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Abstract

Recent years have brought about a renewed interest in com-
monsense representation and reasoning in the field of natural
language understanding. The development of new common-
sense knowledge graphs (CSKG) has been central to these
advances as their diverse facts can be used and referenced
by machine learning models for tackling new and challeng-
ing tasks. At the same time, there remain questions about the
quality and coverage of these resources due to the massive
scale required to comprehensively encompass general com-
monsense knowledge.

In this work, we posit that manually constructed CSKGs will
never achieve the coverage necessary to be applicable in all
situations encountered by NLP agents. Therefore, we propose
a new evaluation framework for testing the utility of KGs
based on how effectively implicit knowledge representations
can be learned from them.

With this new goal, we propose ATOMICZ), a new CSKG of
general-purpose commonsense knowledge containing knowl-
edge that is not readily available in pretrained language mod-
els. We evaluate its properties in comparison with other lead-
ing CSKGs, performing the first large-scale pairwise study
of commonsense knowledge resources. Next, we show that
AtoMmiIc3) is better suited for training knowledge models
that can generate accurate, representative knowledge for new,
unseen entities and events. Finally, through human evalu-
ation, we show that the few-shot performance of GPT-3
(175B parameters), while impressive, remains ~12 absolute
points lower than a BART-based knowledge model trained on
ATOMIC3) despite using over 430x fewer parameters.

1 Introduction

Commonsense understanding and reasoning remain long-
standing challenges in general artificial intelligence. How-
ever, large-scale language models have brought tremendous
progress in the sub-field of natural language processing.
Such large-scale language models (Radford et al. 2018; De-
vlin et al. 2019; Brown et al. 2020) trained on extreme-scale
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Figure 1: A tiny subset of ATOMIC3), a large atlas of social
and physical commonsense relations. Relations in the top-
left quadrant reflects relations from AToMIC.!

data have been shown to effectively adapt to diverse down-
stream tasks, achieving significant performance gains across
natural language benchmarks (Wang et al. 2019). Interest-
ingly, as these models have grown larger (and trained on
larger amounts of data), their benchmark performance has
continued to improve (Raffel et al. 2019) despite limited
conceptual improvements, leaving open questions regarding
the source of these remarkable generalization properties.
Recent work has hypothesized that many of these per-
formance gains could be a result of language models be-
ing able to memorize facts in their parameters during train-
ing (Roberts, Raffel, and Shazeer 2020) that can be lever-
aged at evaluation time. As a result, a new paradigm of
language models as knowledge bases has emerged (Petroni
et al. 2019). In this setting, language models are prompted
with natural language prefixes or questions, and they express
knowledge through language generation. The initial success
of this paradigm for representing commonsense knowledge
(Davison, Feldman, and Rush 2019; Tamborrino et al. 2020)
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Figure 2: ATOMIC3] tuple count distribution compared to ATOMIC (Sap et al. 2019) and CONCEPTNET, either its commonsense
subset (Li et al. 2016) or the full set (Speer, Chin, and Havasi 2017).

has led to the optimistic claim that language models com-
prehensively encode commonsense knowledge, and remove
the need for structured knowledge resources.

We take a more skeptical view of this capacity of lan-
guage models — Does scaling up language models actually
endow them with commonsense knowledge ? While language
models can successfully express certain types of knowledge,
their best results are observed in narrowly specific condi-
tions — we show (cf. §5) that they perform better when evalu-
ated on knowledge bases that prioritize ontological relations
and whose examples resemble language-like assertions (e.g.,
mango IsA fruit).” Consequently, the types of knowledge
that can be directly accessed through the language model’s
interface remains limited.

However, prior work has also shown that training lan-
guage models on knowledge graph tuples leads them to learn
to express their implicit knowledge directly (Bosselut et al.
2019), allowing them to provide commonsense knowledge
on-demand. These adapted knowledge models have exhib-
ited promising results on commonsense benchmarks com-
pared with methods that require linking entities to knowl-
edge graphs (Shwartz et al. 2020; Liu et al. 2020). Inspired
by these successes, we propose a dual use for commonsense
knowledge bases going forward: as static graphs that can be
linked to for discrete knowledge access, and as resources
for adapting language models to hypothesize commonsense
knowledge about un-annotated entities and events.

With this second purpose in mind, we propose eval-
uating commonsense knowledge resources based on the
complementary information they can bring to pretrained
language models. We construct ATOMIC39, a new, high-
quality knowledge graph with 1.33M commonsense knowl-
edge tuples across 23 commonsense relations. We compare
ATOMIC3) with respect to its coverage and accuracy in com-
petition with other highly used CSKGs, such as CONCEPT-

2An observation supported by Brown et al. (2020)’s GPT-3
model, whose best few-shot performance on commonsense knowl-
edge benchmarks comes on the PhysicallQA (Bisk et al. 2020) and
HellaSwag (Zellers et al. 2019) datasets.
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NET (Speer, Chin, and Havasi 2017). Our results show that
AtoMmIc3) is able to cover more correct facts about more
diverse types of commonsense knowledge than any exist-
ing, publicly-available commonsense knowledge resource.
However, our results also indicate that there remains a large
amount of exclusivity between these KGs, highlighting the
challenge of creating resources that cover the scale and di-
versity of general commonsense knowledge.

Furthermore, we formalize the COMET framework of
Bosselut et al. (2019) across different seed language models
and training knowledge graphs, and evaluate the common-
sense knowledge hypothesized by these adapted knowledge
models. Our empirical study yields two promising conclu-
sions. First, it confirms that KG-adapted language models
learn to express knowledge more precisely than naive lan-
guage models trained only on language. And second, we
show that ATOMIC3] as a transfer resource leads to COMET
models that achieve the largest increase over their seed lan-
guage model (across all seed LMs) for the commonsense
knowledge types it covers, validating the importance of con-
structing knowledge resources with examples of knowledge
not readily found in language models.

Key Contributions: In summary, we make three key con-
tributions in this paper. We present ATOMIC39—a new com-
monsense knowledge graph covering social, physical, and
eventive aspects of everyday inferential knowledge (cf. §3).
Next, we compare ATOMIC3) with other prominent CSKBs
head-to-head and show that our new symbolic knowledge
graph is more accurate than any current CSKB (see Ta-
ble 2) (cf. §4). Finally, we show that our new neural
knowledge model COMET-ATOMIC3) successfully trans-
fers ATOMIC3)’s declarative knowledge to beat GPT-3, the
largest pre-trained language model, in spite of using 400x
fewer parameters (see Table 6) (cf. §5). This demonstrates
the utility and importance of high-quality symbolic knowl-
edge provided by ATOMIC3) to generalize on commonsense
information that LMs cannot expressively capture on their
own (cf. §6).



2 Background

Commonsense Knowledge Graphs Large scale com-
monsense knowledge graphs are ubiquitous tools in natu-
ral language processing tasks as access to their facts allows
models to learn to reason over commonsense knowledge to
make predictions (Lin et al. 2019; Feng et al. 2020). In this
work, we evaluate three existing knowledge graphs, CON-
CEPTNET, ATOMIC, and TRANSOMCS on their coverage
and precision relative to our new resource ATOMIC3).

The CONCEPTNET (v5.7) knowledge graph (Speer,
Chin, and Havasi 2017) consists of 36 relations focus-
ing mostly on taxonomic and lexical knowledge (e.g.,
RelatedTo, Synonym, IsA) and physical commonsense
knowledge (e.g., MadeOf, PartOf). CONCEPTNET (v5.7)
contains 3.4M entity-relation tuples (in English) collected
by crowdsourcing and merged with existing knowledge
databases from DBPedia, WordNet, Wiktionary, and Open-
Cyc. Since the knowledge are derived from human efforts,
the accuracy of CONCEPTNET (v5.7) knowledge is fairly
high, though the quality does vary depending on the sources
of knowledge and relation types. However, as highlighted
in (Davis and Marcus 2015; Sap et al. 2019), and shown in
Figure 2, the coverage of CONCEPTNET (v5.7) is limited to
mostly taxonomic, lexical, and object-centric physical com-
monsense knowledge. In fact, out of 3.4M tuples, 90% of
them correspond to taxonomic (e.g., IsA) or lexical (e.g.,
Synonym, RelatedTo) knowledge, making the common-
sense portion of CONCEPTNET (v5.7) relatively small.

The ATOMIC (Sap et al. 2019) knowledge graph con-
sists of 880K of tuples across 9 relations that cover so-
cial commonsense knowledge (e.g, X gets X’s car repaired
xIntent to maintain the car), including dynamic aspects
of events such as causes and effects, 1 f—then conditional
statements, and mental states. The ATOMIC dataset is col-
lected and validated completely through crowdsourcing.

The TRANSOMCS (Zhang et al. 2020a) knowledge
graph consists of 18.48M tuples that were automatically
converted from syntactic parses of sentences from various
web sources including Wikipedia, Yelp, and Reddit. The set
of relations used for the mapping is copied from CONCEPT-
NET. Although TRANSOMCS is much larger than other
commonsense knowledge graphs, the precision of the ex-
tracted knowledge is significantly lower compared to other
resources (cf. §4), and performs poorly as an adaptation re-
source relative to other KGs (cf. §5).

For this work we have selected three large scale CSKGs
that retain a closed class of relational types that are compa-
rable to one another. Other commonsense KBs in existence
such as Quasimodo (Romero et al. 2019) provide a wider
variety of fine-grained relations.

Language Models as Knowledge Bases Recent work
hypothesizes that pretrained language models represent
commonsense knowledge implicitly (Petroni et al. 2019;
Roberts, Raffel, and Shazeer 2020). However, the results

3We were unable to include Cyc (Lenat 1995) in our study due
to the discontinuation of its research license and the cost of the
commercial license (over $1M). CONCEPTNET includes a subset
of Cyc — OpenCyc.
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motivating these observations are often limited to narrowly
scoped subsets of commonsense knowledge that primarily
include taxonomic knowledge (e.g., mango IsA fruit) and
that are often found explicitly stated in text. However, com-
monsense facts are often implied (Gordon and Van Durme
2013), and as will be seen in our studies (cf. §4), state of the
art neural models struggle to express implicit commonsense
knowledge that involves complex relationships.

To overcome this limitation, Bosselut et al. (2019) take
the best of both worlds between commonsense knowledge
graphs and pretrained language models. The commonsense
transformer, or COMET, adapts pretrained neural language
models by training on example tuples from commonsense
knowledge graphs. It takes a head/source phrase and a rela-
tion (e.g., take a nap Causes) and generates the tail/target
phrase (e.g., have energy). Bosselut et al. (2019) show that
COMET trained on the CONCEPTNET and ATOMIC knowl-
edge graphs is able to adapt to generate novel (and valid)
commonsense knowledge tuples.

Importantly, these neural knowledge models can produce
commonsense knowledge on-demand for any head entity
that can be expressed through language. This flexibility al-
lows them to be used out-of-the-box, and they have been ap-
plied to new, previously unexplored tasks, such as sarcastic
comment generation (Chakrabarty et al. 2020), therapy chat-
bots (Kearns et al. 2020), and automated story plot genera-
tion (Ammanabrolu et al. 2020). These contributions show
that progress on knowledge models opens up new down-
stream applications that were challenging to model before.

3 ArTOMIC3)

We present ATOMIC3), a commonsense knowledge graph
with 1.33M everyday inferential knowledge tuples about en-
tities and events. ATOMIC3Y represents a large-scale com-
monsense repository of textual descriptions that encode both
the social and the physical aspects of common human ev-
eryday experiences, collected with the aim of being com-
plementary to commonsense knowledge encoded in cur-
rent language models. ATOMIC3) introduces 23 common-
sense relations types. They can be broadly classified into
three categorical types: 9 commonsense relations of social-
interaction, 7 physical-entity commonsense relations, and
7 event-centered commonsense relations concerning situa-
tions surrounding a given event of interest. The full inven-
tory of ATOMIC3) relations is listed in Table 1.

In terms of physical and event-centered commonsense,
by far, the two largest new relations in ATOMIC3) are
ObjectUse and HinderedBy. For ObjectUse, we fo-
cused on affordances of everyday objects such as “popcorn
bucket” that may be used for “holding popocorn” or “stor-
ing things”. For HinderedBy, we explore the notion that
many events in real world can be defeasible (Lascarides and
Asher 1991) by collecting hindrances to goals that may be
useful for tasks such as counterfactual reasoning. For exam-
ple X’s desires to adopt a cat may be hindered by finding out
that X is allergic to cats, which would necessitate X to ad-
just future actions accordingly (say, opt for hypoallergenic
options like tortoises).



Head Relation Tail Size
ObjectUse make french toast 165,590
E bread AtLocation®  basket; pantry 20,221
L% radeUpOf ! dough; .w}.leat 3,345
flz asProperty” cooked; nice to eat 5,617
9] CapableOf*  coat cake with icing 7,968
E baker Desires™ quality ingredients 2,737
2 Not Desires™ bad yeast 2,838
IsAfter X exercises in the gym 22,453
2 HasSubEvent become tired 12,845
E X runs out IsBefore X hits the showers 23,208
Z of steam HinderedBy drinks too much coffee 106,658
UE' Causes takes a break 376
E xReason did not eat breakfast 334
Xwatches b dBy  the games the TV 33,266
___anyway
xNeed do something tiring 128,955
- XAttr old; lazy; lethargic 148,194
% Xo?;rtl:a?:;t xEffect drinks some water 115,124
g xReact tired 81,397
E xWant to get some energy 135,360
:C:' xIntent to give support 72,677
g X votes oEffect receives praise 80,166
@ forY oReact grateful; confident 67,236
oWant thank X; celebrate 94,548

Table 1: Relations in ATOMICZ) along with illustrative ex-
amples and their respective size. Relations that reflect se-
mantically identical categories to CONCEPTNET is marked
with an asterisk (*).

In the case of ObjectUse, we collected over 130K ev-
eryday object-use pairs by asking crowdworkers for nec-
essary objects and their uses for each event in ATOMICZ).
For example, given “X eats popcorn” we elicited items such
as “popcorn bucket” with their various expected uses. The
number also reflects atypical usages gathered in a separate
pass where workers were asked to provide creative or re-
sourceful but feasible uses of the objects. Given “popcorn
bucket”, for instance, one might “wear it as a hat” for, say, a
costume party. For HinderedBy, we crowdsourced over
100K tuples of hindrances to existing ATOMIC3) events,
asking the workers to provide situations or events that might
pose as deterrence should the event be considered an achiev-
able goal (see Appendix for further details). For social-
interaction commonsense, we primarily incorporated tuples
from ATOMIC, but also crowdsourced an additional 34K tu-
ples using the same approach as Sap et al. (2019).

ATOMICZ) also pulls commonsense tuples from the En-
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glish subset of CONCEPTNET(v5.7) (latest version avail-
able; Speer, Chin, and Havasi 2017).* Of the 3.4M English
tuples in CONCEPTNET(v5.7), a small subset of 172K tu-
ples was selectively chosen to be integrated into ATOMIC3)
via elimination and crowdsourcing. This subset represents
data carefully identified to reflect commonsense informa-
tion dealing with qualitative human experiences. Among
the eliminated data are tuples with edge weight < 0.5,
dictionary or etymologically based knowledge (e.g., syn-
onyms/antonyms, inflections), lexical hyper/hyponymic lex-
ical relationships such as IsA or InstanceOf, and re-
lations based on lexical co-occurrence (e.g., RelatedTo
or LocatedNear), which are easily recoverable from lan-
guage models.> After selective removal of these relations
and a post-processing step to ensure the removal of deter-
ministic information such as geographic facts (e.g., “shen-
zhen” AtLocation‘“china”), tuples from each CONCEPT-
NET were examined for further splits or joins to align with
the existing structure of ATOMIC33. A random 10% tuples
from each selected relations were then put through crowd-
sourced validity testing (akin to the process described later
in §4). Tuples that were directly incorporated without fur-
ther edits passed with an acceptance rate of 93% or higher.
A subset of relations (i.e., CapableOf, HasProperty,
MotivatedByGoal) were put through additional crowd-
sourcing to weed out tuples that were either invalid or found
to hold prejudiced descriptions of human entities. In the end,
only 5 relations (marked with an asterisk in Table 1) retain
the CONCEPTNET’s original meaning with a few relations
that are cognates in ATOMIC3) (more details in Appendix).

4 Symbolic Knowledge Graph Comparison

In this work, we compare our new ATOMIC3) knowledge
graph to three other prominent CSKGs: ATOMIC (Sap
et al. 2019), CONCEPTNET® (Li et al. 2016), and TRAN-
SOMCS (Zhang et al. 2020a). We measure the accuracy of
tuples in each KG and compare the coverage of each CSKG
w.r.t. other CSKGs head-to-head.

Accuracy Assessment

In order to assess the accuracy of the knowledge represented,
3K random instances were extracted from each of the knowl-
edge graphs for a crowdsourced evaluation of the tuples.

Qualifying Crowdsource Workers. The evaluation was
carried out through crowdsourcing on the Amazon Mechan-
ical Turk platform. To ensure high-quality annotations, we
qualified a pool of 173 workers through a paid qualification
task that tested their ability to follow directions and provide
reasonable answers to the qualification test. The qualifica-
tion test contained 6 manually selected tuples from ATOMIC

*A CONCEPTNET(vS.7) fact is considered English if both the
head and tail concepts are marked with ‘/en/’ in the edge id.

>CONCEPTNET 5.7 defines weight as “the strength with which
this edge expresses this assertion”. A pilot crowdsource assessment
step found any tuple with weight < 0.5 unreliable w.r.t. its validity.

®Hereafter, as we focus on CSKGs, by ConceptNet, we refer to
the commonsense subset, unless specified otherwise.



Knowledge Base Accept Reject No Judgment
ATOMIC3) 91.3 6.5 22
ATOMIC 88.5 10.0 1.5
CONCEPTNET 88.6 7.5 39
TRANSOMCS 41.7 53.4 4.9

Table 2: Accuracy - Percentage (%) of tuples in the knowl-
edge base evaluated by human crowdworkers as either al-
ways true or likely (Accept), farfetched/never or invalid (Re-
ject), or unclear (No Judgment).

and CONCEPTNET, including both easy and tricky relations
to annotate. A worker was qualified if they provided 100%
acceptable answers. Workers providing 5 of 6 correct an-
swers were also accepted only when they provided a reason-
able written substantiation for their incorrect choice. Work-
ers were paid an average of $15 per hour for their evalua-
tions.

Human Evaluation Setup. Workers were presented with
knowledge tuples in the form of (head, relation, tail) for an-
notation. To expedite the human assessment of the tuples,
each relation (e.g., xWant or AtLocation) was trans-
lated into a human-friendly natural language form (e.g., “as
a result, PersonX wants” and “located or found at/in/on”, re-
spectively; cf. Appendix ). The workers were asked to rate
the tuples along a 4-point Likert scale: always/often — the
knowledge assertion presented is always or often true, some-
times/likely — it is sometimes or likely true, farfetched/never
— it is false or farfetched at best, and invalid — it is invalid or
makes no sense. Any tuples receiving the former two labels
are ranked as Accept and latter two as Reject. The work-
ers were also given a choice to opt out of assessment if the
concepts were too unfamiliar for a fair evaluation (No Judg-
ment). Each task (HIT) included 5 tuples of the same rela-
tion type, and each tuple was labeled by 3 workers. For the
results, we take the majority vote among the 3 workers.

Results. ATOMIC3) outperforms other KGs in crowd-
sourced accuracy as shown in Table 2.7 ATOMIC ties with
CONCEPTNET with reasonably high accuracy, while TRAN-
SOMCS lags behind others with far lower accuracy. We pro-
vide a per-relation breakdown of accuracies in Table 3.
Between ATOMIC3) and ATOMIC, the variations in the
assessed accuracies are not found to be statistically sig-
nificant. Among the ATOMIC3) and CONCEPTNET rela-
tions that represent exact matches (marked with * in Ta-
ble 3), the differences are either not statistically significant
or when they are, ATOMIC3) improves upon the associ-
ated facts, reflecting that the preprocessing stages of CON-
CEPTNET integration were helpful in improving the qual-
ity of these relations (§3). Among cognates in ATOMIC3)
and CONCEPTNET relations, two sets of relations fare sig-
nificantly worse in ATOMIC3) than in CONCEPTNET. In
the case of ObjectUse/UsedFor, this is likely due to
the fact that ATOMICZ2)’s Ob jectUse includes atypical af-

"Overall inter-rater agreement measured by Fleiss’ « of 0.46
(moderate agreement; Fleiss 1971).
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AToMIcZ) AToMmic Relation CN T-OMCS

92.3 AtLocation* 89.4

93.9 CapableOf* [84.4]

94.6 Causes

96.9 Desires* 96.3

93.9 HasProperty* 86.3

82.3 ObjUse/UsedFor  [96.3

98.5 NotDesires* 96.3

96.9 HasSubevent 88.1 57.7
HasFirstSubevent ~ 93.8 52.4
HasLastSubevent 95.6 38.2
HasPrerequisite 94.4 30.0

75.4 MadeUpOf/MadeOf |88.1

PartOf 71.9 46.5
HasA 71.5 435

96.9 HinderedBy

96.2 isAfter

954 isBefore

96.2 isFilledBy
ReceiveAction 84.4 56.4

91.5 86.3 oEffect

91.5 87.7 oReact

88.5 89.5 oWant

87.7 91.0 xAttr

80.8 87.2 xEffect

93.1 89.9  xIntent/MotivByGoal 84.4 27.1

87.7 85.1 xNeed

90.8 91.3 xReact

96.2 xReason

82.3 88.4 xWant/CausesDesire  90.0 359

Table 3: KG accuracy values broken down by relation.
Boxed cells indicate statistically significant difference from
ATOMIC3) values. Relational cognates have been grouped
together and exact matches are asterisked (*) (cf. Table 1).

fordances (cf. §3). In an annotation setting where workers
are asked to evaluate the truth or likelihood of an asser-
tion rather than feasibility of use, a portion of the atypi-
cal usages are seen as ‘farfetched’ and thus, rejected. In
the case of MadeUpO£f/MadeOf, there may be some room
for improvement for ATOMIC3). Unlike the ATOMIC3)’s
HasSubEvent label that successfully joins together CON-
CEPTNET’s HAS(FIRST/LAST)SUBEVENT labels for an
improved accuracy, ATOMIC3)’s MadeUpOf union of
MadeOf, PartOf, and a subset of HasA, did not seem to
have resulted in improved quality. The rest of the ATOMIC3)
cognates see a significantly higher or similar accuracy in

comparison to CONCEPTNET.

Coverage Assessment

We make a pairwise comparison between the CSKGs to as-
sess their coverage with regards to the commonsense knowl-
edge they contain. For a reliable head-to-head comparison,
we map relations and tuples between various KGs.

Mapping Relations. Since ATOMICZ) is built on existing
ATOMIC relations, we primarily need to align relations be-
tween ATOMIC3Y and CONCEPTNET. We manually align
them based on the definitions for the labels as supplied by



Target KB—

Source KB/ Atomic CN T-OMCS ATOMIC3)
ATOMIC - 0.1 0.0 100.0
CONCEPTNET 0.3 - 5.5 45.6
TRANSOMCS 0.0 04 - 0.3
ATOMIC3) 602 93 1.4 -

Table 4: Coverage Precision - Average number of times (in
%) a tuple in Source KB is found in Target KB.

Target KB—
Source KB AtoMIC CN T-OMCS ATOMIC3]
ATOMIC - 0.3 0.0 60.1
CONCEPTNET 0.1 - 0.3 8.9
TRANSOMCS 00 76 - 1.3
AtomIc3) 100.17  47.8 0.4 -

Table 5: Coverage Recall - Average number of times (in %)
a tuple in Target KB is found in Source KB. fThis value is
greater than 100 because multiple tuples in ATOMIC3) can
map to the same tuple in ATOMIC.

the two graphs, then the resulting alignment was verified by
sampling at random approximately 20 instances per relation.

Mapping Tuples. In order to resolve syntactic differences
in how the concepts are expressed in each of the KGs (e.g.,
ATOMIC’s “PersonX eats breakfast” vs. CONCEPTNET’S
“eat breakfast”), we preprocess each of the head and tail
concepts of each tuple in each KG in the following man-
ner: (1) the concept is lowercased and stripped of extra
spaces, punctuations, and stopwords; (2) any exact tuple du-
plicates within each KB removed, and (3) remaining content
words are lemmatized according to their POS category. For
ATOMIC and ATOMIC3), an extra step is added to remove
mentions of “PersonX”, “PersonY” and “PersonZ” if occur-
ring at the beginning of a string, and to replace with ‘person*
if they occur elsewhere (e.g, “PersonX greets PersonY”).

Metrics. We use two metrics to evaluate the coverage of
knowledge graphs. For each pair of CSKGs, we compute
precision and recall with respect to a target KG. Coverage
precision assesses the proportion of tuples in the source KG
that are correct according to tuples in the target KG. Cover-
age recall reflects the proportion of tuples in the target KB
that the tuples in the source KB successfully recalled.

Results. Tables 4 and 5 show a pairwise coverage preci-
sion and recall assessment among the CSKGs. ATOMICZ)
shows the widest coverage: ATOMICZ] is able to recall all of
ATOMIC (as expected) and just under half of CONCEPTNET.
There is very little overlap between ATOMIC and CONCEPT-
NET, which is unsurprising as all of ATOMIC knowledge is
focused on social behaviors CONCEPTNET does not cover
while CONCEPTNET leans on physical commonsense which
falls outside ATOMIC’s scope. Overall, TRANSOMCS inter-
sects very little with any of the other three KBs.
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. No

KG Model Accept Reject Jdgm.
GPT2-XL 36.6 625 0.9

ATOMICZ) GPT-3 73.0 24.6 2.5
20 COMET(GPT2-XL) 725  26.6 0.9
COMET(BART) 84.5 138 1.7

GPT2-XL 383 612 0.4

ATOMIC COMET(GPT2-XL) 64.1 347 1.2
COMET(BART) 831 153 1.6

GPT2-XL 503 421 7.7

CONCEPTNET COMET(GPT2-XL) 74.5 19.0 6.4
COMET(BART) 755 179 6.6

GPT2-XL 28.7 535 1738

TRANSOMCS COMET(GPT2-XL) 269 609 122
COMET(BART) 238 659 103

Table 6: Human evaluation of generation accuracy (%). Each
model uses greedy decoding to generate the fail of 5K
randomly-sampled test prefixes (head, relation) from each
knowledge graph. GPT2-XL, GPT-3 and BART have 1.5B,
175B and 440M parameters, respectively.

5 Neural Knowledge Graph Comparison

Language models are powerful tools for representing knowl-
edge, but their ability to serve as generative knowledge bases
is limited by the fact they are directly trained to represent the
distribution of language. Previous work shows knowledge
graphs can help language models better transfer as knowl-
edge engines (Bosselut et al. 2019) by re-training them on
examples of structured knowledge. As a result, a new pur-
pose for knowledge graphs is to be useful in helping lan-
guage models generalize to hypothesizing knowledge tuples.

Experimental Setup. To evaluate whether knowledge
graphs can help language models effectively transfer to
knowledge models, we train different pretrained language
models on the knowledge graphs described in Section 4,
which we describe below:

GPT2 (Radford et al. 2019) is a Transformer (Vaswani et al.
2017) based language model. In our experiments, we use the
largest GPT2 model, GPT2-XL, that has 1.5B parameters.
We fine-tune GPT2-XL on each of our CSKGs to predict
the tail of a tuple (e.g., wheat) given the head (e.g., bread)
and a relation (e.g., MadeUpOf). The hyperparameter set-
tings used for training are described in more detail in Ap-
pendix. Additionally, we use GPT2-XL in a zero-shot set-
ting as a baseline to measure the effect of transfer learning
on knowledge graphs. For fair comparison, we convert each
relation manually to an English language prompt expecting
the tail of each tuple as output generated by the model.
BART (Lewis et al. 2020) is a Bidirectional and Autoregres-
sive Transformer, an adaptation from BERT (Devlin et al.
2019) that is better suited for natural language generation
(e.g., translation, summarization). Additional training de-
tails are provided in Appendix.

GPT-3 (Brown et al. 2020) is an autoregressive language
model that has 175B (over 100X more parameters than



Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr BERT Score

GPT2-XL 0.101 0.028 0.010 0.003 0.082 0.098 0.047 0.395

ATOMIC20 GPT-3 0.299 0.153 0.081 0.048 0.182 0.255 0.175 0.540
20 COMET(GPT2-XL) 0.407 0.248 0.171 0.124 0.292 0.485 0.653 0.638
COMET(BART) 0.469 0.286 0.189 0.130 0.330 0.495 0.658 0.639

GPT2-XL 0.083 0.029 0.011 0.005 0.081 0.087 0.045 0.386

ATOMIC COMET(GPT2-XL) 0.419 0.296 0.228 0.189 0.292 0.517 0.733 0.634
COMET(BART) 0.515 0.324 0.220 0.159 0.347 0.546 0.740 0.646

GPT2-XL 0.044 0.012 0.004 0.002 0.064 0.057 0.050 0.389

CONCEPTNET COMET(GPT2-XL) 0.155 0.119 0.095 0.078 0.134 0.193 0.425 0.552
COMET(BART) 0.172 0.111 0.072 0.049 0.130 0.184 0.368 0.535

GPT2-XL 0.028 0.001 0.000 0.000 0.093 0.053 0.013 0.351

TRANSOMCS COMET(GPT2-XL) 0.301 0.000 0.000 0.000 0.180 0.302 0.254 0.677
COMET(BART) 0.351 0.170 0.003 0.000 0.198 0.352 0.297 0.678

Table 7: Automated metrics for the quality of the fail generations of the GPT2-XL language model and the knowledge models
COMET(GPT2-XL) and COMET(BART). Each approach uses greedy decoding for sampled 5k test prefixes for each KG.
The 5k prefixes correspond to the ones for the human eval. Similar results are obtained on the full test sets (cf. Appendix).

GPT2-XL) parameters and is trained on a corpus of web
text. We use the GPT-3 API to prime the language model
to generate the tail for a given prefix — (head, relation) pair.
Thus, GPT-3 is evaluated in a few-shot setting. Additional
details of our implementation are provided in Appendix.

Evaluation Setup. To assess language-to-knowledge trans-
fer capabilities, we evaluate how language models general-
ize to new, unseen entities, concepts, or events. We split each
knowledge graph into training, validation, and test sets such
that the heads of the knowledge tuples do not overlap be-
tween these sets. This adversarial split forces the language
models to generalize the relationships they learn from train-
ing on the knowledge graphs to the entities learned during
language pretraining. Also, to avoid overpopulating the val-
idation and test sets with generic heads (e.g., “I”, “You”,
“He”, “We”, and “They” collectively account for over 2.2M
tuple heads in TRANSOMCS), we enforce that the head of
any knowledge tuple in the dev and fest sets is involved in at
most 500 tuples. Finally, we remove low-quality tuples from
TRANSOMCS by imposing a confidence score of > 0.5.

We score the tuples generated by these knowledge models
using common evaluation metrics for text generation: BLEU
(Papineni et al. 2002), ROUGE (Lin 2004), CIDEr (Vedan-
tam, Lawrence Zitnick, and Parikh 2015), and BERT Score
(Zhang et al. 2020b). For a subset of 5000 generated tuples
from the test set of each knowledge graph, we also run the
same human evaluation described in Section 4.

Results. We present our main results in Tables 6 and 7.
First, we note the large divide between the zero-shot GPT2-
XL model that produces commonsense knowledge without
any fine-tuning and the two COMET models across the
AtoMmIc3), AToMic, and CONCEPTNET knowledge graphs
(Table 6). This large gap indicates that language models can
benefit from learning facts from commonsense knowledge
graphs. They do not have the means to precisely express this
knowledge directly from just pretraining on language. This
observation is supported by the gaps between these models
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in the automatic evaluations (Table 7), as well. Additionally,
human evaluation of GPT-3 (Table 6) shows a ~12 point
deficit compared to the performance of COMET(BART),
in spite of GPT-3 (175B) having over ~430 times more pa-
rameters than COMET(BART) (406M). Similarly, we see
a large gap in performance across all automated metrics in
Table 7. The performance gap indicates that high-quality
declarative knowledge is valuable even after the advent of
extreme scale language models.

In addition to this main result, two particularly interest-
ing observations emerge. First, we note that the gap be-
tween the zero-shot model and COMET is larger on the
ATOMIC3) and ATOMIC knowledge graphs, than on CON-
CEPTNET, supporting the reflection that ATOMIC3] supports
categories of knowledge that are more difficult to learn from
pretraining. Second, the results on the human evaluation
show that COMET models trained on TRANSOMCS are
not able to generalize knowledge to new entities, implying
that language models benefit more from accurate knowledge
examples, which TRANSOMCS lacks (cf. §4).

6 Discussion

Do pretrained language models already encode com-
monsense knowledge? Our conclusions on this subject
are mixed and hinge on the ambiguous meaning of what
it means to encode knowledge. Despite the conclusions
of prior work (Petroni et al. 2019; Roberts, Raffel, and
Shazeer 2020; Tamborrino et al. 2020), our results in Ta-
ble 6 are clear that language models fail to express large
varieties of knowledge when prompted for it in a zero-shot
manner. When converted to COMET models by training
on a knowledge graph, their performance at hypothesizing
knowledge tuples skyrockets — 47.9% absolute difference
between COMET(BART) and GPT2-XL on ATOMICZ).
However, the evaluation tuples are adversarially selected
to not include head entities that were in the training set. The
model must generalize its learned representations of rela-
tions to entities it has not observed these relationships for



during fine-tuning, meaning the representation of these en-
tities is solely formulated from learning language. As a re-
sult, language models may still encode this knowledge in
their parameters, even if they are not capable of expressing
it directly. With this framing in mind, the COMET train-
ing paradigm proposed by Bosselut et al. (2019) can per-
haps be viewed less as a means of learning knowledge from
KGs, and more as a method of learning an interface for lan-
guage models to hypothesize encoded knowledge through
language generation. We look forward to future work in this
space that attempts to disentangle these two ideas.

What considerations should be made when designing
commonsense knowledge resources? Based on our results
in Section 5, we outline desiderata for the design and devel-
opment of future commonsense knowledge graphs. Because
certain types of knowledge are already encoded and express-
ible by pretrained language models, CSKG designers should
focus on collecting examples and categories of knowledge
that are less likely to be known by language models. For
example, of the 378 test tuples evaluated by the GPT2-XL
zero-shot model that contained the HinderedBy relation,
only 1.3% were deemed plausible by human raters — jump-
ing to 85% plausibility for COMET(BART) — pointing to
an advantage in constructing ATOMIC3) with this relation-
ship in mind (see Appendix for per-relation accuracy).

Second, commonsense knowledge resources should be
designed with the goal of accuracy and relationship cover-
age. Because language models exhibit powerful adaptation
(Brown et al. 2020), they can generalize many common-
sense relationships as long they have examples on which to
train. Consequently, we should construct commonsense re-
sources that encapsulate larger numbers of relations so the
knowledge in pretrained language models can be grounded
to a variety of relationships. However, language models also
benefit from learning from precise examples. Being able to
train on a large collection of examples from TRANSOMCS
(see Appendix) did not allow COMET models to generalize
to unseen entities as these examples were not of sufficient
quality (See Table 2). Resources should be carefully vali-
dated for the quality of their facts, an example set by Speer,
Chin, and Havasi (2017) and Sap et al. (2019).

7 Conclusion

In this work, we formalize a use for commonsense knowl-
edge graphs as transfer learning tools for pretrained lan-
guage models. With this new purpose, we hypothesize that
commonsense knowledge graphs should be designed to con-
tain knowledge that is not already expressible by language
models without difficulty (e.g., not taxonomic and lexical
knowledge). Consequently, we propose ATOMIC3), a novel
commonsense knowledge graph containing tuples whose re-
lations are specifically selected to be challenging for pre-
trained language models to express. Our empirical studies
demonstrate that ATOMIC3) contains high-accuracy knowl-
edge tuples across multiple novel relations not found in ex-
isting CSKGs or expressible by LMs. Furthermore, we show
that ATOMICZ) can be effectively used as a training set for
adapting language models as knowledge models to generate
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high quality tuples on-demand.
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