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Abstract

Explainable AI provides insights to users into the why for
model predictions, offering potential for users to better un-
derstand and trust a model, and to recognize and correct AI
predictions that are incorrect. Prior research on human and
explainable AI interactions has
typically focused on measures such as interpretability, trust,
and usability of the explanation. There are mixed findings
whether explainable AI can improve actual human decision-
making and the ability to identify the problems with the un-
derlying model. Using real datasets, we compare objective
human decision accuracy without AI (control), with an AI
prediction (no explanation), and AI prediction with explana-
tion. We find providing any kind of AI prediction tends to
improve user decision accuracy, but no conclusive evidence
that explainable AI has a meaningful impact. Moreover, we
observed the strongest predictor for human decision accuracy
was AI accuracy and that users were somewhat able to detect
when the AI was correct vs. incorrect, but this was not sig-
nificantly affected by including an explanation. Our results
indicate that, at least in some situations, the why information
provided in explainable AI may not enhance user decision-
making, and further research may be needed to understand
how to integrate explainable AI into real systems.

Introduction
Explainable AI is touted as the key for users to “under-
stand, appropriately trust, and effectively manage. . . [AI
systems])” (Gunning 2017) with parallel goals of achiev-
ing fairness, accountability, and transparency (Sokol 2019).
There are a multitude of reasons for explainable AI, but there
is little empirical research for its impact on human decision-
making (Miller 2019; Adadi and Berrada 2018). Prior be-
havioral research on explainable AI has primarily focused
on human understanding/interpretability, trust, and usabil-
ity for different types of explanations (Doshi-Velez and Kim
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2017; Hoffman et al. 2018; Ribeiro, Singh, and Guestrin
2016, 2018; Lage et al. 2019).

To fully achieve fairness and accountability, explainable
AI should lead to better human decisions. Earlier research
demonstrated that explainable AI can be understood by peo-
ple (Ribeiro, Singh, and Guestrin 2018). Ideally, the com-
bination of humans and machines will perform better than
either alone (Adadi and Berrada 2018), such as computer-
assisted chess (Cummings 2014), but this combination may
not necessarily improve the overall accuracy of AI systems.
While (causal) explanation and prediction share common-
alities, they are not interchangeable concepts (Adadi and
Berrada 2018; Shmueli et al. 2010; Edwards and Veale
2018). Consequently, a ”good” explanation, interpretable
model predictions, may not be sufficient for improving
actual human decisions (Adadi and Berrada 2018; Miller
2019) because of heuristics and biases in human decision-
making (Kahneman 2011). Therefore, it is important to
demonstrate whether, and what types of, explainable AI can
improve the decision-making performance of humans us-
ing that AI, relative to performance using the predictions of
”black box” AI with no explanations and for human making
decisions with no AI prediction.

In this work, we empirically investigate whether explain-
able AI improves human decision-making using a two-
choice classification experiment with real-world data. Us-
ing human subject experiments, we compared three differ-
ent settings where a user needs to make decision 1) No AI
prediction (Control), 2) AI predictions but no explanation,
and 3) AI predictions with explanations. Our results indi-
cate that, while providing the AI predictions tends to help
users, the why information provided in explainable AI does
not specifically enhance user decision-making.

Background and Related Work
Using Doshi-Velez and Kim’s (2017) framework for inter-
pretable machine learning, our current work focuses on: real
humans, simplified tasks. Because our objective is on eval-
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uating decision-making, we do not compare different types
of explanations and instead used one of the best available
explanations: anchor LIME (Ribeiro, Singh, and Guestrin
2018). We use real tasks here, although our tasks involve
relatively simple decisions with two possible choices. Addi-
tionally, we use lay individuals rather than experts. Below,
we discuss prior work that is related to our experimental ap-
proach.

Explainable AI/Machine Learning
While machine learning models largely remain opaque and
their decisions are difficult to explain, there is an urgent need
for machine learning systems that can “explain” its reason-
ing. For example, European Union regulation requires “right
to explanation” for any algorithms that make decisions sig-
nificantly impacting users with user-level predictors (Par-
liament and Council of the European Union 2016). In re-
sponse to the lack of consensus on the definition and eval-
uation of interpretability in machine learning, Doshi-Velez
and Kim (2017) propose a taxonomy for the evaluation
of interpretability focusing on the synergy among human,
application, and functionality. They contrast interpretability
with reliability and fairness, and discuss scenarios in which
interpretability is needed. To unmask the incomprehensible
reasoning made by these machine learning/AI models, re-
searchers developed explainable models that are built on top
of the machine learning model to explain their decisions.
The most common forms of explainable models that pro-
vide explanations for the decisions made by machine learn-
ing models are feature-based and rule-based models. The
feature-based models resemble feature selection where the
model outputs the top features that explain the machine
learning prediction and their associated weights (Datta, Sen,
and Zick 2016; Ribeiro, Singh, and Guestrin 2016). The
rule-based models provide simple if-then-else rules to ex-
plain predictions (Ribeiro, Singh, and Guestrin 2018; Alu-
faisan et al. 2017). It has been shown that rule-based models
provide higher human precision when compared to feature-
based models (Ribeiro, Singh, and Guestrin 2018).

Lou et al. (2012) investigate the generalized additive mod-
els (GAMs) that combine single-feature models through a
linear function. GAMs are more accurate than simple lin-
ear models, and can be easily interpreted by users. Their
empirical study suggests that a shallow bagged-tree with
gradient boosting is the best method on low to medium di-
mensional datasets. Anchor LIME is an example of the cur-
rent state-of-the-art explainable rule-based model (Ribeiro,
Singh, and Guestrin 2018). It is a model-agnostic system
that can explain predictions generated by any machine learn-
ing model with high precision. The model provides rules,
referred to as anchors, to explain the prediction for each
instance. A rule is an anchor if it sufficiently explains the
prediction locally such that any changes to the rest of the
features, features not included in the anchor, do not effect
the prediction. Anchors can be found in two different ap-
proaches: bottom-up approach and beam search. Wang et al.
(2017) present a machine learning algorithm that produces
Bayesian rule sets (BRS) comprised of short rules in the dis-
junctive normal form. They develop two probabilistic mod-

els with prior parameters that allow the user to specify a
desired size and shape and balance between accuracy and
interpretability. They apply two priors—beta-binomials and
Poisson distribution—to constrain the rule generation pro-
cess and provide theoretical bounds for reducing computa-
tion by iteratively pruning the search space. In our experi-
ments, we use anchor LIME to provide explanations for all
our experimental evaluation due to the high human precision
of anchor LIME as reported in Ribeiro, Singh, and Guestrin
(2018).

Human Decision-Making and Human Experiments
with Explainable AI
A common reason for providing explanation is to improve
human predictions or decisions (Keil 2006). People are not
necessarily rational (i.e., maximizing an expected utility
function). Instead, decisions are often driven by heuristics
and biases (Kahneman 2011). Also, providing more infor-
mation, even if relevant, does not necessarily lead people
to making better decisions (Gigerenzer and Brighton 2009).
Bounded rationality in human decision-making using satis-
fying with constraints (Gigerenzer and Brighton 2009) is an
alternative theory to heuristics and biases (Kahneman 2011).
Regardless of the theoretical account for human decision-
making, people, which can include experts (Dawes, Faust,
and Meehl 1989), generally do not make fully optimal deci-
sions.

At a minimum, explainable AI should not be detrimen-
tal to human decision-making. The literature on decision
aids (a computational recommendation or prediction, typ-
ically without an explicit explanation) has mixed findings
for human performance. Sometimes these aids are benefi-
cial for human decision-making, whereas at other times they
have negative effects on decisions (Kleinmuntz and Schkade
1993; Skitka, Mosier, and Burdick 1999). These mixed find-
ings may be attributable to absence of explanations; this
can be investigated through human experiments testing AI
predictions with explanations compared with AI predictions
alone.

Most prior human experiments with explainable AI have
concentrated on interpretability, trust, and subjective mea-
sures of usability, such as preferences and satisfaction, with
work on decision-making performance remaining somewhat
limited (Miller 2019; Adadi and Berrada 2018). Earlier
results suggest explainable AI can increase interpretabil-
ity (e.g. Ribeiro, Singh, and Guestrin 2018), trust (e.g.
Lakkaraju and Bastani 2020; Ribeiro, Singh, and Guestrin
2016; Selvaraju et al. 2017), and usability (e.g. Ribeiro,
Singh, and Guestrin 2018) to varying degrees, but this does
not necessarily translate to better performance on real-world
decisions about the underlying data, such as whether to ac-
tually use the AI’s prediction, whether the AI has made an
error, and the role of explanations. In fact, recent work has
shown that subjective measures commonly assessed (e.g.,
preference and trust) do not predict actual human perfor-
mance (Buçinca et al. 2020; Zhang, Liao, and Bellamy
2020); similarly, performance on common proxy tasks such
as predicting the AI’s decision also may not be indicative of
actual decision-making performance (Buçinca et al. 2020).

6619



These findings highlight the need for more study of the im-
pact of AI explanation on objective human performance, not
just proxy or subjective measures.

In the limited studies that do examine the effect of ex-
planation on human decision-making performance, there are
mixed findings about whether the explanation provides an
additional benefit over AI prediction alone. For example,
some researchers found that human performance was better
when an AI prediction was accompanied by explanation than
performance with the prediction alone (Buçinca et al. 2020;
Lai and Tan 2019) However, other studies did not show any
additional benefit of explanation over AI prediction alone
(Green and Chen 2019), with some even showing evidence
of worse performance with explanation (Poursabzi-Sangdeh
et al. 2018; Zhang, Liao, and Bellamy 2020).

The two papers finding a benefit for explanations con-
sisted of a task in which users made decisions about the
fat content in pictures of food (Buçinca et al. 2020) and
judgments about whether text from hotel reviews were gen-
uine or deceptive (Lai and Tan 2019). They also both used
a simple binary choice as the decision-making task. In con-
trast, the work finding no improvement in decision accuracy
with explainable AI used datasets that comprised variables
and outcomes, including probabilistic assessments for risks
with recidivism and loan outcomes (Green and Chen 2019),
decisions about real estate valuations (Poursabzi-Sangdeh
et al. 2018), and predictions about income (Zhang, Liao,
and Bellamy 2020). In addition, instead of simple binary
choices, these studies used prediction of values along a con-
tinuum (Green and Chen 2019; Poursabzi-Sangdeh et al.
2018), and binary choice with the option to switch after see-
ing the model prediction (Zhang, Liao, and Bellamy 2020).

Besides dataset and task differences, there are two other
distinctions among these papers. Only a single paper as-
sessed decision-making under time pressure (Zhang, Liao,
and Bellamy 2020) and only two papers informed users if
their decisions were correct or incorrect (Green and Chen
2019; Zhang, Liao, and Bellamy 2020). Our study de-
sign uses datasets of multiple variables and outcomes and
provides correct/incorrect feedback, but also uses a very
straightforward binary choice task. This combination could
potentially resolve the disparity in results from the studies
above.

Methods
In this section, we first describe the two datasets used in our
experiments. We then provide the details of our experimental
design and hypotheses, participant recruitment, and general
demographics of our sample.

Dataset
To conduct our experiments, we choose two different
datasets that have been heavily used in prior research that
tries to understand algorithmic fairness and accountability
issues. For example, the COMPAS dataset has been used to
detect potential biases in criminal justice system (Angwin
et al. 2016). The Census income dataset, which has been
used to test many machine learning techniques, involves pre-

dictions of individuals’ income status. This has been associ-
ated with potential biases in making decisions such as access
to credit and job opportunities.

We choose these datasets primarily because they both in-
volve real-world contexts that are understandable and en-
gaging for human participants. Further, the two datasets dif-
fer widely in number of features and in the overall accuracy
classifiers can achieve in their predictions. This allows us
to explore the effects of these differences on human perfor-
mance; in addition, it ensures that our findings are not lim-
ited only to a specific dataset. We briefly discuss each dataset
in more detail below.

COMPAS stands for Correctional Offender Management
Profiling for Alternative Sanctions (Angwin et al. 2016). It is
a scoring system used to assign risk scores to criminal defen-
dants to determine their likelihood of becoming a recidivist.
The data has 6,479 instances and 7 features. These features
are: gender, age, race, priors count, and charge degree risk
score, and whether the defendants re-offended in two years
or not. We let the binary re-offending feature be our class.

Census income (CI) data contains information used to
predict individuals’ income (Dua and Graff 2017). It has
32,561 instances and 14 features. These features are: age,
workclass, education, marital status, occupation, relation-
ship, race, sex, capital gain, capital loss, hours per week,
and country. The class value is low income (less or equal to
50K) or high income (greater than 50K). We preprocessed
the dataset to allow equal class distribution 1.

Experimental Design
Prior results demonstrating people interpret, trust, and pre-
fer explainable AI, suggesting it will improve the accuracy
of human decisions. Hence, our primary hypotheses are that
explainable AI would aid human decision-making. The hy-
potheses (H.) are as follows:
H. 1 Explainable AI enhances decision-making process

compared to only an AI prediction (without explanation)
and a control condition with no AI.

[H. 1.a] A participant performs above chance in pre-
diction tasks.

H. 2 A participant’s decision accuracy is positively associ-
ated with AI accuracy.

H. 3 Average participant’s decision accuracy does not out-
perform AI accuracy.

H. 4 Participants outperform AI accuracy more often with
explainable AI over AI prediction alone.

H. 5 Participants follow explainable AI recommendation
more often than AI only recommendation.

H. 6 Explainable AI increases participants’ decision confi-
dence.

H. 7 A participant’s decision confidence is positively corre-
lated with the accuracy of his/her decision.

1The CI dataset is from 1994. We adjusted for inflation by using
a present value of 88k. From 1994 to January 2020 (when the ex-
periment was run) inflation in the U.S. was 76.45%: https://www.
wolframalpha.com/input/?i=inflation+from+1994+to+jan+2020
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Figure 1: Example from the study demonstrating the information appearing in the three AI conditions for a trial from the
COMPAS dataset condition.

To investigate these hypotheses, we used a 2 (Dataset:
Census and COMPAS) x 3 (AI condition: Control, AI, and
AI with Explanation) between-participants experimental de-
sign. The three AI conditions were:
• Control: Participants were provided with no prediction or

information from the AI.
• AI: Participants were provided with only an AI prediction.
• AI with Explanation: Participants received an AI predic-

tion, as well as an explanation of the prediction using an-
chor LIME (Ribeiro, Singh, and Guestrin 2018).
To achieve more than 80% statistical power to detect a

medium effect size for this design, we planned for a sample
size of N = 300 (50 per condition).

In all conditions, each trial consists of a description of an
individual and a two-alternative forced choice for the classi-
fication of that individual. Each choice was correct on 50%
of the trials, thus chance performance for human decision-
making accuracy was 50%. Additionally, an AI prediction
and/or explanation may appear, depending on the AI con-
dition (see Figure 1). After a decision is made, participants
are asked to enter their confidence in that choice, on a Likert
scale of 1 (No Confidence) to 5 (Full Confidence). Feed-
back is then displayed, indicating whether or not the previ-
ous choice was correct.

We compared the prediction accuracy of Logistic Regres-
sion, Multi-layer Perceptron Neural Network with two lay-
ers of 50 units each, Random Forest, Support Vector Ma-
chine (SVM) with rbf kernel and selected the best classifier
for each dataset. We chose a Multi-layer Perceptron Neu-
ral Network for Census income data where it resulted in
an overall accuracy of 82% and SVM with rbf kernel for
COMPAS data with an overall accuracy of 68%. Census
income accuracy closely matches the accuracy reported in
the literature (Dua and Graff 2017; Alufaisan, Kantarcioglu,
and Zhou 2016) and COMPAS accuracy matches the re-
sults published by ProPublica (Angwin et al. 2016). We split

the data to 60% for training and 40% for testing to allow
enough instances for the explanations generated using an-
chor LIME (Ribeiro, Singh, and Guestrin 2018).

In our behavioral experiment, 50 instances were randomly
sampled without replacement for each participant. Thus, AI
accuracy was experimentally manipulated for participants
(Census: mean AI accuracy = 83.85%, sd = 3.67%; COM-
PAS: mean AI accuracy = 69.18%, sd = 4.65%). Because
of the sample size and large number of repeated trials per
participant, there was no meaningful difference in mean AI
accuracy for participants in the AI condition vs. those in the
AI explanation condition (p = 0.90).

Participant Recruitment and Procedure
We developed the experiment using jsPsych (De Leeuw
2015), and hosted it on the Volunteer Science platform (Rad-
ford et al. 2016) 2. Participants were recruited using Ama-
zon Mechanical Turk (AMT) and were compensated $4.00
each. We collected data from 50 participants in each of the
six experimental conditions, for a total of 300 participants
(57.67% male). Most participants were 18 to 44 years old
(80.67%). This research was approved as exempt (19-176)
by the Army Research Laboratory’s Institutional Review
Board.

Participants read and agreed to a consent form, then re-
ceived instructions on the task, specific to the experimental
condition they were assigned to. They completed 10 practice
trials, followed by 50 test trials and a brief questionnaire as-
sessing general demographic information and comments on
strategies used during the task. The median time to complete
the practice and test trials was 18 minutes.

Results and Discussion
In this section we analyze and describe the effects of dataset,
AI condition, and AI accuracy on the participants’ decision-

2https://volunteerscience.com/
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Figure 2: Mean participant accuracy in each AI and dataset
condition. Error bars represent 95% confidence intervals.

making accuracy, ability to outperform the AI, adherence to
AI recommendations, confidence ratings, and reaction time.

Participant Decision-Making Accuracy
We compared participants’ mean accuracy in the experiment
across conditions using a 2 (Dataset) x 3 (AI) factorial Anal-
ysis of Variance (ANOVA) (see Figure 2). We found signif-
icant main effects, with a small effect size for AI condition
(F (2, 294) = 8.19, p < 0.001, η2 = 0.04) and a nearly
large effect for dataset condition (F (1, 294) = 46.51, p <
0.001, η2 = 0.12). In addition, there was a significant in-
teraction with a small effect size (F (2, 294) = 8.38, p <
0.001, η2 = 0.05), indicating that the effect of AI condition
depended on the dataset. Specifically, the large effect for in-
creased accuracy with AI was driven by the Census dataset.

Contrary to H. 1, explainable AI did not substantially im-
prove decision-making accuracy over AI alone. We followed
up on significant ANOVA effects by performing pairwise
comparisons using Tukey’s Honestly Significant Difference.
These post-hoc tests indicated that participants who viewed
the Census dataset showed improved accuracy over control
when given an AI prediction (p < 0.01) and higher accuracy
with AI explanation versus control (p < 0.001), but there
was no statistically significant difference in participant accu-
racy for AI compared to AI explanation (p = 0.28). Whereas
the COMPAS dataset had no significant differences in par-
ticipant accuracy across pairwise comparisons for the three
AI conditions (ps > 0.75). Also, the mean participant accu-
racy for the COMPAS control condition (mean = 63.7%, sd
= 9.24%) was comparable to participant accuracy for prior
decision-making research using the same dataset (mean =
62.8%, sd = 4.8%) (Dressel and Farid 2018).

There was strong evidence supporting H. 1.a, the vast ma-
jority of participants had mean accuracy exceeding guessing
(50% accuracy). The overall participant accuracy across all
conditions was 65.65% (sd = 10.92%), with 90% (or 270 out
of 300) participants performing above chance on the classi-
fication task. This indicates that the task was challenging but
feasible for almost all participants.

AI AI Explanation
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Figure 3: Mean AI accuracy (per participant) and mean par-
ticipant accuracy by AI and AI Explanation and the two
datasets. The shaded areas represent 95% confidence inter-
vals.

AI Accuracy and Participant Decision-Making
Accuracy
We also evaluated the effect of the randomly varied AI ac-
curacy for each participant on their decision-making accu-
racy. We used linear regression to analyze this relationship,
specifying participant accuracy as the dependent variable
and the following as independent variables: mean AI accu-
racy (per participant), AI condition, and dataset condition,
see Figure 3. Regressions are represented by the solid lines
with the shaded areas representing 95% confidence inter-
vals. The control condition is not included in the analysis
or figure, because the accuracy of the AI is not relevant if
no AI prediction is presented to the participant. The over-
all regression model was significant with a large effect size,
F (4, 195) = 21.23, p < 0.001, R2

adjusted = 0.29. Consis-
tent with H. 2, there was a large main effect for AI accu-
racy (β = 0.70, p < 0.001, R2 = 0.28). Also, there was a
small AI accuracy and dataset interaction (β = −0.07, p <
0.01, R2 = 0.03), reflecting the same interaction depicted
in Figure 2. There were no significant regression differences
for dataset or AI versus AI Explanation, ps > 0.60; there
was no significant effect of dataset because it largely drove
AI accuracy. Note it is not just that participants perform bet-
ter with the higher mean AI accuracy of the Census dataset,
both datasets had large positive relationships with partici-
pant accuracy and corresponding mean AI accuracy shown
in Figure 3.

Outperforming the AI Accuracy An interesting ques-
tion is whether the combination of AI and human decision-
making can outperform either alone. The previous analy-
ses showed that the addition of AI prediction information
improved human performance over controls with humans
alone. We also evaluated how often the human decision-
making accuracy outperformed the accuracy of the cor-
responding mean AI prediction accuracy, which was ex-
perimentally manipulated. Although most participants per-
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Dataset/Condition AI AI Explanation
Census 0 1

COMPAS 10 3

Table 1: Number of participants with decision accuracy ex-
ceeding their mean AI accuracy.
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Figure 4: Mean proportion of participant choices match-
ing AI prediction as a function of whether the AI cor-
rect/incorrect and the dataset condition. Error bars repre-
sent 95% confidence intervals. To simplify this figure, re-
sults were collapsed for the AI and AI Explanation condi-
tions which did not have a significant main effect, p = 0.62.

formed well above chance, only a relatively small number
of participants had decision accuracy exceeding their mean
AI prediction (7% or 14 out of 200). This result largely sup-
ports H. 3 and also shown above in Figure 3 where each dot
represents an individual; and dots above the black dashed
line show the participants that outperformed their mean AI
prediction. The black dashed line shows equivalent perfor-
mance for mean AI accuracy and mean participant accuracy.

Adherence to AI Model Predictions Participants fol-
lowed the AI predictions more often when the AI was correct
versus when the AI was incorrect, indicating some recogni-
tion of when the AI makes bad predictions (see Figure 4,
F (1, 196) = 36.15, p < 0.001, η2p = 0.16). This was con-
sistent with participant sensitivity to AI recommendations,
evidence for H. 2. Also, participants were better able to rec-
ognize correct vs. incorrect AI predictions when they were
in the Census condition, demonstrated in the significant in-
teraction between AI correctness and dataset, F (1, 196) =
9.01, p < 0.01, η2p = 0.04. None of the remaining ANOVA
results were significant, ps > 0.16. Thus, there was no ev-
idence for higher adherence to recommendations with ex-
plainable AI, which rejected H. 5.
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Figure 5: Mean participant confidence ratings in each AI
condition. Error bars represent 95% confidence intervals.

Confidence Ratings
We found that AI (without and with explanation) resulted
in slightly increased mean confidence. There was a small
effect of AI condition on mean confidence (see Figure 5,
F (2, 294) = 3.58, p = 0.03, η2 = 0.02). Post hoc tests
indicated participants had significantly lower mean confi-
dence in the control condition than AI, p < 0.03, but there
were no statistical differences for other pairwise compar-
isons, ps > 0.25. This contradicted H. 6, and there was
no evidence of a confidence increase with explanations. In
addition, there was no evidence for a main effect of dataset
condition or interaction, ps > 0.84.

Confirming H. 7, we found a positive relationship for
accuracy and confidence rating within individuals indicat-
ing that participants’ confidence ratings were fairly well-
calibrated with their actual decision accuracy. We calculated
each participant’s mean accuracy at each confidence rating
they used, and then conducted a repeated measures corre-
lation (Bakdash and Marusich 2017) (rrm = 0.48, p <
0.001).

Additional Results
We also assessed reaction time and summarize self-reported
decision-making strategies. These results are exploratory,
there were no specific hypotheses. There was no significant
main effect of AI condition on participants’ reaction time
(F (2, 294) = 2.13, p = 0.12, η2 = 0.01). There was only
a main effect of dataset condition (F (1, 294) = 28.52, p <
0.001, η2 = 0.09), where participants took an average of
1600 ms longer in the Census condition than the COMPAS
condition (see Figure 6). This effect was most likely due to
the Census dataset having more variables for each instance
than the COMPAS dataset, and thus requiring more reading
time on each trial. The addition of an explanation did not
meaningfully increase reaction time over an AI prediction
only.

Subjective measures, such as self-reported strategies and
measures of usability, often diverge from objective measures
of human performance (Andre and Wickens 1995; Nisbett
and Wilson 1977) such as actual decisions (Buçinca et al.
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Figure 6: Mean reaction time in each AI and dataset condi-
tion. Error bars represent 95% confidence intervals.

2020). Participants self-reported varying strategies to make
their decisions, yet there was a clear benefit for AI predic-
tion (without and with explanation). In the AI and AI expla-
nation conditions: n = 80 indicated using the data without
mentioning AI, n = 39 reported using a combination of the
data and the AI, and only n = 16 said they primarily used,
trusted, or followed the AI. Despite limited self-reported
use of the AI in the two relevant conditions, decision ac-
curacy was higher with AI (Figure 2), strongly associated
with AI accuracy (Figure 3), and there was some sensitivity
to whether the AI was followed when it was correct versus
incorrect (Figure 4). Nearly 80% of user comments could be
coded, blank and nonsense responses could not be coded.

Discussion
Our results show providing an AI prediction enhances hu-
man decision accuracy, but in opposition to the hypotheses
adding an explanation positively impact decisions and in-
crease the ability to outperform the AI. This finding is in
line with some previous studies that also found no added
benefit for explanation over AI prediction alone (Green and
Chen 2019; Poursabzi-Sangdeh et al. 2018; Zhang, Liao, and
Bellamy 2020). This suggests that it was not the simplicity
of the decision-making task that accounts for the opposite
findings in Buçinca et al. (2020) and Lai and Tan (2019),
since the current study also uses a relatively straightforward
binary decision. Rather, it may be the case that tasks with
highly intuitive datasets are required for explanation to im-
prove performance. Future work may address this question
directly.

One possible explanation for findings of no added bene-
fit of explanation is that providing more information, even if
task-relevant, does not necessarily improve human decision-
making accuracy (Gigerenzer and Brighton 2009; Goldstein
and Gigerenzer 2002; Nadav-Greenberg and Joslyn 2009).
This phenomenon is attributed to cognitive limitations and
people using near-optimal strategies, and corresponds with
Poursabzi-Sangdeh et al.’s (2018) findings that explanation
caused information overload, reducing people’s ability to de-
tect AI mistakes. However, their study and most other papers
did not use the speeded response paradigm we used here,

suggesting this was not solely attributable to participants re-
sponding as quickly as possible.

The lack of a significant, practically-relevant effect for
explainable AI was not due to lack of statistical power or
ceiling performance - nearly all participants consistently
performed above chance, but well below perfect accuracy.
These findings also illustrate the need to compare decision-
making with explainable AI to other conditions including no
AI and AI prediction without explanation. If we did not have
an AI only (decision aid) condition a reasonable but flawed
inference would have been that explainable AI enhances de-
cisions.

Limitations The present findings have limited generaliz-
ability to decision-making with other datasets and explain-
able AI techniques. For example, the effectiveness of ex-
planations, or lack thereof, for human decision-making may
depend on a variety of factors: the specific explanation tech-
nique, the properties of the dataset, and the task itself (such
as probabilistic predictions vs two choice decisions). Nev-
ertheless, this paper demonstrates that one cannot assume
explainable AI will necessary improve human decisions and
the need to evaluate objective measures, of human perfor-
mance, in explainable AI.

Conclusions and Future Work
Much of the existing research on explainable AI focuses on
the usability, trust, and interpretability of the explanation.
In this paper, we fill in the research blank by investigat-
ing whether explainable AI can improve human decision-
making. We design a behavioral experiment in which each
participant recruited using Amazon Mechanical Turk is
asked to complete 50 test trials in one of six experimental
conditions. Our experiment is conducted on two real datasets
to compare human decision with an AI prediction and an AI
with explanation. Our experimental results demonstrate that
AI predictions alone can generally improve human decision
accuracy, while the advantage of explainable AI is not con-
clusive. We also show that users tend to follow AI predic-
tions more often when the AI predictions are accurate. In
addition, AI with or without explanation can increase the
confidence of human users which, on average, was well-
calibrated to user decision accuracy.

In the future, we plan to investigate whether explainable
AI can help improve fairness, safety, and ethics by increas-
ing the transparency of AI models. Human decision-making
is a key outcome measure, but is certainly not the only goal
for explainable AI. We also plan to explore the difference
of distributions in the error space between human decision
and AI predictions, especially at decision boundaries. Also,
whether human-machine collaboration is feasible through
interactions in closed feedback loops. We will also expand
our datasets to include other data format such as images.
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Ethical Impact
For many important critical decisions, depending on the AI
model prediction may not be enough. Furthermore, many re-
cent regulations such as GDPR (Parliament and Council of
the European Union 2016) allow potential audit of AI pre-
diction by a human. Therefore, it is critical to understand
whether the explanations provided by explainable AI meth-
ods improve the overall prediction accuracy, and help human
decision makers to detect errors. Our results indicate that al-
though the existence of an AI model may improve human
decision-making, the explanations provided may not auto-
matically improve the accuracy. We believe that our results
could help ignite the needed research to explore how to bet-
ter integrate explanations, AI models and human operators
to have better outcomes compared AI models or humans
alone.

Another consideration is the data itself, models created
using systematically biased data will simply mirror and rein-
force patterns inherent to the data. For example, in the COM-
PAS dataset a high risk score for re-offending has far lower
accuracy for black defendants than white ones (Angwin
et al. 2016). Furthermore, multiple AI systems for predicting
criminal activity have relied on ”dirty” data with racial bias
due to flawed polices and procedures (Richardson, Schultz,
and Crawford 2019). One solution may be to combine ap-
proaches for fair machine learning (Corbett-Davies and Goel
2018) with explainable AI, while considering dataset prop-
erties such as its provenance.
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