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Abstract
Lexical taxonomies, a special kind of knowledge graph, are
essential for natural language understanding. This paper stud-
ies the problem of lexical taxonomy embedding. Most exist-
ing graph embedding methods are difficult to apply to lex-
ical taxonomies since 1) they ignore implicit but important
information, namely, sibling relations, which are not explic-
itly mentioned in lexical taxonomies and 2) there are lots of
polysemous terms in lexical taxonomies. In this paper, we
propose a novel method for lexical taxonomy embedding.
This method optimizes an objective function that models both
hyponym-hypernym relations and sibling relations. A term-
level attention mechanism and a random walk based metric
are then proposed to assist the modeling of these two kinds of
relations, respectively. Finally, a novel training method based
on curriculum learning is proposed. We conduct extensive
experiments on two tasks to show that our approach outper-
forms other embedding methods and we use the learned term
embeddings to enhance the performance of the state-of-the-
art models that are based on BERT and RoBERTa on text
classification.

Introduction
Knowledge Graphs (KGs), e.g., WordNet (Miller 1995) and
Freebase (Bollacker et al. 2008), are an important resource
for many applications, such as question answering (Cui
et al. 2017) and recommendation (Wang et al. 2019). How-
ever, KGs adopting symbolic and logical representations are
hard to support tasks with intensive numerical computation.
Thus, many studies have been conducted to embed KGs
into low-dimension spaces. These efforts are referred to as
knowledge graph embedding.

Embedding techniques for KGs, in general, can be
roughly divided into two categories. First, inspired by
word2vec (Mikolov et al. 2013), a series of translation-based
models have been proposed, such as TransE (Bordes et al.
2013) and RotatE (Sun et al. 2019). The basic idea of these
models is to learn the embeddings ~h, ~r, and ~t satisfying
~h + ~r ≈ ~t for a given triple (h, r, t), where r is the rela-
tion between the head entity h and the tail entity t. Second,
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semantic matching models like HolE (Nickel, Rosasco, and
Poggio 2016) and ComplEx (Trouillon et al. 2016) are pro-
posed to learn latent representations. They expect the em-
beddings for each triple to satisfy ~hT Mr ≈ ~tT , where Mr is
a matrix associated with the relation r.

In this paper, we focus on the embedding of a special
kind of KGs: lexical taxonomy (LT) built by data-driven ap-
proaches. LTs consist of hyponym-hypernym relations be-
tween terms. One term is a hypernym of another term if the
meaning of the former covers the latter (Sang 2007). For ex-
ample, fruit is a hypernym of apple. The opposite of
hypernym is hyponym, so apple is a hyponym of fruit.
In this paper, we use hypo(x, y) to represent a hyponym-
hypernym relation, where x is a hyponym of y. The reason
we study LTs is that hyponym-hypernym relations are the
key to the proper understanding of natural language texts.
For example, given a text “Kobe Bryant died at age 41, along
with his 13-year-old daughter Gianna and seven others ...”,
Although recent pre-trained language models (e.g., BERT)
have achieved remarkable improvements in a wide range of
NLP tasks, it is difficult to accurately classify the text in a
classification task. The main reason is that the models can-
not capture that Kobe Bryant is an NBA star, which is
useful for classifying the text into the class sport. Thus, to
effectively integrate hyponym-hypernym relations into the
numerical models, it is necessary to embed LTs into low-
dimensional spaces.

However, the above KG embedding approaches are not
suitable for lexical taxonomy embedding (LTE) due to their
ignorance of the inherent hierarchical structure of LTs. For
example, considering hypo(h, m), hypo(m, t), and hypo(h,
t) in translation-based models, if ~h+ ~r ≈ ~m and ~m+ ~r ≈ ~t
hold where r is the hyponym-hypernym relation, it is impos-
sible for ~h+ ~r ≈ ~t since ~r 6= 0 (Chen et al. 2018). Semantic
matching models are confronted with the similar problem.
To take into account the hierarchies, some studies such as the
dynamic distance-margin model (DDMM) (Yu et al. 2015),
TransC (Lv et al. 2018), and On2Vec (Chen et al. 2018), em-
ploy hierarchical neighborhood information in translation-
based models to enforce the close representation between
nodes. Other efforts (Nickel and Kiela 2017) use hyperbolic
space to model hierarchical structure with relatively fewer
dimensions. Although these methods take into account the
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Figure 1: Examples of sibling relations and polysemous
terms in Probase. The term at the beginning of the arrow
is a hyponym, while the term at the end is a hypernym.

hierarchical structure of taxonomy, they ignore implicit but
important information, namely, sibling relation, which is
not explicitly mentioned in LTs. Terms within a sibling re-
lation1 mean that they share many common direct/indirect
neighbors in an LT, which indicates that they are often se-
mantically similar. In other words, two terms with a sib-
ling relation should be close to each other in the embed-
ding space. As an example in Figure 1(a), the vectors of
car and automobile in the embedding space should be
similar since these two terms share 143 hyponyms and 661
hypernyms in Probase (Wu et al. 2011), which is one of the
largest LTs. Thus, in this paper, we incorporate sibling re-
lations into the embedding learning model to learn a more
reasonable representation for each term.

Besides, existing taxonomy embedding methods are dif-
ficult to be used for LTs2 since, in LTs, there are lots of
polysemous terms that have a negative impact on the em-
bedding learning of other terms. Existing methods often
learn term embeddings through the semantic correlation be-
tween terms x and y for a given hypo(x, y). However, when
a term is polysemous, its neighbors will introduce bias in
terms of semantics. Take using hyponym to predict hyper-
nym as an example. Given hypo(tank, weaponry), it is
difficult to learn an accurate representation for the term
weaponry from tank since the embedding of tank re-
flects the semantics of water tank through hypo(water
tank, tank), where tank has two different meanings:
tank1 =storage tank and tank2 =army tank, as
shown in Figure 1(b).

To address the above problems, in this paper, we pro-
pose a novel deep model for LTE. First, to fully use infor-
mation including both explicit and implicit relations, i.e.,
hyponym-hypernym and sibling relations, we design a joint
model that reflects these two relations in an LT. Then, to re-
duce the negative impact of a polysemous term on another
term in a hyponym-hypernym relation, a term-level atten-

1Since Probase is a graph, the sibling relation we define is dif-
ferent from that in a tree where sibling nodes share the same parent
node.

2Distinct from general taxonomies, the terms in LTs are not dis-
ambiguated since LTs are often built by data-driven methods.

tion mechanism is proposed. For a target term, the core idea
of this mechanism is to explore the importance of its hy-
ponyms/hypernyms to the target. Besides, since sibling re-
lations are not explicitly mentioned in LTs, a metric based
on the random walk is proposed to obtain siblings in ad-
vance to provide training data for the deep model. Finally,
inspired by the learning process of humans, which gener-
ally starts with learning easier samples and then gradually
considers complex ones, we propose a novel method to de-
termine the training order of samples based on curriculum
learning (Bengio et al. 2009).

Contributions. The contributions of this paper are sum-
marized as follows:
• We present the first effort to work on embedding learn-

ing for a special kind of KG: LT. One of the significant
characteristic of LTs is that the terms in LTs are not dis-
ambiguated.

• We design a joint model to characterize hyponym-
hypernym and sibling relations and propose a novel train-
ing method based on curriculum learning.

• Experimental results on two tasks show that our model
outperforms other embedding methods and the learned
vectors of terms can be used to improve the performance
of BERT and RoBERTa on text classification.

Problem Definition
In this section, we first formalize the problem of LTE. Then,
we give two properties that we expect the term embeddings
to satisfy.

Given a lexical taxonomy LT = {T , R}, where T is the
set of terms and R is the hyponym-hypernym relations be-
tween terms, the goal of LTE is to represent each term t ∈ T
into a low-dimensional space Rd where d � |T |. Specif-
ically, we assign two embeddings3 to each term t: the hy-
ponym embedding ~vt and the hypernym embedding ~ut. The
rationale is that the hyponym-hypernym relation is asym-
metric and we need to distinguish the roles of two terms in a
hyponym-hypernym relation. We use ~vt to represent t when
t is treated as a hyponym and use ~ut to represent t when t is
treated as a hypernym.

We expect to learn term embeddings that encode
hyponym-hypernym and sibling relations in an LT. More
specifically, we hope that the learned embeddings reflect two
properties:
• Hyponym-hypernym relation. If hypo(x, y) holds, then ~vx

and ~uy are similar under a bias b, which is denoted as
(~vx ' ~uy)|b. For example, (~vapple ' ~ufruit)|b. For the
details of b, we will elaborate on it in the next section.

• Sibling relation. If two terms t1 and t2 are siblings (de-
noted as sib(t1, t2)), then ~ut1 and ~ut2 are similar, which
is denoted as ~ut1 ' ~ut2 . For example, ~udog ' ~ucat. Sim-
ilarly, ~vt1 ' ~vt2 .
In this paper, we use Probase4 (Wu et al. 2011) as an ex-
3Due to the incompleteness of LTs, that is, the leaf/root nodes

may have hyponyms/hypernyms, we still assign two vectors to the
leaf and root nodes, respectively.

4Our method is also applicable to other LTs.

6411



ample to learn term embeddings. Probase contains lots of
hyponym-hypernym relations. Each hyponym-hypernym re-
lation is associated with a frequency observed on corpora.
Based on the frequency, we obtain the probability pc(x|y)
of a hyponym x given a hypernym y and the probability
pc(y|x) of y given x:

pc(x|y) =
n(x, y)∑
xi
n(xi, y)

, pc(y|x) =
n(x, y)∑
yi
n(x, yi)

, (1)

where n(x, y) is the co-occurrence frequency of x and y
on corpora. We define pc(x|y) and pc(y|x) as the typical-
ity of x and y, respectively. Intuitively, the typicality tells us
how popular x (y) is as far as y (x) is concerned. For ex-
ample, given a term dog, people are more likely to think
of it as an animal than a mammal, which is embodied by
pc(animal|dog) > pc(mammal|dog).

LTE: Lexical Taxonomy Embedding
In this section, a novel method for LTE is first proposed to
model both hyponym-hypernym and sibling relations. Then,
a term-level attention mechanism and a random walk based
metric are proposed to assist in modeling these two kinds
of relations, respectively. Since hyponym-hypernym rela-
tions are asymmetric, we model hyponym-hypernym rela-
tions from two directions: from hyponym to hypernym and
vice versa. For convenience, we discuss our solution for the
hypernym with respect to hyponym.

LTE with Hyponym-hypernym Relation
To model the hyponym-hypernym relation from the hy-
ponym x to the hypernym y, we expect ~vx and ~uy to be
similar under a bias b, i.e., (~vx ' ~uy)|b, where b is defined
as the bias of the target term y, i.e., by , which is used to
measure the importance of y. Formally, we define a poten-
tial function ψ(y|x) = exp(~uTy ~vx + by) to judge whether y
is a hypernym of x. If ψ(y|x) is large enough, we consider
y to be a hypernym of x. Furthermore, the function ψ(y|x)
in the embedding space is normalized as follows:

p(y|x) =
exp(~uTy ~vx + by)∑|T |
i=1 exp(~u

T
i ~vx + bi)

, (2)

where |T | is the number of terms in an LT and bi is the
bias of the i-th term. Eq. (2) defines a conditional probability
of the hypernym y generated by the hyponym x. Thus, our
goal is to maximize the likelihood of the above objective
function.

Unfortunately, computing Eq. (2) is expensive since it re-
quires summing overall terms in T , which is in general very
large. To address this problem, we employ the method of
negative sampling (Mazur et al. 2019), which samples mul-
tiple wrong hypernyms of x for each relation hypo(x, y).
Thus, the above objective function is approximated as:

p(y|x) =
exp(~uTy ~vx + by)

exp(~uTy ~vx + by) +
∑
y′

exp(~uTy′~vx + by′)
, (3)

where y′ ∈ Sn(x) (y′ 6= y) and Sn(x) is a set of wrong
hypernyms of x, which is randomly sampled from all terms,

and n is the number of wrong hypernyms. For each hyponym
x, this objective function enforces the correct hypernym y to
be larger in terms of ψ(·|·) than the wrong hypernym y′. To
train the model, we have the loss lossh = − log p(y|x).

Term-level Attention Mechanism
For a relation hypo(x, y), if the hyponym x is polysemous,
it will have a large negative impact on the learning of em-
bedding for the hypernym y. Thus, we expect to reduce the
negative impact of x on y so that the semantic information
that ~uy captures from ~vx can be reduced. To this end, we
employ a term-level attention mechanism (Bahdanau, Cho,
and Bengio 2014).

Given a relation hypo(x, y) and the hyponym set X =
{x1, ..., xm} of y where x ∈ X , the term-level attention
aims to compute the alignment score between y and its hy-
ponym xi with function f(xi, y) = ~uTy ~vxi

+ by , which re-
flects the attention of xi on y. A softmax function is then
used to convert the alignment scores into a probability dis-
tribution p(xi|X , y). A small p(xi|X , y) means that the i-th
hyponym is likely to be polysemous or noise for the hyper-
nym y. This process can be formulated as

p(xi|X , y) = softmax(h), h = [f(xi, y)]
m
i=1. (4)

Thus, by combining Eq. (4) and lossh, we obtain the final
loss function for the relation hypo(x, y) as follows:

lossha = p(x|X , y) · lossh. (5)

LTE with Sibling Relation
To model sib(t1, t2), we expect their embeddings to be simi-
lar, i.e., ~ut1 ' ~ut2 and ~vt1 ' ~vt2 . Dot-products, i.e., ~uTt1 ·~ut2
and ~vTt1 · ~vt2 , are the popular ways of measuring similarity
between hyponym/hypernym embeddings. Thus, we define
the joint probability between terms t1 and t2 to model the
relation sib(t1, t2) as follows:

p(t1, t2) =
1

1 + exp(−d(t1, t2))
, (6)

and
d(t1, t2) = α~uTt1 · ~ut2 + (1− α)~vTt1 · ~vt2 , (7)

where α is a hyperparameter used to balance the similarity
of hyponym and hypernym embeddings. For each sib(t1,t2),
we randomly sample multiple negative sibling relations to
design the loss as follows:

losss = − log p(t1, t2)−
∑

(t′1,t
′
2)

log(1− p(t′1, t′2)), (8)

where (t′1, t
′
2) ∈ Sn(t1, t2) = {(t′1, t2)} ∪ {(t1, t′2)},

Sn(t1, t2) is the set of negative sibling relations, t′1 6= t1
and t′2 6= t2 are randomly sampled from all terms, and n is
the number of negative sibling relations.

Acquisition of Sibling Relation
Unfortunately, there are no positive sibling relations to train
Eq. (8) since these relations are not explicitly mentioned in
an LT. Thus, we need a method to tell us which term pair in
an LT are siblings.
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Figure 2: The two terms healthy food and water
dense food have no common hypernyms and only one
common hyponym, but they share many indirect neighbors
in Probase.

Actually, the model with Eq. (5) can learn the similar-
ity between hypernyms ~ut1 and ~ut2 by sharing hyponyms.
However, this similarity is not sufficient. There are two rea-
sons: 1) Two terms sharing many hypernyms may also be
similar. 2) Similarity measurement should not only focus
on the term’s direct neighbors (its hyponyms and hyper-
nyms), but also indirect neighbors (two or more steps away)
due to the data sparsity of LTs. As shown in Figure 2, al-
though healthy food and water dense food have
only one common hyponym and no shared hypernyms, they
are similar to each other since they share many indirect
neighbors. To solve this problem, a random walk based met-
ric is employed to learn more sufficient similarity between
terms (Lovász et al. 1993). The core idea is that the two
terms t1 and t2 are similar to each other if they have a sim-
ilar probability to other words in an LT with a random walk
process.

More specifically, let |T | be the number of terms in an
LT, we construct a vector ~st ∈ R2|T | for each term t ∈
T by concatenating two random walk vectors ~ste ∈ R|T |
and ~sto ∈ R|T |. ~ste (~sto) is the probability distribution over
the T terms along the edge from hyponyms (hypernyms) to
hypernyms (hyponyms). Each element in ~ste and ~sto is the
probability of reaching each element from term t along with
two directions by a random walk process. After the i-th step
of random walk, ~ste and ~sto can be expressed as

~s
(i)
te = ~s

(0)
te +M~s

(i−1)
te ,

~s
(i)
to = ~s

(0)
to +M~s

(i−1)
to ,

(9)

where M ∈ R|T |×|T | is the column-normalized adjacency
matrix. ~s(0)te and ~s(0)to are the initial one-hot vector (only the
dimension corresponding to t is set to 1 and the rest elements
are set to 0). In general, the results of ~s(∞)

te and ~s(∞)
to are

a stationary distribution (Lovász et al. 1993). However, the
cost of each iteration in a random walk procedure is expen-
sive since LTs always have millions of terms and hyponym-
hypernym relations. Thus, we speed up the computation by
limiting the number of iterations. Specifically, with accept-
able experimental precision, we set the number of iterations
to 2.

To obtain a similar score for a pair of terms, we need to
compare the stationary distribution ~st1 of term t1 with the
stationary distribution ~st2 of term t2 both generated by a ran-
dom walk procedure. In this paper, we adopt the cosine func-
tion to measure the similarity (or divergence) from a pair of
distributions:

sim(t1, t2) =
~st1 · ~st2
‖~st1‖‖~st2‖

. (10)

Finally, to obtain positive samples needed for modeling sib-
ling relations, we first calculate the cosine similarity of all
pairs of terms in an LT. Then, we choose the pairs of terms
with the similarity greater than the threshold ε as the positive
samples.

Training Method
To model hyponym-hypernym relations from hyponym to
hypernym and sibling relations, we adopt an alternating
training strategy to combine the loss functions lossha and
losss. That is, we perform lossha training and losss train-
ing in turn. Similarly, we employ the same training method
as above to model hyponym-hypernym relations from hy-
pernym to hyponym and sibling relations with another set of
parameters.

According to the learning principle of human beings in
the cognitive process, we should start with simple and typi-
cal samples when learning a new model and then gradually
consider more complex samples. To this end, we employ
curriculum learning algorithm (Bengio et al. 2009) to de-
termine the training order of sibling relations and hyponym-
hypernym relations in advance. For the curriculum of sibling
relations, we rank sibling relations in descending order of
their similarity calculated by Eq. (10). In practice, the simi-
larity score between two terms is used to measure their like-
lihood being siblings. Thus, through the similarity ranking,
we hope that the model first learns the representation of sib-
lings with high probabilities, which is then used to guide the
model to learn the ones with relatively low probabilities. For
the curriculum of hyponym-hypernym relations, we sort the
samples in the descending order according to the following
measurement

C(x, y) = pc(x|y) · pc(y|x). (11)

Eq. (11) actually measures the typicality of hypo(x,y)
through the typicality of terms x and y defined in Eq. (1).
A large C(x, y) means that the relation hypo(x,y) tends to
be an easy-to-learn sample.

Experiments
In this section, we conduct extensive experiments to eval-
uate our proposed models on two tasks: link prediction and
hyponym-hypernym relation classification. Furthermore, we
use the term embeddings learned by our model to enhance
the performance of the models BERT and RoBERTa on text
classification.

Datasets
Most previous knowledge graph embedding work used
FB15K and WN18 (Bordes et al. 2013) for evaluation.
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Datasets # Train # Valid
or Test

# Hyponym # Hypernym
Max / Avg Max / Avg

Pro5K 153,145 19,143 2,596 / 56 437 / 41
Pro300K 1,090,811 128,221 18,650 / 8 1,464 / 8

Table 1. The statistics of Pro5K and Pro300K. Among all hy-
pernyms (hyponyms), “Max” and “Avg” are the maximum
and average number of its hyponyms (hypernyms), respec-
tively.

However, these two datasets are not suitable for our prob-
lem since the former is mainly composed of non-hyponym-
hypernym relations (e.g., /film/film/music) and the
latter is manually constructed and all terms in WordNet are
disambiguated. Thus, we use Probase for evaluation, which
is one of the largest LTs. To ensure the accuracy of the in-
puts, we filter the low-frequency relations with n(x, y) ≤ 5.
Then, similar to TransE (Bordes et al. 2013), we create two
datasets constructed by selecting relations and the frequency
of terms in these relations needs to be ranked in Top-5K
and Top-300K in Probase. These two datasets are denoted
as Pro5K and Pro300K. The statistics of these two datasets
are shown in Table 1.

Experiment Setup
Baselines. We compare our proposed methods with three
kinds of embedding models as follows.
• Translation-based models. The typical translation-based

models mainly include TransE (Bordes et al. 2013),
TransH (Wang et al. 2014), TransR (Lin et al. 2015), and
RotatE (Sun et al. 2019).

• Semantic matching models. The representative seman-
tic matching models include DistMult (Yang et al. 2014),
HolE (Nickel, Rosasco, and Poggio 2016), and Com-
plEx (Trouillon et al. 2016).

• Encoding hierarchical structure models. The typical
models used for taxonomy embedding learning mainly in-
clude DDMM (Yu et al. 2015) and On2Vec (Chen et al.
2018).

Parameter Setting. For the experiment with our model, we
set α = 0.9 and ε = 0.5, respectively. For the joint model,
We select the learning rate λ = 0.001 for Adam. The num-
ber of negative samples n in both Eq. (3) and (8) is set to 5.
The dimension of term vector d in this paper and other com-
pared methods is set to 128 and the vector of each term t is
normalized by setting ||~ut||2 = 1 and ||~vt||2 = 1. During
alternating training, we perform lossha with 4 epochs and
losss with 1 epoch in turn and our models run on Windows
10 with Intel(R) Core(TM) i7-4790K CPU, GeForce GTX
980 and 32GB of RAM. The computation time of alternat-
ing training for one iteration is about 2

3 and 30 minutes for
Pro5K and Pro300K, respectively.

Link Prediction
Link prediction is to predict the missing hyponyms or hy-
pernyms for hyponym-hypernym relations. For each rela-
tion hypo(x,y), we first remove x or y and replace it with

all terms in an LT in turn. Then, we rank these terms in de-
scending order according to the value of the potential func-
tion and record the ranking of x or y. We call this setting as
“Raw”. In fact, the relations whose hyponyms or hypernyms
replaced by other terms may also exist in LT and these rela-
tions should be considered as correct predictions. Thus, we
remove these relations and record the ranking of x or y. This
setting is called “Filter”.

Similar to TransE (Bordes et al. 2013), two evaluation
metrics are reported: the mean rank of all correct terms (de-
noted as MR) and the proportion of correct terms in the Top-
10 (denoted as Hits@10). A good embedding model should
achieve lower MR and higher Hits@10.

The experimental results are shown in Table 2. From the
table, we conclude that: 1) Our methods outperform most
competitors under almost all metrics, which verifies the ef-
fectiveness of our method. 2) In general, the performance
of the models on hyponym predicting is worse than that on
hypernym predicting. The reason may be that for a given
term, in general, the number of its hyponyms is more than
the number of its hypernyms, as shown in Table 1. For exam-
ple, given a hypernym y, if it has only one hyponym x, the
embedding of y can accurately capture the semantics of x.
If it has two hyponyms x1 and x2, the embedding of y will
capture the semantics of both x1 and x2 so that y cannot
accurately reflect the semantics of a single x1 or x2. Thus,
when predicting x for a given y, the effectiveness of models
will decrease as the number of hyponyms increases.

Hyponym-hypernym Relation Classification
Hyponym-hypernym relation classification is to judge
whether a given hypo(x,y) is correct or not, which is a bi-
nary classification task. As to our datasets, the validation
and test sets only have positive relations, which requires us
to provide wrong relations. To solve this problem, we con-
struct negative samples by randomly selecting terms from all
terms in LT to replace hyponyms or hypernyms.

For relation classification, we set a threshold δ. For each
hypo(x,y), if its potential function is larger than δ, hypo(x,y)
will be classified as positive, otherwise negative. δ is opti-
mized by maximizing the accuracy on the valid set.

The results are reported in Table 3. From the table, we
conclude that: 1) Compared to other embedding methods,
our model achieves the best performance on both datasets.
The highest accuracy is close to 90% on Pro5K. 2) Although
the data is expanded from 5K to 300K, the accuracy drops
only about 1%, which indicates that our method is also ap-
plicable to large-scale LTs.

Text Classification
To further verify the effectiveness of our method, we use
the learned term embeddings from Pro5K as additional fea-
tures to enhance the performance of existing text classifica-
tion models.

In this paper, we employ a standard text classification
dataset AG’s News (Zhang, Zhao, and LeCun 2015) for
the evaluation, which contains 496,835 news articles about
4 classes. Based on this dataset, a Deep Neural Networks
(DNN) with 3 layers (the hidden sizes are set to 768,
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Task Hypernym Predicting Hyponym Predicting
Datasets Pro5K Pro300K Pro5K Pro300K
Metric MR Hits@10 (%) MR Hits@10 MR Hits@10 MR Hits@10

Eval. setting Raw Filt. Raw Filt. Filt. Filt. Raw Filt. Raw Filt. Filt. Filt.
TransE 286 247 8.7 16.5 9,959 10.7 847 605 3.7 10.5 15,275 10.1
TransH 285 247 8.6 16.9 11,049 9.4 844 602 3.4 10.6 16,225 7.0
TransR 290 252 8.8 16.3 11,576 9.4 852 610 3.7 10.8 16,888 6.9
RotatE 207 159 5.5 38.6 21,631 20.5 638 345 0.8 22.2 24,269 9.2
HolE 393 335 3.4 19.5 21,907 10.0 943 558 2.3 13.5 24,737 6.3

DistMult 335 276 2.7 18.2 11,558 15.7 858 454 1.7 11.1 14,459 10.3
ComplEx 301 237 10.6 22.7 11,588 15.8 781 365 1.1 19.8 14,480 10.4
DDMM 696 692 18.8 18.9 30,376 2.8 986 981 4.4 4.5 38,499 0.7
On2Vec 857 848 0.7 0.8 19,701 0.3 1,676 1,655 0.8 0.9 38,083 2.2
Ours (H) 212 152 3.6 34.6 10,435 21.2 754 448 3.6 18.9 13,243 8.8

Ours (HA) 188 145 4.4 36.1 10,069 21.8 688 383 4.5 20.0 12,729 10.1
Ours (HAS) 176 135 14.9 38.0 9,359 22.5 594 302 5.6 22.8 11,909 11.4

Ours (HASC) 171 130 15.2 38.2 9,297 23.4 571 300 6.0 25.8 11,862 12.6

Table 2. The results on link prediction. “Ours (H)”, “Ours (HA)”, and “Ours (HAS)” mean the models with the loss lossh,
lossha, and the combination of lossha and losss, respectively. “Ours (HASC)” means the joint model trained by ranked samples
with Eq. (10) and (11).

Datasets Pro5K Pro300K
TransE 76.1 84.3
TransH 76.2 84.0
TransR 75.9 83.5
RotatE 86.5 81.5
HolE 78.8 80.9

DistMult 81.4 87.9
ComplEx 83.4 87.6
DDMM 83.1 73.2
On2Vec 79.8 76.3
Ours (H) 85.3 84.4

Ours (HA) 86.7 85.6
Ours (HAS) 89.1 88.4

Ours (HASC) 89.9 89.2

Table 3. The accuracy (%) of different models on relation
classification.

1024, and 4) is trained as a classifier, where the input is
the distributed representation of an article. To obtain tex-
tual representations, we adopt two strategies: 1) encoded
by BERT5

BASE (Devlin et al. 2018) and 2) encoded by
RoBERTa6

BASE (Liu et al. 2019). For these two situations,
we use the dataset AG’s News to fine-tune the model and
consider the encoding of the token CLS as textual represen-
tations. The dimensions of text vectors produced by these
two strategies are set to 768.

To evaluate the effectiveness of term embeddings learned
by our method, we employ a feature fusion-based method to

5https://github.com/google-research/bert
6https://github.com/pytorch/fairseq/blob/master/examples/

roberta/README.md

Input BERT RoBERTa
Basic 92.0 93.4

+ TransE 92.7 93.5
+ RotatE 93.0 94.1

+ DistMult 92.2 94.1
+ Ours (HASC) 93.4 94.1

Table 4. The accuracy (%) of different models on text clas-
sification. “Basic” means the input of the classifier is the ar-
ticle vector obtained by methods (BERT and RoBERTa). “+
TransE”, “+ RotatE”, “+ DistMult”, and “+ Ours (HASC)”
mean the input of the classifier is the concatenation of the
article vector and the new vector learned by TransE, RotatE,
DistMult and Ours (HASC), respectively.

incorporate the learned term vectors into the article vectors
generated by the above two methods, respectively. Specif-
ically, for each article, we first find the terms that exist
in Pro5K through string matching. Then, a new vector is
obtained by the average of the corresponding elements of
learned embeddings for all terms. Finally, we concatenate
the new vector and the article vector as the input of the
classifier and thus the hidden sizes of DNN are set to 896
(768 + 128), 1024 and 4.

In this task, we compare several typical methods and the
results are reported in Table 4. From the results, we con-
clude that: 1) The term embeddings learned by the methods
including TransE, RotatE, DisMult and Ours (HASC) can
be used to enhance the performance of BERT and RoBERTa
on the text classification task. This shows that adding the
term embeddings learned from LT on the basis of BERT and
RoBERTa can improve the performance of the text classi-
fication task. 2) Compared with TransE, RotatE, and Dis-
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hyponym hypernym Ours (H) Ours (HA)
scientist person 8.35 7.25
scientist profession 6.68 4.99

photograph figure 1.92 1.85
plato figure 10.89 4.63

Table 5. The results of ψ(·|·) with models “Ours (H)” and
“Ours (HA)”. Terms in bold are polysemous.

Term Siblings
powerpoint excel, graphic, word, browser, ...

petrol petroleum, natural gas, crude oil, ...
lavender ginger, sunflower, turmeric, basil, ...
designer engineer, teacher, lawyer, analyst, ...

white purple, yellow, almond, green, ...

Table 6. Examples of terms’ siblings.

Mult, adding the vector learned by our method can signifi-
cantly improve the accuracy of the model, which proves the
effectiveness of our method. 3) The methods RotatE, Dis-
Mult, and ours have the same improvement on the basis of
RoBERTa. A possible reason is that RoBERTa is trained on
a very large corpus and it is difficult to further improve by
adding 5K terms.

Case Study
Next, we present some examples to analyze the effectiveness
of the term-level attention mechanism and the random walk
based metric.

Table 5 gives the potential function values of several re-
lations whose hyponym or hypernym is polysemous with
two models including “Ours (H)” and “Ours (HA)”. From
the table, we can see that the potential function value with
the model “Ours (HA)” is lower than that with “Ours (H)”,
which verifies the effectiveness of our designed term-level
attention mechanism. Because a decrease in the value of the
potential function indicates that the semantic correlation of
these relations is weakened. In other words, the semantic in-
formation that the model learns from the polysemous terms
decreases.

Table 6 gives some examples of finding siblings using the
metric based on the random walk for a given term. From the
results, we can see that terms and their siblings are semanti-
cally similar, which verifies the effectiveness of the random
walk based metric.

Related Work
KG Embedding. Recently, KG embedding has attracted a
great deal of research interest. Embedding methods for KG
can be divided into two groups: translation-based models
and semantic matching models. The core idea of the former
is to measure the plausibility of facts with a distance-based
score function. The typical methods along this line include
TransE (Bordes et al. 2013), TransR (Lin et al. 2015), and
RotatE (Sun et al. 2019). The latter try to measure the like-

lihood of facts through a similarity-based scoring function
and its representative work includes DistMult (Yang et al.
2014), HolE (Nickel, Rosasco, and Poggio 2016), and Com-
plEx (Trouillon et al. 2016). However, the above methods
are hard to apply to LTs since they mainly focus on multi-
relational graphs that are very different from LTs in struc-
tures. That is, LTs have only one relation, i.e., hyponym-
hypernym relation, and each term in LTs usually has thou-
sands of hyponyms or hypernyms.
Taxonomy Embedding. The goal of taxonomy embedding
is to learn term representations in hyponym-hypernym rela-
tions. Embedding methods for taxonomies can be roughly
classified into two categories. The first is to model the hier-
archical structure of taxonomy in the embedding space with
text corpora (Nguyen et al. 2017). A dynamic weighting
neural network (Luu et al. 2016) is proposed to learn term
embeddings based on the hyponym-hypernym relation and
contextual information. (Wang, He, and Zhou 2019) pro-
poses a taxonomy enhanced adversarial learning model to
project a term to its hypernyms and non-hypernyms with
text corpora. The second is to learn term embeddings only
from taxonomies (Nickel and Kiela 2017), which is also
the focus of this paper. DDMM (Yu et al. 2015) uses a
neural network to encode hyponym-hypernym relations into
term embeddings. On2Vec (Chen et al. 2018) is a hierar-
chy model that performs learning of hyponym-hypernym re-
lations. TransC (Lv et al. 2018) encodes each concept as
a sphere and each instance as a vector to learn the hierar-
chical structure of taxonomy. However, the above methods
of learning term embeddings from taxonomies are not suit-
able for LTs since they do not take into account polysemous
terms and ignore the implicit but important information, i.e.,
sibling relations.

Conclusion and Future Work
In this paper, we focus on the embedding learning of LTs.
We first design a joint model to reflect hyponym-hypernym
and sibling relations. Then, to assist in modeling these two
relations, a term-level attention mechanism and a random
walk based metric are proposed. Besides, we design a novel
training method based on curriculum learning. Finally, ex-
tensive experiments are conducted to verify the effectiveness
of our model.

In the future, we try to integrate the information (e.g.,
entity-attribute-value) in KG into our model to learn more
effective representation for each term, thereby further im-
proving the performance of downstream tasks. For exam-
ple, the entity Kobe Bryant has an attribute-value pair
jersey number-24, which is also an effective feature
for the text classification task.
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