to 0.01 and 8 respectively for this experi-
ment. As discussed in the appendix, both of these define the
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Figure 1: DQN augmented with Advice Replay Memory.

importance that the student gives to its own learning expe-
rience compared to the teacher’s advice. As pointed above,
our algorithm is flexible to work with any α-decay policy.
In this paper, the student exponentially decays α by a factor
γ every 100,000 training steps. For all the games, we fix γ
to 0.99. In the appendix, a rigorous analysis of the student’s
performance is done across different values of γ. Our algo-
rithm is stable with different values of γ, and in general, a
relatively smaller value of γ is preferred with low-quality
teachers. In figure 2, we analyze the effect of having differ-
ent levels of suboptimal teachers on student’s performance.

Algorithm 2 getAction(s)
Require: Student’s heuristic function Hs(s), Teacher’s
heuristic function Ht(s), Student’s policy πs(s),
Teacher’s policy πt(s), Teacher’s heuristic for state
categorization ψ(s), Advice Replay Memory ARM
Output: action: action to take in the given state s

1: if Hs(s) = true then
2: if Ht(s) = true then
3: action← πt(s)
4: category ← ψ(s)
5: store advice (s, action, category) in ARM
6: return action
7: end if
8: end if
9: action← πs(s)

10: return action

We use the Ask Uncertain - Advice Important heuristic for
advice exchange, as given in Amir’s work. It needs modeling
hyper-parameters that vary across each game, which were
determined experimentally as summarized in Table 1 of the
appendix. These parameters dictate the approximate amount
of advice exchanges. An advising budget of 10k was fixed
for our approach, whereas Amir’s approach was allowed to
have a budget of 100k. The hyper-parameters specific to our
approach were kept the same for all the games. The DQN

architecture was kept the same as (Mnih et al. 2015). We use
the Double-DQN algorithm (Van Hasselt, Guez, and Silver
2016) for training both the student and the teacher.

RL teachers might typically categorize a state based on
the prospects associated with it. To simulate this behavior,
we pre-trained an RL agent (using DQN) in the same en-
vironment. Two states are considered similar if they have
similar prospects associated with them. Hence the teacher
assigns the same category to the states having V (s) in the
same range of values, such that states with higher value be-
long to the more preferred category.

All the agents were trained for 30 million steps with the
size of each training epoch being 40k steps. Each training
epoch is followed by a testing epoch where the performance
of the algorithm is averaged over 20 episodes. To smoothen
the curves, all plots were averaged over five trials, and a run-
ning average of 15 was used in plotting the results. The solid
curves correspond to the mean and the shaded region to the
minimum and maximum returns over the five trials.

Effect of the number of State Categories: The number
of state categories defines the granularity of information be-
ing provided to the student and was fixed to six in all the
experiments. A significantly large value of n will provide
a highly refined view of the environment to the student. In
contrast, a small value might hamper its performance due
to high approximation errors. As presented in the appendix,
even a small value of n (four or six) is sufficient to provide
a significant performance boost to the student.

Performance analysis w.r.t. different sub-optimal
teachers: We analyze the student’s performance following
our approach for varying levels of sub-optimality of the
teacher on Qbert. Over time, the advice provided by a sub-
optimal teacher can start hampering the student’s learning.
The states might be miscategorized, or the teacher might
have an inconsistent and suboptimal policy. The student
may, therefore, need to assign higher importance to its own
learning over time. We selected four different teachers with
the following average scores: 3.5k, 5k, 6.5k, and 9k. Note
that these scores for the teacher were obtained as an average
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of 200 independent episodes. We also compare the perfor-
mance of these students with the student using Amir’s ap-
proach, which receives advice from an optimal teacher (i.e.,
an average reward of 9k).

Figure 2: Performance analysis w.r.t. different sub-optimal
teachers on Qbert. Running Avg of 40 was taken for clarity.

Figure 2 shows that a higher quality teacher’s advice
leads to a more significant boost in student’s performance.
An interesting outcome of this experiment is that even with
a suboptimal teacher (with an average reward of 3.5k),
our approach performs significantly better than Amir’s
approach even when the latter receives advice from an opti-
mal teacher. Another key observation is that a sub-optimal
teacher with 70% of the optimal score results in a similar
performance boost to the student as an optimal teacher.

Figures 3 - 5 show a student’s performance following our
approach compared to a student to whom only actions were
given as advice. We also show the performance of an agent
who is learning without the teacher’s help. The x-axis repre-
sents training epochs, while the y-axis represents the average
episode reward based on the fixed policy at that point.

Advice Transfer Across Homogeneous Agents
In this subsection, both the teacher and the student use the
same network architecture (Mnih et al. 2015) for their learn-
ing. Figures 3(a), 4(a), and 5(a) show that due to guided ex-
ploration, the student to whom only actions were advised has
a boost in performance (in terms of learning rate) as com-
pared to the agent which learns on its own. These figures
showcase that the student to whom the teacher also provides
a qualitative assessment of the state can significantly outper-
form both the above agents.

As clear from the graphs, our approach results in signifi-
cant performance improvement in the initial phases. It is be-
cause the student (a typical Q-Learning agent using DQN)
randomly samples the transitions tuples fromD and updates
its value function based on the loss function given in equa-
tion (1). The target value yDQN depends on θ′, making the
target value of the network fluctuating in nature. Due to the
random initialization of the neural network, the fluctuations
are prominent at the start. However, since the category as-
signed to any state by the teacher does not change over
time, ψ(s) (the approximate value of the teacher’s suggested

action) remains fixed. Therefore, the student using our ap-
proach moves in the right direction from the start, resulting
in greater performance improvement in the initial phases.
Over time, all the students start to converge to an optimal
policy, and the importance of these values becomes less sig-
nificant. Hence, the difference in performance decreases.

Discussion about advising budget: As mentioned above,
our approach’s advising budget is fixed to an order of mag-
nitude less than the baseline (10k and 100k respectively).
Even with such a small budget, our approach can perform
significantly better than the baseline. As shown in the ap-
pendix, similar performances can be observed for our ap-
proach, whether the student receives 400k advice or 7.5k
advice. In contrast, the baseline demonstrates significantly
poor performance when operated on such small budgets. It
implies that our approach makes better use of every single
advice tuple that it receives. It is because a student learning
with our approach uses ARM to reuse all the advice infor-
mation effectively. The student can repeatedly relive these
experiences over time and refresh what it has learned from
the advice. In contrast, the baseline uses advice only once
and then wastefully forgets about it.

Advice Transfer Across Heterogeneous Agents
As discussed in Introduction, the use case where the teacher
has a much more complex network than the student is par-
ticularly useful. Therefore, we use the models proposed by
(Mnih et al. 2015) and (Mnih et al. 2013), as the underlying
architectures for the teacher and the student, respectively.
Figures 3(b) - 5(b) show similar trends as the graphs in Fig-
ures 3(a) - 5(a).

The key insight here is that advising leads to higher per-
formance improvement than the case where the teacher and
the student have similar networks. The model proposed in
(Mnih et al. 2015) outperforms the model proposed in (Mnih
et al. 2013), in terms of the convergence scores. Therefore,
advising from a comparatively superior teacher becomes a
lot more valuable for the student and results in much higher
performance improvement.

Non-interactive Learning Setting
This experiment presents an interesting “non-interactive
learning” setting where the teacher can compose a batch of
advice tuples and provide it to the student at the beginning
of its learning period. From thereon, even if the teacher goes
offline or does not pay any attention, the student might still
be able to gain reasonable performance boosts. The student
treats this batch in the same way it uses advice tuples from
ARM. One way of composing the batch is by randomly sam-
pling the advice tuples from the Advice Replay Memory of
any previously trained student. The experiments were per-
formed on Boxing, on a spectrum of three different batch
sizes having 7.5k, 15k, and 30k advice tuples.

It should be noted that due to the presence of ARM, our
algorithm works naturally in such settings. However, other
approaches do not have any efficient way of reusing the pre-
viously received advice i.e., advice received in any given
state can only help in selecting the action in that particu-
lar state. Therefore, we do not have any suitable mechanism

6658



(a) homogeneous networks (b) heterogeneous networks

Figure 3: Seaquest training comparison.

(a) homogeneous networks (b) heterogeneous networks

Figure 4: Boxing training comparison.

(a) homogeneous networks (b) heterogeneous networks

Figure 5: Qbert training comparison.
Figure 6: Analysis of performance in a non-interactive learning
setting, shown on Boxing.

that enables them to work in this scenario. Figure 6 shows
the performance of a student using our algorithm in this set-
ting. The learning curve of the student using our approach
who can query the teacher interactively is also plotted. We
can observe that a student that receives a batch of 30k ad-
vice tuples performs marginally below the student who can
query the teacher interactively. Furthermore, there is a grad-
ual decrease in performance with a decrease in the size of the
advice batch received. The key point to note here is that even
a student with a small batch size of 7.5k tuples outperforms
the baseline having an unlimited budget.

In our approach (in the interactive setting), the teacher
helps the student in two forms, namely, (a) action sugges-
tion and (b) state assessment. We analyze the individual im-
pact of both forms of advice on the student’s learning in Fig-
ure 4 of the appendix. Amir’s approach solely relies on (a),
and the ”non-interactive learning” setting uses only (b). As
can be seen in the figure, the student using Richer Advising
(in the interactive setting) outperforms both the student us-
ing Amir’s approach and the student using Non-Interactive
advising. It implies that the combined effect of (a) and (b)
is greater than either. Furthermore, the student learning in
a Non-Interactive setting outperforms the student following
Amir’s approach. Hence the validation that the state assess-
ment causes a more significant performance boost in a stu-
dent than action suggestion.

Conclusion and Future Work
This paper investigates the role of richer knowledge trans-
fer in the case of a Teacher-Student framework. Our exper-
iments show that if the teacher provides additional advice
in the form of a qualitative assessment of the state, our ap-
proach can outperform the advising mechanism being ex-
tended. Experiments show that our approach outperforms
the baselines even when provided with comparatively sub-
optimal teachers and an advising budget, which is smaller
by orders of magnitude. We introduce a novel architecture,
namely ARM, to effectively reuse the teacher’s advice and
propose a way of giving proper attention to both (advising
and normal learning) kinds of experiences.

To our knowledge, such richer advising has not been stud-
ied, especially in the context of the Teacher-Student frame-
work. It would be interesting to examine the effectiveness
of our approach in the case of simultaneous learning agents
(Da Silva, Glatt, and Costa 2017) where the teacher-student
roles are interchangeable, and there can be multiple teach-
ers. In complex and hierarchical domains, the student might
temporarily treat these approximate values as sub-goals. An-
other use case can be to use these values for reward shaping
(Ng, Harada, and Russell 1999). The interesting use case
where the teacher can give qualitative assessment only in a
limited number of states might also be explored. In such sce-
narios, the student can find important states as in (Stolle and
Precup 2002) and then query the teacher in these states.
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