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Abstract

We study decentralized stochastic linear bandits, where a net-
work of N agents acts cooperatively to efficiently solve a lin-
ear bandit-optimization problem over a d-dimensional space.
For this problem, we propose DLUCB: a fully decentralized
algorithm that minimizes the cumulative regret over the entire
network. At each round of the algorithm each agent chooses
its actions following an upper confidence bound (UCB) strat-
egy and agents share information with their immediate neigh-
bors through a carefully designed consensus procedure that
repeats over cycles. Our analysis adjusts the duration of
these communication cycles ensuring near-optimal regret per-
formance O(d logNT

√
NT ) at a communication rate of

O(dN2) per round. The structure of the network affects the
regret performance via a small additive term – coined the re-
gret of delay – that depends on the spectral gap of the un-
derlying graph. Notably, our results apply to arbitrary net-
work topologies without a requirement for a dedicated agent
acting as a server. In consideration of situations with high
communication cost, we propose RC-DLUCB: a modifica-
tion of DLUCB with rare communication among agents. The
new algorithm trades off regret performance for a signifi-
cantly reduced total communication cost of O(d3N2.5) over
all T rounds. Finally, we show that our ideas extend natu-
rally to the emerging, albeit more challenging, setting of safe
bandits. For the recently studied problem of linear bandits
with unknown linear safety constraints, we propose the first
safe decentralized algorithm. Our study contributes towards
applying bandit techniques in safety-critical distributed sys-
tems that repeatedly deal with unknown stochastic environ-
ments. We present numerical simulations for various network
topologies that corroborate our theoretical findings.

1 Introduction
Linear stochastic bandits (LB) provide simple, yet com-
monly encountered, models for a variety of sequential
decision-making problems under uncertainty. Specifically,
LB generalizes the classical multi-armed bandit (MAB)
problem of K arms that each yields reward sampled inde-
pendently from an underlying distribution with unknown pa-
rameters, to a setting where the expected reward of each
arm is a linear function that depends on the same un-
known parameter vector (Dani, Hayes, and Kakade 2008;
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Abbasi-Yadkori, Pál, and Szepesvári 2011; Rusmevichien-
tong and Tsitsiklis 2010). LBs have been successfully ap-
plied over the years in online advertising, recommendation
services, resource allocation, etc. (Lattimore and Szepesvári
2018). More recently, researchers have explored the poten-
tials of such algorithms in more complex systems, such
as in robotics, wireless networks, the power grid, medi-
cal trials, e.g., (Li et al. 2013; Avner and Mannor 2019;
Berkenkamp, Krause, and Schoellig 2016; Sui et al. 2018).
A distinguishing feature of many of these –perhaps less
conventional– bandit applications, is their distributive na-
ture. For example, in sensor/wireless networks (Avner and
Mannor 2019), a collaborative behavior is required for
decision-makers/agents to select better actions as individ-
uals, but each of them is only able to share information
about the unknown environment with a subset of neighbor-
ing agents. While a distributed nature is inherent in cer-
tain systems, distributed solutions might also be preferred in
broader settings, as they can lead to speed-ups of the learn-
ing process. This calls for extensions of the traditional ban-
dit setting to networked systems. At the same time, in many
of these applications the unknown system might be safety-
critical, i.e., the algorithm’s chosen actions need to sat-
isfy certain constraints that, importantly, are often unknown.
This leads to the challenge of balancing the goal of reward
maximization with the restriction of playing safe actions.
The past few years have seen a surge of research activity in
these two areas: (i) distributed (Wang et al. 2019; Martı́nez-
Rubio, Kanade, and Rebeschini 2019; Szörényi et al. 2013;
Landgren, Srivastava, and Leonard 2016a); and (ii) safe ban-
dits (Sui et al. 2015, 2018; Kazerouni et al. 2017; Amani,
Alizadeh, and Thrampoulidis 2019; Moradipari et al. 2019;
Khezeli and Bitar 2019; Pacchiano et al. 2020).
This paper contributes to the intersection of these two

emerging lines of work. Concretely, we consider the prob-
lem of decentralized multi-agent linear bandits for a general
(connected) network structure of N agents, who can only
communicate messages with their immediate neighbors. For
this, we propose and analyze the first fully-decentralized al-
gorithm. We also present a communication-efficient version
and discuss key trade-offs between regret, communication
cost and graph structure. Finally, we present the first simul-
taneously distributed and safe bandit algorithm for a setting
with unknown linear constraints.
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Notation. We use lower-case letters for scalars, lower-case
bold letters for vectors, and upper-case bold letters for ma-
trices. The Euclidean-norm of x is denoted by‖x‖2. We de-
note the transpose of any column vector x by xT . For any
vectors x and y, we use 〈x,y〉 to denote their inner prod-
uct. Let A be a positive definite d × d matrix and ν ∈ Rd.
The weighted 2-norm of ν with respect to A is defined by
‖ν‖A =

√
νTAν. For positive integers n and m ≤ n, [n]

and [m : n] denote the sets {1, 2, . . . , n} and {m, . . . , n},
respectively. We use 1 and ei to denote the vector of all 1’s
and the i-th standard basis vector, respectively.

1.1 Problem Formulation
Decentralized Linear Bandit. We consider a network of N
agents and known convex compact decision setD ⊂ Rd (our
results can be easily extended to settings with time varying
decision sets). Agents play actions synchronously. At each
round t, each agent i chooses an action xi,t ∈ D and ob-
serves reward yi,t = 〈θ∗,xi,t〉 + ηi,t, where θ∗ ∈ Rd is an
unknown vector and ηi,t is random additive noise.
Communication Model. The agents are represented by the

nodes of an undirected and connected graph G. Each agent
can send and receive messages only to and from its immedi-
ate neighbors. The topology of G is known to all agents via
a communication matrix P (see Assumption 1).
Safety. The learning environment might be subject to un-

known constraints that restrict the choice of actions. In this
paper, we model the safety constraint by a linear function
depending on an unknown vector µ∗ ∈ Rd and a known
constant c ∈ R. Specifically, the chosen action xi,t must
satisfy 〈µ∗,xi,t〉 ≤ c, for all i and t, with high probability.
We define the unknown safe set as Ds(µ∗) := {x ∈ D :
〈µ∗,x〉 ≤ c}. After playing xi,t, agent i observes bandit-
feedback measurements zi,t = 〈µ∗,xi,t〉 + ζi,t. This type
of safety constraint, but for single-agent settings, has been
recently introduced and studied in (Amani, Alizadeh, and
Thrampoulidis 2019; Pacchiano et al. 2020; Sui et al. 2015,
2018; Moradipari et al. 2019). See also (Kazerouni et al.
2017; Khezeli and Bitar 2019) for related notions of safety
studied recently in the context of single-agent linear bandits.
Goal. Let T be the total number of rounds. We de-

fine the cumulative regret of the entire network as:
RT :=

∑T
t=1

∑N
i=1〈θ∗,x∗〉 − 〈θ∗,xi,t〉. The optimal

action x∗ is defined with respect to D and Ds(µ∗) as
argmaxx∈D〈θ∗,x〉 and argmaxx∈Ds(µ∗)

〈θ∗,x〉 in the
original and safe settings, respectively. The goal is to min-
imize the cumulative regret, while each agent is allowed to
share poly(Nd) values per round to its neighbors. Specifi-
cally, we wish to achieve a regret close to that incurred by
an optimal centralized algorithm for NT rounds (the total
number of plays). In the presence of safety constraint, in ad-
dition to the aforementioned goals, agents’ actions must also
satisfy the safety constraint at each round.

1.2 Contributions
DLUCB. We propose a fully decentralized linear bandit al-
gorithm (DLUCB), at each round of which, the agents simul-

taneously share information among each other and pick their
next actions. We prove a regret bound that captures both the
degree of selected actions’ optimality and the inevitable de-
lay in information-sharing due to the network structure. See
Sec. 2.1 and 2.2. Compared to existing distributed LB algo-
rithms, ours can be implemented (and remains valid) for any
arbitrary (connected) network without requiring a peer-to-
peer network structure or a master node. See Sec. 2.4.
RC-DLUCB. We propose a fully decentralized algorithm

with rare communication (RC-DLUCB) to reduce the com-
munication cost (total number of values communicated dur-
ing the run of algorithm) for applications that are sensitive
to high communication cost. See Sec. 2.3
Safe-DLUCB. We present and analyze the first fully de-

centralized algorithm for safe LBs with linear constraints.
Our algorithm provably achieves regret of the same order
(wrt. NT ) as if no constraints were present. See Sec. 3 We
complement our theoretical results with numerical simula-
tions under various settings in Sec. 4.

1.3 Related Works
Decentralized Bandits. There are several recent works on
decentralized/distributed stochastic MAB problems. In the
context of the classical K-armed MAB, (Martı́nez-Rubio,
Kanade, and Rebeschini 2019; Landgren, Srivastava, and
Leonard 2016a,b) proposed decentralized algorithms for a
network of N agents that can share information only with
their immediate neighbors, while (Szörényi et al. 2013) stud-
ies the MAB problem on peer-to-peer networks. More re-
cently, (Wang et al. 2019) focuses on communication effi-
ciency and presentedK-armed MAB algorithms with signif-
icantly lower communication overhead. In contrast to these,
here, we study a LB model. The most closely related works
on distributed/decentralized LB are (Wang et al. 2019) and
(Korda, Szörényi, and Shuai 2016). In (Wang et al. 2019),
the authors present a communication-efficient algorithm that
operates under the coordination of a central server, such that
every agent has instantaneous access to the full network in-
formation through the server. This model differs from the
fully decentralized one considered here. In another closely
related work, (Korda, Szörényi, and Shuai 2016) studies dis-
tributed LBs in peer-to-peer networks, where each agent can
only send information to one other randomly chosen agent,
not necessarily its neighbor, per round. A feature, in com-
mon with our algorithm, is the delayed use of bandit feed-
back, but the order of the delay differs between the two, ow-
ing to the different model. Please also see Sec. 2.4 for a more
elaborate comparison. To recap, even-though motivated by
the aforementioned works, our paper presents the first fully
decentralized algorithm for the multi-agent LB problem on
a general network topology, with communication between
any two neighbors in the network. Furthermore, non of the
above has studied the presence of safety constraints.
Safe Bandits. In a more general context, the notion of

safe learning has many diverse definitions in the literature.
Specifically, safety in bandit problems has itself received
significant attention in recent years, e.g. (Sui et al. 2015,
2018; Kazerouni et al. 2017; Amani, Alizadeh, and Thram-
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poulidis 2019; Moradipari et al. 2019; Khezeli and Bitar
2019; Pacchiano et al. 2020). To the best of our knowl-
edge, all existing works on MAB/LB problems with safety
constraints study a single-agent. As mentioned in Sec. 1.1,
the multi-agent safe LB studied here is a canonical exten-
sion of the single-agent setting studied in (Amani, Alizadeh,
and Thrampoulidis 2019; Moradipari et al. 2019; Pacchiano
et al. 2020). Accordingly, our algorithm and analysis builds
on ideas introduced in this prior work and extends them to
multi-agent collaborative learning.

2 Decentralized Linear Algorithms
In this section, we present Decentralized Linear Upper Con-
fidence Bound (DLUCB). Starting with a high-level descrip-
tion of the gossip communication protocol and of the bene-
fits and challenges it brings to the problem in Sec. 2.1, we
then explain DLUCB Algorithm 1 in Sec. 2.2. In Sec. 2.3
we present a communication-efficient version of DLUCB.
Finally, in Sec. 2.4 we compare our algorithms to prior art.
Throughout this section, we do not assume any safety con-
straints. Below, we introduce some necessary assumptions.

Assumption 1 (Communication Matrix). For an undirected
connected graph G with N nodes, P ∈ RN×N is a symmet-
ric communication matrix if it satisfies the following three
conditions: (i) Pi,j = 0 if there is no connection between
nodes i and j; (ii) the sum of each row and column of P is
1; (iii) the eigenvalues are real and their magnitude is less
than 1, i.e., 1 = |λ1|> |λ2|≥ . . . |λN |≥ 0. We assume that
agents have knowledge of communication matrix P.

We remark that P can be constructed with little global in-
formation about the graph, such as its adjacency matrix and
the graph’s maximal degree; see Sec. 4 for an explicit con-
struction. Once P is known, the total number of agents N
and the graph’s spectral gap 1 − |λ2| are also known. We
show in Sec. 2.2 that the latter two parameters fully capture
how the network structure affects the algorithm’s regret.

Assumption 2 (Subgaussian Noise). For i ∈ [N ] and t > 0,
ηi,t, ζi,t are zero-mean σ-subGaussian random variables.

Assumption 3 (Boundedness). Without loss of generality,
‖x‖2 ≤ 1 for all x ∈ D,‖θ∗‖2 ≤ 1, and‖µ∗‖2 ≤ 1.

2.1 Information-Sharing Protocol
DLCUB implements a UCB strategy. At the core of single-
agent UCB algorithms, is the construction of a proper confi-
dence set around the true parameter θ∗ using past actions
and their observed rewards. In multi-agent settings, each
agent i ∈ [N ] maintains their own confidence set Ci,t at ev-
ery round t. To exploit the network structure and enjoy the
benefits of collaborative learning, it is important that Ci,t is
built using information about past actions of not only agent i
itself, but also of agents j 6= i ∈ [N ]. For simplicity, we con-
sider first a centralized setting of perfect information-sharing
among agents. Specifically, assume that at every round t,
agent i knows the past chosen actions and their observed
rewards by all other agents in the graph. Having gathered all
this information, each agent i maintains knowledge of the

following sufficient statistics during all rounds t:

A∗,t = λI+
t−1∑
τ=1

N∑
i=1

xi,τx
T
i,τ , b∗,t =

t−1∑
τ=1

N∑
i=1

yi,τxi,τ . (1)

Here, λ ≥ 1 is a regularization parameter. Of course, in this
idealized scenario, the confidence set constructed based on
(1) is the same for every agent. In fact, it is the same as
the confidence set that would be constructed by a single-
agent that is allowed to choose N actions at every round.
Here, we study a decentralized setting with imperfect infor-
mation sharing. In particular, each agent i can only commu-
nicate with its immediate neighbors j ∈ N (i) at any time
t. As such, it does not have direct access to the “perfect
statistics” A∗,t and b∗,t in (1). Instead, it is confined to ap-
proximations of them, which we denote by Ai,t and bi,t.
At worst-case, where no communication is used, Ai,t =

λI +
∑t−1
τ=1 xi,τx

T
i,τ (similarly for bi,t). But, this is a very

poor approximation of A∗,t (correspondingly, b∗,t). Our
goal is to construct a communication scheme that exploits
exchange of information among agents to allow for drasti-
cally better approximations of (1). Towards this goal, our al-
gorithm implements an appropriate gossip protocol to com-
municate each agent’s past actions and observed rewards to
the rest of the network (even beyond immediate neighbors).
We describe the details of this protocol next.
Running Consensus. In order to share information about

agents’ past actions among the network, we rely on run-
ning consensus, e.g., (Lynch 1996; Xiao and Boyd 2004).
The goal of running consensus is that after enough rounds
of communication, each agent has an accurate estimate of
the average (over all agents) of the initial values of each
agent. Precisely, let ν0 ∈ RN be a vector, where each entry
ν0,i, i ∈ [N ] represents agent’s i information at some initial
round. Then, running consensus aims at providing an accu-
rate estimate of the average 1

N

∑
i∈[N ] ν0,i at each agent.

Note that encoding ν0 = Xej , allows all agents to eventu-
ally get an estimate of the value X =

∑
i∈[N ] ν0,i that was

initially known only to agent j. To see how this is relevant
to our setting recall (1) and focus at t = 2 for simplicity.
At round t = 2, each agent j only knows xj,1 and esti-
mation of A∗,2 =

∑N
i=1 xi,1x

T
i,1 by agent j boils down to

estimating each xi,1, i 6= j. In our previous example, let X
be k-th entry of xi,1 for some i 6= j. By running consen-
sus on ν0 = [xj,1]kej for k ∈ [d], every agent eventually
builds an accurate estimate of [xj,1]k, the k-th entry of xj,1
that would otherwise only be known to j. It turns out that
the communication matrix P defined in Assumption 1 plays
a key role in reaching consensus. The details are standard
in the rich related literature (Xiao and Boyd 2004; Lynch
1996). Here, we only give a brief explanation of the high-
level principles. Roughly speaking, a consensus algorithm
updates ν0 by ν1 = Pν0 and so on. Note that this opera-
tion respects the network structure since the updated value
ν1,j is a weighted average of only ν0,j itself and neighbor-
only values ν0,i, i ∈ N (j). Thus, after S rounds, agent j
has access to entry j of νS = PSν0. This is useful be-
cause P is well-known to satisfy the following mixing prop-
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erty: limS→∞PS = 11T /N (Xiao and Boyd 2004). Thus,
limS→∞[νS ]j = 1

N

∑N
i=1 ν0,i, ∀j ∈ [N ], as desired. Of

course, in practice, the number S of communication rounds
is finite, leading to an ε-approximation of the average.
Accelerated-Consensus. In this paper, we adapt polyno-

mial filtering introduced in (Martı́nez-Rubio, Kanade, and
Rebeschini 2019; Seaman et al. 2017) to speed up the mix-
ing of information by following an approach whose conver-
gence rate is faster than the standard multiplication method
above. Specifically, after S communication rounds, instead
of PS , agents compute and apply to the initial vector ν0 an
appropriate re-scaled Chebyshev polynomial qS(P) of de-
gree S of the communication matrix. Recall that Cheby-
shev polynomials are defined recursively. It turns out that
the Chebyshev polynomial of degree ` for a communica-
tion matrix P is also given by a recursive formula as fol-
lows: q`+1(P) = 2w`

|λ2|w`+1
Pq`(P) − w`−1

w`+1
q`−1(P), where

w0 = 0, w1 = 1/|λ2|, w`+1 = 2w`/|λ2|−w`−1, q0(P) = I
and q1(P) = P. Specifically, in a Chebyshev-accelerated
gossip protocol (Martı́nez-Rubio, Kanade, and Rebeschini
2019), the agents update their estimates of the average of
the initial vector’s ν0 entries as follows:
ν`+1 = (2w`)/(|λ2|w`+1)Pν` − (w`−1/w`+1)ν`−1. (2)

Our algorithm DLUCB, presented later in Sec. 2.2, im-
plements the Checyshev-accelerated gossip protocol out-
lined above; see (Martı́nez-Rubio, Kanade, and Rebeschini
2019) for a similar implementation only for the classical
K-Armed MAB. Specifically, we summarize the acceler-
ated communication step described in (2) with a function
Comm(xnow, xprev, `) with three inputs: (1) xnow, the quan-
tity of interest that the agent wants to update at the current
round; (2) xprev, the estimated value for the same quantity
of interest that the agent updated in the previous round (cf.
ν`−1 in (2)); (3) `, the current communication round. Note
that inputs here are scalars, however, matrices and vectors
can also be passed as inputs, in which case Comm runs en-
trywise. For a detailed description of Comm please refer to
Algorithm 3 in App. B. The accelerated consensus algorithm
implemented in Comm guarantees fast mixing of informa-
tion thanks to the following key property (Martı́nez-Rubio,
Kanade, and Rebeschini 2019, Lem. 3): for ε ∈ (0, 1) and
any vector ν0 in the N -dimensional simplex, it holds that

‖NqS(P)ν0−1‖2≤ ε, provided S =
log(2N/ε)√
2 log(1/|λ2|)

. (3)

In view of this, our algorithm properly calls Comm (see Al-
gorithm 1) such that for every i ∈ [N ] and t ∈ [T ], the action
xi,t and corresponding reward yi,t are communicated within
the network for S rounds. At round t+S, agent i has access
to ai,jxj,t and ai,jyj,t where ai,j = N [qS(P)]i,j . Thanks
to (3), ai,j is ε close to 1, thus, these are good approxima-
tions of the true xj,t and yj,t. Accordingly, at the beginning
of round t > S, each agent i computes

Ai,t := λI +

t−S∑
τ=1

N∑
j=1

a2i,jxj,τx
T
j,τ , bi,t :=

t−S∑
τ=1

N∑
j=1

a2i,jyj,τxj,τ ,

(4)

which are agent i’s approximations of the sufficient statis-
tics A∗,t−S+1 and b∗,t−S+1 defined in (1). On the other
hand, for rounds 1 ≤ t ≤ S (before any mixing has been
completed), let Ai,t = λI +

∑t−1
τ=1 xi,τx

T
i,τ and bi,t =∑t−1

τ=1 yi,τxi,τ for i ∈ [N ]. With these, at the beginning of
each round t ∈ [T ], agent i constructs the confidence set

Ci,t := {ν ∈ Rd : ‖ν − θ̂i,t‖Ai,t≤ βt}, (5)

where θ̂i,t = A−1i,t bi,t and βt is chosen as in Thm. 1 below
to guarantee θ∗ ∈ Ci,t with high probability.
Theorem 1 (Confidence sets). Let Assumptions 1, 2 and 3
hold. Fix ε ∈ (0, 1) and S as in (3). For δ ∈ (0, 1), let βt :=

(1+ ε)σ
√
d log

(
2λdN+2N2t

λdδ

)
+λ1/2. Then with probability

at least 1 − δ, for all i ∈ [N ] and t ∈ [T ] it holds that
θ∗ ∈ Ci,t.
The proof is mostly adapted from (Abbasi-Yadkori, Pál,

and Szepesvári 2011, Thm. 2) with necessary modifications
to account for the imperfect information; see App. A.1.

2.2 Decentralized Linear UCB
We now describe DLUCB Algorithm 1 (see App. A.3 for a
more detailed version). Each agent runs DLUCB in a paral-
lel/synchronized way. For concreteness, let us focus on agent
i ∈ [N ]. At every round t, the agent maintains the follow-
ing first-in first-out (FIFO) queues of size at most S: Ai,t,
Bi,t, Ai,t−1, and Bi,t−1. The queue Ai,t contains agent i’s
estimates of all actions played at rounds [t − S : t − 1].
Concretely, its j-th member, denoted by Ai,t(j) ∈ RN×d,
is a matrix whose k-th row is agent i’s estimate of agent k’s
action played at round t + j − S − 1. Similarly, we define
Bi,t as the queue containing agent i’s estimates of rewards
observed at rounds [t − S : t − 1]. At each round t, agent
i sends every member of Ai,t and Bi,t (each entry of them)
to its neighbors and at the same time it receives the corre-
sponding values from them. The received values are used to
update the information stored inAi,t and Bi,t. The update is
implemented by the sub-routine Comm outlined in Sec. 2.1
and presented in detail in App. B.
At the beginning of rounds t > S when, the information

of rounds [t − S] is mixed enough, agent i updates its esti-
mates Ai,t and bi,t of A∗,t−S and b∗,t−S , respectively. Us-
ing these, it creates the confidence set Ci,t and runs the UCB
decision rule of Line 11 to select an action. Next, agent i
updates Ai,t and Bi,t in Lines 12 and 13, by eliminating the
first elements (dequeuing) Ai,t(1) and Bi,t(1) of the queues
Ai,t and Bi,t and adding the following elements at their end
(enqueuing). At Ai,t it appends Xi,t ∈ RN×d, whose rows
are all zero but its i-th row which is set to xTi,t. Concurrently,
at Bi,t, it appends yi,t ∈ RN , whose elements are all zero
but its i-th element which is set to yi,t. Note that Xi,t (simi-
larly, yi,t) contains agent i’s estimates of actions at round t,
and the zero rows will be updated with agent i’s estimates of
other agents’ information at round t in future rounds. This
is achieved via calling the consensus algorithm Comm in
Lines 14 and 15, with which agent i communicates all the
members of Ai,t and Bi,t with its neighbors.
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Algorithm 1: DLUCB for Agent i
Input: D, N , d, |λ2|, ε, λ, δ, T

1 S = log(2N/ε)/
√
2 log(1/|λ2|)

2 Ai,1 = λI , bi,1 = 0, Ai,0 = Ai,1 = Bi,0 = Bi,1 = ∅
3 for t = 1, . . . , S do
4 Play xi,t = argmaxx∈Dmaxν∈Ci,t〈ν,x〉 and

observe yi,t.
5 Ai,t.append(Xi,t) and Bi,t.append(yi,t)
6 Ai,t+1 = Comm(Ai,t,Ai,t−1, [t])
7 Bi,t+1 = Comm(Bi,t,Bi,t−1, [t]) // Comm

runs for each member of Ai,t and Bi,t
8 Ai,t+1 = Ai,t + xi,tx

T
i,t, bi,t+1 = bi,t + yi,txi,t

9 for t = S + 1, . . . , T do
10 Ai,t = Ai,t−1 +N2Ai,t(1)TAi,t(1),

bi,t = bi,t−1 +N2Ai,t(1)TBi,t(1)
11 Play xi,t = argmaxx∈Dmaxν∈Ci,t〈ν,x〉 and

observe yi,t
12 Ai,t.remove

(
Ai,t(1)

)
.append

(
Xi,t

)
13 Bi,t.remove

(
Bi,t(1)

)
.append

(
yi,t
)

14 Ai,t+1 = Comm(Ai,t,Ai,t−1(2 : S), [S])
15 Bi,t+1 = Comm(Bi,t,Bi,t−1(2 : S), [S])

Regret analysis. There are two key challenges in the anal-
ysis of DLUCB compared to that of single-agent LUCB.
First, information sharing is imperfect: the consensus algo-
rithm mixes information for a finite number S of commu-
nication rounds resulting in ε-approximations of the desired
quantities (cf. (3)). Second, agents can use this (imperfect)
information to improve their actions only after an inevitable
delay. To see what changes in the analysis of regret, consider
the standard decomposition of agent i’s instantaneous regret
at round t: ri,t = 〈θ∗,x∗〉−〈θ∗,xi,t〉 ≤ 2βt

∥∥xi,t∥∥A−1
i,t

.Us-

ing Cauchy-Schwartz inequality, an upper bound on the cu-
mulative regret

∑T
t=1

∑N
i=1 ri,t can be obtained by bound-

ing the following key term:
T∑
t=1

N∑
i=1

∥∥xi,t∥∥2A−1
i,t

. (6)

We do this in two steps, each addressing one of the above
challenges. First, in Lemma 1, we address the influence of
imperfect information by relating the A−1i,t –norms in (6),
with those in terms of their perfect information counterparts
A−1∗,t−S+1. Hereafter, let A∗,t = λI for t = −S, . . . , 0, 1.

Lemma 1 (Influence of imperfect information). Fix any ε ∈
(0, 1/(4d+1)) and choose S as in (3). Then, for all i ∈ [N ],
t ∈ [T ] it holds that

∥∥xi,t∥∥2A−1
i,t

≤ e
∥∥xi,t∥∥2A−1

∗,t−S+1

.

The intuition behind the lemma comes from the discus-
sion on the accelerated protocol in Sec. 2.1. Specifically,
with sufficiently small communication-error ε (cf. (3)), Ai,t

(cf. (4)) is a good approximation of A∗,t−S+1 (cf. (1)). The
lemma replaces the task of bounding (6) with that of bound-
ing
∑T
t=1

∑N
i=1

∥∥xi,t∥∥2A−1
∗,t−S+1

. Unfortunately, this remains

challenging. Intuitively, the reason for this is the mis-
match of information about past actions in the gram matrix
A∗,t−S+1 at time t, compared to the inclusion of all terms
xi,τ up to time t in (6). Our idea is to relate

∥∥xi,t∥∥A−1
∗,t−S+1

to
∥∥xi,t∥∥B−1

i,t

, where Bi,t = A∗,t +
∑i−1
j=1 xj,tx

T
j,t. This is

possible thanks to the following lemma.
Lemma 2 (Influence of delays). Let S as in (3). Then,∥∥xi,t∥∥2A−1

∗,t−S+1

≤ e
∥∥xi,t∥∥2B−1

i,t

, is true for all pairs (i, t) ∈
[N ] × [T ] except for at most ψ(λ, |λ2|, ε, d,N, T ) :=
Sd log (1 + NT

dλ ) of them.

Using Lemmas 1 and 2 allows controlling the regret of all
actions, but at most ψ of them, using standard machinery in
the analysis of UCB-type algorithms. The proofs of Lemmas
1 and 2 and technical details relating the results to a desired
regret bound are deferred to App. A.2. The theorem below
is our first main result and bounds the regret of DLUCB.
Theorem 2 (Regret of DLUCB). Fix ε ∈ (0, 1/(4d+1)) and
δ ∈ (0, 1). Let Assumptions 1, 2, 3 hold, and S be chosen
as in (3). Then, with probability at least 1− δ, it holds that:

RT ≤ 2Sd log
(
1 + NT

dλ

)
+ 2eβT

√
2dNT log

(
λ+ NT

d

)
.

The regret bound has two additive terms: a small term
2ψ(λ, |λ2|, ε, d,N, T ) (cf. Lemma 2), which we call regret
of delay, and, a second main term that (notably) is of the
same order as the regret of a centralized problem where com-
munication is possible between any two nodes (see Table 1).
Thm. 2 holds for small ε ≤ 1/(4d+1). In App. A.2, we also
provide a general regret bound for arbitrary ε ∈ (0, 1).

2.3 DLUCB with Rare Communication
As discussed in more detail in Sec. 2.4, DLUCB achieves
order-wise optimal regret, but its communication cost scales
as O(dN2T ), i.e., linearly with the horizon duration T (see
Table 1). In this section, we present a modification tailored to
communication settings that are sensitive to communication
cost. The new algorithm – termed RC-DLUCB – is also a
fully decentralized algorithm that trade-offs a slight increase
in the regret performance, while guaranteeing a significantly
reduced communication cost of O

(
d3N2.5 log(Nd)

log1/2(1/|λ2|)

)
over the entire horizon [T ]. Due to space limitations, we de-
fer a detailed description (see Algorithm 4) and analysis (see
Thms. 4 and 5) of RC-DLUCB in App. C. At a high-level,
we design RC-DLUCB inspired by the Rarely Switching
OFUL algorithm by (Abbasi-Yadkori, Pál, and Szepesvári
2011). In contrast to the Rarely Switching OFUL algorithm
that is designed to save on computations in single-agent sys-
tems, RC-DLUCB incorporates a similar idea in our previ-
ous DLUCB to save on communication rounds. Specifically,
compared to DLUCB where communication happens at each
round, in RC-DLUCB agents continue selecting actions in-
dividually (i.e., with no communication), unless a certain
condition is triggered by any one of them. Then, they all
switch to a communication phase, in which they communi-
cate the unmixed information they have gathered for a du-
ration of S rounds. Roughly speaking, an agent triggers the
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Algorithm Regret Communication

DLUCB O(d log(Nd)
log0.5(1/|λ2|) log(NT ) + d log(NT )

√
NT ) O(dN2T log(Nd)

log0.5(1/|λ2|) )

RC-DLUCB O(Nd1.5 log(Nd)
log0.5(1/|λ2|) log

1.5(NT ) + d log2(NT )
√
NT ) O(d3N2.5 log(Nd)

log0.5(1/|λ2|) )

No Communication O(dN log(T )
√
T ) 0

Centralized O(d log(NT )
√
NT ) O(dN2T )

DCB O((dN log(NT ))
3
+ log(NT )

√
NT ) O(d2NT log(NT ))

DisLinUCB O(log2(NT )
√
NT ) O(d3N1.5)

Table 1: Comparison of DLUCB and RC-DLUCB to baseline, as well as, to state-of-the-art. See Sec. 2.4 for details.

communication phase only once it has gathered enough new
information compared to the last update by the rest of the
network. This can be measured by keeping track of the vari-
ations in the corresponding gram matrix.

2.4 Regret-Communication Trade-offs and
Comparison to State of the Art

In Table 1, we compare (in terms of regret and communica-
tion) DLUCB and RC-DLUCB to two baselines: (i) a ‘No
Communication’ and (ii) a fully ‘Centralized’ algorithm, as
well as, to the state of the art: (iii) DCB (Korda, Szörényi,
and Shuai 2016) and (iv) DisLinUCB (Wang et al. 2019).
Baselines. In the absence of communication, each agent

independently implements a single-agent LUCB (Abbasi-
Yadkori, Pál, and Szepesvári 2011). This trivial ‘No Com-
munication’ algorithm has zero communication cost and ap-
plies to any graph, but its regret scales linearly with the
number of agents. At another extreme, a fully ‘Central-
ized’ algorithm assumes communication is possible between
any two agents at every round. This achieves optimal regret
Õ(
√
NT ), which is a lower bound to the regret of any de-

centralized algorithm. However, it is only applicable in very
limited network topologies, such as a star graph where the
central node acts as a master node, or, a complete graph.
Notably, DLUCB achieves order-wise optimal regret that is
same as that of the ‘Centralized’ algorithm modulo a small
additive regret-of-delay term.
DisLinUCB. In a motivating recent paper (Wang et al.

2019), the authors presented ‘DisLinUCB’ a communica-
tion algorithm that applies to multi-agent settings, in which
agents can communicate with a master-node/server, by send-
ing or receiving information to/from it with zero latency.
Notably, DisLinUCB is shown to achieve order-optimal re-
gret performance same as the ’Centralized’ algorithm, but
at a significantly lower communication cost that does not
scale with T (see Table 1). In this paper, we do not assume
presence of a master-node. In our setting, this can only be
assumed in very limited cases: a star or a complete graph.
Thus, compared to DisLinUCB, our DLUCB can be used
for arbitrary network topologies with similar regret guaran-
tees. However, DLUCB requires that communication be per-
formed at each round. This discrepancy motivated us to in-
troduce RC-LUCB, which has communication cost (slightly
larger, but) comparable to that of DisLinUCB (see Table 1),
while being applicable to general graphs. As a final note,

as in RC-DLUCB, the reduced communication cost in Dis-
LinUCB relies on the idea of the Rarely Switching OFUL
algorithm of (Abbasi-Yadkori, Pál, and Szepesvári 2011).
DCB. In another closely related work (Korda, Szörényi,

and Shuai 2016) presented DCB for decentralized linear
bandits in peer-to-peer networks. Specifically, it is assumed
in (Korda, Szörényi, and Shuai 2016) that at every round
each agent communicates with only one other randomly
chosen agent per round. Instead, we consider fixed network
topologies where each agent can only communicate with its
immediate neighbors at every round. Thus, the two algo-
rithms are not directly comparable. Nevertheless, we remark
that, similar to our setting, DCB also faces the challenge of
controlling a delayed use of information, caused by requir-
ing enough mixing of the communicated information among
agents. A key difference is that the duration of delay is typi-
callyO(log t) in DCB, while in DLUCB it is fixed to S, i.e.,
independent of the round t. This explains the significantly
smaller first-term in the regret of DLUCB as compared to
the first-term in the regret of DCB in Table 1.

3 Safe Decentralized Linear Bandits
For the safe decentralized LB problem, we propose Safe-
DLUCB, an extension of DLUCB to the safe setting and an
extension of single-agent safe algorithms (Amani, Alizadeh,
and Thrampoulidis 2019; Moradipari et al. 2019; Pacchiano
et al. 2020) to multi-agent systems. Due to space limitations,
we defer a detailed description of Safe-DLCUB to Algo-
rithm 5 in App. D. Here, we give a high-level description
of its main steps and present its regret guarantees. First, we
need the following assumption and notation.
Assumption 4 (Non-empty safe set). A safe action x0 ∈
D and c0 := 〈µ∗,x0〉 < c are known to all agents. Also,
〈θ∗,x0〉 ≥ 0.

Define the normalized safe action x̃0 := x0

‖x0‖ . For any x ∈
Rd, denote by xo := 〈x, x̃0〉x̃0 its projection on x0, and, by
x⊥ := x− xo its projection onto the orthogonal subspace.
In the presence of safety, the agents must act conserva-

tively to ensure that the chosen actions xi,t do not violate
the safety constraint 〈µ∗,xi,t〉 ≤ c. To this end, agent i
communicates, not only xi,t and yi,t, but also the bandit-
feedback measurements zi,t, following the communication
protocol implemented by Comm (cf. Sec. 2.1). Once infor-
mation is sufficiently mixed, it builds an additional confi-
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Figure 1: Regret comparison.

dence set Ei,t that includes µ⊥∗ with high probability (note
that µo∗ is already known by Assumption 4). Please re-
fer to App. D.1 for the details on constructing Ei,t. Once
Ei,t is constructed, agent i creates the following safe in-
ner approximation of the true Ds(µ∗): Ds

i,t := {x ∈ D :
〈xo,x̃0〉
‖x0‖ c0 + 〈µ̂⊥i,t,x⊥〉 + βt

∥∥x⊥∥∥
A⊥,−1

i,t

≤ c}. Specifically,

Proposition 1 in App. D.1 guarantees for any δ ∈ (0, 1) that
for all i ∈ [N ], t ∈ [T ], all actions in Ds

i,t are safe with
probability 1 − δ. After constructing Ds

i,t, agent i selects
safe action xi,t ∈ Ds

i,t following a UCB decision rule:

〈θ̃i,t,xi,t〉 = max
x∈Ds

i,t

max
ν∈κrCi,t

〈ν,x〉. (7)

A subtle, but critical, point in (7) is that the inner maximiza-
tion is over an appropriately enlarged confidence set κrCi,t.
Specifically, compared to Lines 4 and 11 in Algorithm 1, we
need here that κr > 1. Intuitively, this is required because
the outer maximization in (7) is not over the entire Ds(µ∗),
but only a subset of it. Thus, larger values of κr are needed
to provide enough exploration to the algorithm so that the
selected actions in Ds

i,t are -often enough- optimistic, i.e.,
〈θ̃i,t,xi,t〉 ≥ 〈θ∗,x∗〉; see Lemma 5 in App. D.2 for the ex-
act statement. We attribute the above idea that more aggres-
sive exploration of that form is needed in the safe setting to
(Moradipari et al. 2019), only they considered a Thompson-
sampling scheme and a single agent. (Pacchiano et al. 2020)
extended this idea to UCB algorithms, again in the single-
agent setting (and for a slightly relaxed notion of safety).
Here, we show that the idea extends to multi-agent systems
and when incorporated to the framework of DLUCB leads to
a safe decentralized algorithm with provable regret guaran-
tees stated in the theorem below. See App. D for the proof.
Theorem 3 (Regret of Safe-DLUCB). Fix δ ∈ (0, 0.5),
κr = 2

c−c0 + 1, ε ∈ (0, 1/(4d + 1)). Let Assumptions 1,
2, 3, 4 hold, and S be chosen as in (3). Then, with probabil-
ity at least 1− 2δ, it holds that: RT ≤ 2Sd log(1 + NT

dλ ) +

2eκrβT

√
2dNT log(λ+ NT

d ).

The regret bound is of the same order as DLUCB regret
bound, with only an additional factor κr in its second term.

4 Experiments
In this section, we evaluate our algorithms’ performance
on synthetic data. Since the UCB decision rule at line 11

of Algorithm 1 involves a generally non-convex optimiza-
tion problem, we use a standard computationally tractable
modification that replaces `2 with `1 norms in the definition
of confidence set (5) (unless the decision set is finite); see
(Dani, Hayes, and Kakade 2008). All results directly apply
to this modified algorithm after only changing the radius βt
with βt

√
d (Dani, Hayes, and Kakade 2008, Sec. 3.4). All

the results shown depict averages over 20 realizations, for
which we have chosen d = 5,D = [−1, 1]5, λ = 1, and
σ = 0.1. Moreover, θ∗ is drawn from N (0, I5) and then
normalized to unit norm. We compute the communication
matrix as P = I− 1

δmax+1D
−1/2LD−1/2, where δmax is the

maximum degree of the graph and L is the graph Laplacian
(see (Duchi, Agarwal, and Wainwright 2011) for details). In
Figs. 1a and 1b, fixingN = 20, we evaluate the performance
of DLUCB and RC-DLUCB on 4 different topologies: Ring,
Star, Complete, and a Random Erdős–Rényi graph with pa-
rameter p = 0.5; see Fig. 2 in App. E for graphical illus-
trations of the graphs. We also compare them to the perfor-
mance of No Communication (see Sec. 2.4). The plot veri-
fies the sublinear growth for all graphs, the superiority over
the setting of No Communication and the fact that smaller
|λ2| leads to a smaller regret (regret of delay term in Thm.
2). A comparison between Figs. 1a and 1b, further con-
firms the slightly better regret performance of DLUCB com-
pared to RC-DLUCB (but the latter has superior communi-
cation cost). Fig. 1c emphasizes the value of collaboration
in speeding up the learning process. It depicts the per-agent
regret of DLUCB on random graphs with N = 5, 10 and
15 nodes and compares their performance with the single-
agent LUCB. Clearly, as the number of agents increases,
each agent learns the environment faster as an individual.

5 Conclusion

In this paper, we proposed two fully decentralized LB algo-
rithms: 1) DLUCB and 2) RC-DLUCB with small commu-
nication cost. We also proposed Safe-DLUCB to address the
problem of safe LB in multi-agent settings. We derived near-
optimal regret bounds for all the aforementioned algorithms
that are applicable to arbitrary, but fixed networks. An in-
teresting open problem is to design decentralized algorithms
with provable guarantees for settings with time-varying net-
works. Also, extensions to nonlinear settings and other types
of safety-constraints are important future directions.
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Ethics Statement
Sequential decision making problems arise at every occa-
sion that learners repeatedly interact with an unknown en-
vironment in an effort to maximize a certain notion of re-
ward gained from interactions with this environment. Ban-
dits often provide a simple form of this interaction and ban-
dit optimization algorithms have been successfully applied
over the years in online advertising, recommendation ser-
vices, resource allocation, etc. (Lattimore and Szepesvári
2018). More recently, researchers have started exploring the
potentials of bandit algorithms in physical systems, such as
in robotics, wireless networks, the power grid and in medi-
cal trials. A distinguishing feature of many of these ”new”
applications is their safety-critical nature. Specifically, the
algorithm’s chosen actions need to satisfy certain system
constraints. Importantly, the constraints are often unknown,
which leads to the challenge of balancing the goal of reward
maximization with the restriction of playing ”safe actions”.
At the same time, many modern applications of bandit al-
gorithms involve a networked set of distributed agents (e.g.,
wireless/sensor networks). This calls for extensions of the
traditional bandit setting to networked systems. The past
few years have seen a surge of research activity in these
two areas: (i) safe, and (ii) distributed bandit optimization
(Sui et al. 2015; Amani, Alizadeh, and Thrampoulidis 2019;
Sui et al. 2018; Kazerouni et al. 2017; Moradipari et al.
2019; Korda, Szörényi, and Shuai 2016; Martı́nez-Rubio,
Kanade, and Rebeschini 2019; Wang et al. 2019; Szörényi
et al. 2013). This paper presents the first (simultaneously)
safe and distributed bandit algorithm and contributes at the
intersection of these two emerging lines of works. We study
simplified linear models, but we believe that they already
capture some relevant key problem features and challenges.
Finally, while our study is theoretical we believe that it mo-
tivates further research in this field that can potentially guide
practical implementations.
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