
Mining ELK Bases with Adaptable Role Depth

Ricardo Guimarães,1 Ana Ozaki,1 Cosimo Persia,1 Baris Sertkaya2

1 Department of Informatics, University of Bergen, Norway
2 Frankfurt University of Applied Sciences, Germany

Ricardo.Guimaraes@uib.no, Ana.Ozaki@uib.no, Cosimo.Persia@uib.no, Sertkaya@fb2.fra-uas.de

Abstract

In Formal Concept Analysis, a base for a finite structure is
a set of implications that characterizes all valid implications
of the structure. This notion can be adapted to the context of
Description Logic, where the base consists of a set of concept
inclusions instead of implications. In this setting, concept ex-
pressions can be arbitrarily large. Thus, it is not clear whether
a finite base exists and, if so, how large concept expressions
may need to be. We first revisit results in the literature for
mining ELK bases from finite interpretations. Those mainly
focus on finding a finite base or on fixing the role depth but
potentially losing some of the valid concept inclusions with
higher role depth. We then present a new strategy for mining
ELK bases which is adaptable in the sense that it can bound
the role depth of concepts depending on the local structure of
the interpretation. Our strategy guarantees to capture all ELK

concept inclusions holding in the interpretation, not only the
ones up to a fixed role depth.

1 Introduction
Among its many applications in artificial intelligence, logic
is used to formally represent knowledge. Such knowledge,
often in the form of facts and rules, enables machines to pro-
cess complex relational data, deduce new knowledge from
it, and extract hidden relationships in a specific domain.
A well-studied formalism for knowledge representation is
given by a family of logics known as description logics
(DLs) (Baader et al. 2017). DL is the logical formalism
behind the design of many knowledge-based applications.
However, it is often difficult and time-consuming to manu-
ally model in a formal language rules and constraints that
hold in a domain of knowledge.

In this work, we consider an automatic method to ex-
tract rules (concept inclusions (CIs)) formulated in DL from
data. This data can be, for instance, a collection of facts in a
database or a knowledge graph. For instance, in the DBpedia
knowledge graph (Lehmann et al. 2015), one can represent
the relationship between a city ‘a’ and the region ‘b’ it be-
longs to with the facts citypaq, regionpbq, partofpa, bq, and
capitalpb, aq. From this data, one can mine a CI expressing
that a capital is a city that is part of a region.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To mine CIs that hold in a dataset, we combine notions
of Formal Concept Analysis (FCA) (Ganter and Wille 1999)
and DLs. FCA is a subfield of lattice theory that provides
methods for analysing datasets and identifying the depen-
dencies in them. In FCA a dataset, also called a formal con-
text, is a table showing which objects have which attributes.
Given a formal context, FCA methods are used to extract
the dependencies between the attributes, also called implica-
tions (Figure 1). A base is a set of implications that entails
every valid implication of the dataset and only those (sound-
ness and completeness). It can be used for detecting erro-
neous or missing items in the dataset (Baader et al. 2007).
In the DL setting, a base is a set of CIs (an ontology) which
can serve as a starting point for ontology engineers to build
an ontology in a domain of interest.

However, for some DLs and datasets, it may happen that
no finite base exists. Cyclic relationships are common in
knowledge graphs and they are the main challenge for find-
ing a finite DL base. With only one cyclic relationship,
we already have that infinitely many concepts hold in the
dataset. Strategies for limiting the size of concepts in the
presence of cyclic dependencies have already been investi-
gated in the literature. Baader and Distel (2008) and Dis-
tel (2011) propose a way of mining DL finite bases express-
ible in the DL ELKgfp which is the addition of greatest fix-
point semantics to the DL language ELK. The semantics of-
fered by ELKgfp elegantly solves the difficulty of mining CIs
from cyclic relationships in the data. However, this seman-
tics comes with two drawbacks. Firstly, ELKgfp concepts may
be difficult to understand, and learned CIs may be too com-
plex to validate by domain experts. Secondly, there is no ef-
ficient implementation of a reasoner for ELKgfp, even though
the reasoning complexity is tractable, like for ELK. The au-
thors also show how to transform an ELKgfp base into an EL
base. However, it is far from being trivial to avoid the step
of creating an ELKgfp base in their approach.

A simplification of the mentioned work has been pro-
posed by Borchmann, Distel, and Kriegel (2016) where they
show how to mine ELK finite bases with a predefined and
fixed role depth for concept expressions. As a consequence,
the base is sound and complete only w.r.t. CIs containing
concepts with bounded role depth. Their approach avoids

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6367

City Region Dpartof.J Settlement
a ˆ ˆ ˆ

b ˆ ˆ ˆ

c ˆ ˆ

Figure 1: (a) A dataset with 4 attributes and 3 objects. (b)
The implications CityÑ Dpartof.J and CityÑ Settlement
hold in the dataset but CityÑ Region does not hold in it.

the step of creating an ELKgfp base but also avoids the main
challenge in creating a finite base for ELK, which is the fact
that the role depth of concepts can be arbitrarily large.

Our work brings together the best of the ap-
proaches by Distel (2011) and Borchmann, Distel, and
Kriegel (2016): we directly compute a finite ELK base that
captures the whole language (not only up to a certain role
depth). In particular, we present a new approach for com-
puting the role depth of concepts which adapts depending
on the objects considered during the computation of CIs.

Related work. Several authors have worked on combining
FCA and DLs or on applying methods from one field to the
other (Ozaki 2020). Baader (1995) uses FCA to compute the
subsumption hierarchy of the conjunction of predefined con-
cepts. Rudolph (2004; 2006) uses the DL FLE for the defi-
nition of FCA attributes and FCA techniques for generating
a knowledge base. Baader et al. (2007) uses FCA for com-
pleting missing knowledge in a DL knowledge base. Baader
et al. (2000) proposes a method for building DL ontologies
through the interaction of domain experts. Sertkaya (2010)
presents a survey on applications of FCA methods in DLs.
Borchmann and Distel (2011) provide a practical applica-
tion of the theory developed by Distel (2011) on knowledge
graphs. Borchmann (2014) shows how a base of confident
ELKgfp concept inclusions can be extracted from a DL inter-
pretation. Monnin et al. (2017) compare, using FCA tech-
niques, data present in DBpedia with the constraints of a
given ontology to check if the data is compliant with it.
Kriegel (2019a) among other contributions extends the re-
sults by Borchmann, Distel, and Kriegel (2016) to a logic
that is more expressive than ELK. He also investigates the
same problem for probabilistic DLs (Kriegel 2019b).

In the next section, we present basic definitions and nota-
tion. In Section 3, we present the problem of mining ELK CIs
and establish lower bounds for this problem. In Section 4, we
present our main result for mining ELK bases with adaptable
role depth. Our result uses a notion that relates each vertex
in a graph to a set of vertices, called maximum vertices from
(MVF). In Section 5, we show that the MVF of a vertex in a
graph can be computed in linear time in the size of the graph.
Missing proofs can be found in the long version (Guimarães
et al. 2021).

2 Preliminaries
We introduce the syntax and semantics of ELK and basic
definitions related to description graphs used in the paper.

The Description Logic ELK

ELK (Baader, Brandt, and Lutz 2005) is a lightweight DL,
which only allows for expressing conjunctions and existen-
tial restrictions. Despite this rather low expressive power,
slight extensions of it have turned out to be highly success-
ful in practical applications, especially in the medical do-
main (Spackman, Campbell, and Cote 1997).

We use two finite and disjoint sets, NC and NR, of concept
and role names to define the syntax and semantics of ELK.
ELK concept expressions are built according to the grammar
rule C,D ::“ A | J | K | C [D | Dr.C with A P NC and
r P NR. We write Drn`1.C as a shorthand for Dr.pDrn.Cq
where Dr1.C :“ Dr.C. An ELK TBox is a finite set of con-
cept inclusions (CIs) C Ď D, where C,D are ELK concept
expressions. We may omit ‘ELK’ when we speak of concept
expressions, CIs, and TBoxes, if this is clear from the con-
text. We may write C ” D (an equivalence) as a short hand
for when we have both C Ď D and D Ď C. The signature
of a concept expression, a CI, or a TBox is the set of concept
and role names occurring in it.

The semantics of ELK is based on interpretations. An in-
terpretation I is a pair p∆I , ¨Iq where ∆I is a non-empty
set, called the domain of I, and ¨I is a function mapping
each A P NC to a subset AI of ∆I and each r P NR to a
subset rI of ∆I ˆ∆I . The function ¨I extends to arbitrary
ELK concept expressions as usual:

pC [DqI :“ CI XDI pJqI :“ ∆I pKqI :“ H

pDr.CqI :“ tx P ∆I | px, yq P rI and y P CIu

An interpretation I satisfies a CI C Ď D, in symbols I |ù
C Ď D, iff CI Ď DI . It satisfies a TBox T if it satisfies all
CIs in T . A TBox T entails a CI C Ď D, written T |ù C Ď

D, iff all interpretations satisfying T also satisfy C Ď D.
We write ΣI for the set of concept or role names X such
that XI ‰ H. A finite interpretation is an interpretation
with a finite domain.

Description Graphs, Products, and Unravellings
We also use the notion of description graphs (Baader 2003).
The description graph GpIq “ pVI , EI , LIq of an interpre-
tation I is defined as (e.g. Figure 4):
1. VI “ ∆I ;
2. EI “ tpx, r, yq | r P NR and px, yq P rIu;
3. LIpxq “ tA P NC | x P A

Iu.

The description tree of an ELK concept expression C
over the signature Σ is the finite directed tree GpCq “
pVC , EC , LCq where VC is the set of nodes, EC Ď VC ˆ
NR ˆ VC is the set of edges, and LC : V Ñ 2NC is the
labelling function. GpCq is defined inductively:
1. for C “ J, VC “ tρCu and LCpρCq “ H where ρC is

the root node of the tree;
2. for C “ A P NC, VC “ tρCu and LCpρCq “ A;
3. for C “ D1 [D2, GpCq is obtained by merging the

roots ρD1
, ρD2

in one ρC with LCpρCq “ LD1
pρD1

q Y

LD2
pρD2

q;

6368

City [Dgovernment.Party[
Dpartof.pRegion[Dcapital.Jq City

Party

Region
govern.

partof capital

Figure 2: A concept expression and its description graph.

4. for C “ Dr.D, GpCq is built from GpDq by adding a new
node (root) ρC to VD and an edge pρC , r, ρDq to ED.

The concept expression (unique up to logical equivalence)
CpGvq of a tree shaped graph Gv “ pV,E,Lq rooted in v is

kl

i“1

Pi [

ll

j“1

Drj .CpGwj q,

where Lpvq “ tPi | 1 ď i ď ku, pv, rj , wjq P E (and there
are l such edges) and CpGwj

q is inductively defined, with
Gwj

being the subgraph of G rooted in wj .
A walk in a description graph G “ pV,E, Lq between two

nodes u, v P V is a word w “ v0r0v1r1 . . . rn´1vn where
v0 “ u, vn “ v, vi P V , ri P NR and pvi, ri, vi`1q P E
for all i P t0, . . . , n ´ 1u. The length of w in this case is
n, in symbols, |w| “ n. Walks with length n “ 0 are pos-
sible, it means that the walk has just one vertex (no edges).
Vertices and edges may occur multiple times in a walk. Let
G “ pV,E, Lq be an ELK description graph with x P V
and d P N. Denote by δpwq the last vertex in the walk w.
The unravelling of G up to depth d is the description graph
Gx
d “ pVd, Ed, Ldq starting at node x defined as follows:

1. Vd is the set of all directed walks in G that start at x and
have length at most d;

2. Ed “ tpw, r,wrvq | v P V, r P NR,w,wrv P Vdu;

3. Ldpwq “ Lpδpwqq.

A path is a walk where vertices do not repeat.

piq
a

b

City

Region

1 2

piiq

a a1b
City Region

1

piiiq

a a1b

a1b2a

City Region

CityRegion
a1b2a1b

21

1

Figure 3: Unravelling of the description graph of the inter-
pretation I in piq. For readability, partof has been replaced
with symbol 1 and capital with symbol 2. piiq depicts GpIqa1
and piiiq depicts GpIqa3 .

Let G1, . . . ,Gn be n description graphs such that Gi “

pVi, Ei, Liq. Then the product of G1, . . . ,Gn is the descrip-
tion graph pV,E, Lq defined as:

1. V “
Śn

i“1 Vi;

2. E “ tppv1, . . . , vnq, r, pw1, . . . , wnqq | r P

NR, pvi, r, wiq P Ei, for all 1 ď i ď nu;

3. Lpv1, . . . , vnq “
Şn

i“1 Lipviq.

x1

x3

x5 x6City

Party, Liberal

Region
govern.

partof capital

x2

x4

x7City

Party,
Organization

Region
govern.

partof

capital

Figure 4: Description graph of the interpretation I “

ttx1, ¨ ¨ ¨ , x7u, ¨
Iu where tx1, x2u “ CityI , tx3, x4u “

PartyI , tpx1, x5q, px2, x7qu “ partofI , etc.

If each Gi is a tree with root vi then we denote by
śn

i“1 Gi

the tree rooted in pv1, . . . , vnq contained in the product
graph of G1, . . . ,Gn.

3 Mining ELK Bases
The set of all ELK CIs that are satisfied by an interpretation
I is in general infinite because whenever I |ù C Ď D,
I |ù Dr.C Ď Dr.D as well. Therefore one is interested in a
finite and small set of CIs that entails the whole set of valid
CIs. For mining such a set of CIs from a given interpretation
we employ ideas from FCA and recall literature results.

Definition 1. A TBox T is a base for a finite interpretation
I and a DL language L, if for every CI C Ď D, formulated
within L and ΣI : I |ù C Ď D iff T |ù C Ď D.

We say that a DL has the finite base property (FBP) if, for
all finite interpretations I, there is a finite base with CIs for-
mulated within the DL language and ΣI . Not all DLs have
the finite base property. Consider for instance the fragments
ELKrhs (and ELKlhs) of ELK that allows only concept names
on the left-hand (right-hand) side but complex ELK concept
expressions on the right-hand (left-hand) side of CIs.

Proposition 1. ELKrhs and ELKlhs do not have the FBP.

Proof Sketch. No finite base ELKrhs exists for the interpreta-
tion in Figure 5 piq. For every n ě 1, the ELKrhs base should
entail the CI A Ď Drn.J. Similarly, no finite ELKlhs base ex-
ists for the interpretation in Figure 5 piiq. For every n ě 1,
the ELKlhs base should entail the CI Ds.Drn.B Ď A.

piq

A

r

r

piiq

A
B

r

s

r

s
r

Figure 5: Lack of the FBP for ELKrhs piq and ELKlhs piiq.

The main difficulty in creating an ELK base is knowing
how to define the role depth of concept expressions in the
base. In a finite interpretation, an arbitrarily large role depth
means the presence of a cyclic structure in the interpreta-
tion. However, ELK concept expressions cannot express cy-
cles. The difficulty can be overcomed by extending ELK with

6369

greatest fix-point semantics. It is known that the resulting
DL, called ELKgfp, has the FBP (Baader and Distel 2008;
Distel 2011). The authors then show how to transform an
ELKgfp base into an ELK base, thus, establishing that ELK
also enjoys the FBP.

In the following, we show that, although finite, the role
depth of a base for ELK and a (finite) interpretation I can be
exponential in the size of I.

Example 1. Consider I represented in the shaded area in
Figure 6. For p1 “ 2, p2 “ 3, p3 “ 5 and for all k P N`, we
have that xi P pDrk¨pi´1.AqI , where 1 ď i ď 3. We know
that 30 “ minp

Ş3
i“1tk ¨ pi | k P N`uq “

śn
i“1 pi (which

is the least common multiple). We also know that for any
n, p P N`, n ` 1 is a multiple of p iff n is a multiple of p
minus 1. Therefore, the number

d “ minp
3
č

i“1

tk ¨ pi ´ 1 | k P N`uq,

such that tx1, x2, x3u “ BI “ pDrd.AqI , is
ś3

i“1 pi ´ 1 “
29. A base for I should have the CI with role depth at least
d because it has to entail the CI B Ď Drd.A.

Theorem 1. There is a finite interpretation I “ p∆I , ¨Iq

such that any ELK base for I has a concept expression with
role depth exponential in the size of I.

Proof Sketch. We can generalise Example 1 to the case
where we have an interpretation J that for an arbitrary
n ą 1, and for every i P t1, ¨ ¨ ¨ , nu and k P N`, there is an
x P ∆J that satisfies x P pDrk¨pi´1.AqJ where pi is the i-th
prime number. In this case, the minimal role depth of con-
cepts in any base for J must be d ě

śn
i“1 pi´1 ě 2n.

x1

A

B

r r

x2

A

B

r

r

r
x3

A

B

r

r

r

r

r
x4

B

r

x5
A,B

r

Figure 6: Description graph of an interpretation I. Let
X “ tx1, x2, x3u. For all d ă 29 we have x4 P

C p
ś

xPX GpIqxdq
I
“ pB [Drd.JqI . However, for all k ě

29, x4 R C p
ś

xPX GpIqxkq
I since x4 R pDr29.AqI .

In addition to the role depth of the concept expressions in
the base, the size of the base itself can also be exponential
in the size of the data given as input, which is a well-known
result in classical FCA (Kuznetsov 2004). The DL setting
is more challenging than classical FCA, and so, this lower
bound also holds in the problem we consider. In Section 4,
we present our definition of an ELK base for a finite inter-
pretation I and highlight cases in which the role depth is
polynomial in the size of I.

4 Adaptable Role Depth
We present in this section our main result which is our strat-
egy to construct ELK bases with adaptable role depth. To de-
fine an ELK base, we use the notion of a model-based most
specific concept (MMSC) up to a certain role depth. The
MMSC plays a key rôle in the computation of a base from a
given finite interpretation.

Definition 2. An ELK concept expression C is a model-
based most specific concept of X Ď ∆I with role depth
d ě 0 iff (1) X Ď CI , (2) C has role depth at most d,
and (3) for all ELK concept expressions D with role depth at
most d, if X Ď DI thenH |ù C Ď D.

For a given X Ď CI and a role depth d there may be
multiple MMSCs (always at least one (Borchmann, Dis-
tel, and Kriegel 2016)) but they are logically equivalent. So
we write ‘the’ MMSC of X with role depth d (in symbols
mmsc pX, I, dq), meaning a representative of such class of
concepts. As a consequence of Definition 2, if X “ H then
mmsc pX, I, dq ” K for any interpretation I and d P N.
Example 2. Consider the interpretation I in Figure 4 and let
X “ tx1, x2u. We have that mmsc pX, I, 1q is equivalent to

City [Dgovernment.Party [Dpartof.Region.

With an increasing k, the concept expression
mmsc pX, I, kq can become more and more specific.
Indeed, mmsc pX, I, 2q is equivalent to

mmsc pX, I, 1q [Dpartof.pRegion[Dcapital.Jq
which is more specific than mmsc pX, I, 1q. However, for
any k ě 2, mmsc pX, I, 2q ” mmsc pX, I, kq.

For a fixed d, a straightforward (and inefficient) way
of computing mmsc ptXu, I, dq would be conjoining ev-
ery ELK concept expression C (over NC Y NR) such that
X Ď CI and the depth of C is bounded by d. A more ele-
gant method for computing MMSCs is based on the product
of description graphs and unravelling cyclic concept expres-
sions up to a sufficient role depth.

The MMSC can be written as the concept expression ob-
tained from the product of description graphs of an interpre-
tation (Borchmann, Distel, and Kriegel 2016). Formally, if
I “ p∆I , ¨Iq is a finite interpretation, X “ tx1, . . . , xnu Ď
∆I and a d ě 0, then

mmsc ptXu, I, dq ” Cp
n
ź

i“1

GpIqxi

d q.

The interesting challenge is how to identify the smallest
d that satisfies the property: if x P mmsc pX, I, dqI , then
x P mmsc pX, I, kqI for every k ą d. In the following, we
develop a method for computing MMSCs with a role depth
that is suitable for building an ELK base of the given inter-
pretation. This method is based on the already mentioned
MVF notion, defined as follows.
Definition 3. Given a description graph G “ pV,Eq with
u P V , we define the maximum vertices from (or MVF) u in
G, denoted mvfpG, uq, as:

maxtvnumpwq | w is a walk in G starting at uu

6370

where vnumpwq is the number of distinct vertices occurring
in w. Additionally, we define the function mmvf as follows:

mmvfpGq :“ max
uPV

mvfpG, uq.

In other words, MVF measures the maximum number of
distinct vertices that a walk with a fixed starting point can
visit in the graph.
Example 3. Consider the interpretation I in Figure 4. Any
walk in the description graph of I starting at x1 will visit
at most three distinct vertices (including x1). Although
there are four vertices reachable from x1, we have that
mvfpGpIq, x1q “ 3. For the vertex x2, there are walks of
any finite length, but we visit at most three distinct vertices,
namely, x2, x4, x7, and mvfpGpIq, x2q “ 3.

For computing the MMSC up to a sufficient role depth
based on MVF we use the following notion of simulation.
Definition 4. Let G1 “ pV1, E1, L1q, G2 “ pV2, E2, L2q be
ELK description graphs and pv1, v2q P V1 ˆ V2. A relation
Z Ď V1 ˆ V2 is a simulation from pG1, v1q to pG2, v2q, if (1)
pv1, v2q P Z, (2) pw1, w2q P Z implies L1pw1q Ď L2pw2q,
and (3) pw1, w2q P Z and pw1, r, w

1
1q P E1 imply there is

w12 P V2 such that pw2, r, w
1
2q P E2 and pw11, w

1
2q P Z.

Simulations can be used to decide whether an individual
from an interpretation domain belongs to the extension of a
given concept expression.
Lemma 1 ((Borchmann, Distel, and Kriegel 2016)). Let I
be an interpretation, let C be an ELK concept expression,
and let GpCq “ pVC , EC , LCq be the ELK description graph
of C with root ρC . For every x P ∆I , there is a simulation
from pGpCq, ρCq to pGpIq, xq iff x P CI .

Lemma 1 together with other previous results is used be-
low to prove Lemma 2, which is crucial for defining the
adaptable role depth. It shows the upper bound on the re-
quired role depth of the MMSC.
Lemma 2. Let I “ p∆I , ¨Iq be a finite interpretation and
take an arbitrary X “ tx1, . . . , xnu Ď ∆I , x1 P ∆I , and
k P N. Let

d “ mvf

˜

n
ź

i“1

GpIq, px1, . . . , xnq

¸

¨mvfpGpIq, x1q.

If x1 P C p
śn

i“1 GpIq
xi

d q
I then x1 P C p

śn
i“1 GpIq

xi

k q
I .

Proof Sketch. We show in the long version (Guimarães et al.
2021) the following claim.

Claim 1. For all description graphs G “ pV,E, Lq and G1 “
pV 1, E1, L1q, all vertices v P V and v1 P V 1, and

d “ mvfpG, vq ¨mvfpG1, v1q

if there is a simulation Zd : pGv
d , vq ÞÑ pG1, v1q, then there is

a simulation Zk : pGv
k , vq ÞÑ pG1v1q for all k P N.

If k ď d, one can restrict Zd to the vertices of Gv
k , which

would be a subgraph of Gv
d . Otherwise, the intuition behind

this claim is that the pairs in Zd define a walk in G1 for each
walk in G that has length at most d´1. And if a walk in G has

length at least d ´ 1, then there is a vertex w that this walk
visits twice while the image of this walk in G1 also repeats
a vertex at the same time. This paired repetition can be used
to find a matching vertex in V 1 for each vertex of Gv

k by
recursively shortening the walk that this vertex corresponds
to if it has length d or larger.

Lemma 1 and x1 P C p
śn

i“1 GpIq
xi

d q
I imply that there

is a simulation Zd from p
śn

i“1 GpIq
xi

d , px1, . . . , xnqq to
pGpIq, x1q. Then, by Claim 1 there is a simulation Zk :
p
śn

i“1 GpIq
xi

k , px1, . . . , xnqq ÞÑ pGpIq, x1q (we just need
to take G “

śn
i“1 GpIq, G1 “ GpIq, v “ px1, . . . , xnq

and v1 “ x1). Therefore, Lemma 1 implies that x1 P
C p

śn
i“1 GpIq

xi

k q
I .

Lemma 2 shows that even for vertices that are parts of
cycles, there is a certain depth of unravellings, which we
call a fixpoint, that is guaranteed to be an upper bound.

Proposition 2 gives an intuition about how large the MVF
of a vertex in a product graph can be when compared to the
MVF of the corresponding vertices in the product’s factors.
Proposition 2. Let tGi | 1 ď i ď nu be n description
graphs such that Gi “ pVi, Ei, Liq. Also let vi P Vi. Then:

mvf

˜

n
ź

i“1

Gi, pv1, . . . , vnq

¸

ď

n
ź

i“1

mvfpGi, viq.

Proof. Let w be an arbitrary walk in
śn

i“1 Gi, pviq1ďiďn

that starts in pv1, . . . , vnq and let pw1, . . . , wnq be a ver-
tex in this walk. It follows from the definition of prod-
uct that each wi belongs to a walk in Gi that begins
in vi. Therefore, there are only mvfpGi, viq options for
each wi. Hence, there are at most

śn
i“1 mvfpGi, viq possi-

ble options for pw1, . . . , wnq. In other words, vnumpwq ď
śn

i“1 mvfpGi, viq. Since w is arbitrary, we can conclude that
mvf p

śn
i“1 Gi, pv1, . . . , vnqq ď

śn
i“1 mvfpGi, viq.

Although the MVF of a product can be exponential in
|∆I |, there are many cases in which it is linear in |∆I |. Ex-
ample 4 illustrates one such case.
Example 4. Consider the interpretation of Figure 4. The
elements x1, x3, x4, x5 and x6 never reach cycles, there-
fore, each of them can only have walks up to a fi-
nite length. Take X “ tx1, x2u. Since every walk
in GpIq starting from x1 has length at most 2, the
longest walk possible in

ś

iPt1,2u GpIq starting at node
px1, x2q is: px1, x2q, partof, px5, x7q, capital, px6, x2q. Thus
mvf

´

ś

iPt1,2u GpIq, px1, x2q
¯

“ 2. Take X “ tx1, x7u,

then mvf
´

ś

iPt1,7u GpIq, px1, x7q
¯

“ 1, since x1 and x7
do not share labels in their outgoing edges.

The observations about the MVF in Example 4 are gen-
eralised in Lemma 3 which shows a sufficient condition for
polynomial (linear) role depth.
Lemma 3. Let I “ p∆I , ¨Iq be a finite interpretation and
X “ tx1, . . . , xnu Ď ∆I . If for some 1 ď i ď n it holds
that every walk in GpIq starting at xi has length at most m
for some m P N, then mvf p

śn
i“1 GpIq, px1, . . . , xnqq ď

mvf pGpIq, xiq.

6371

Proof Sketch. As it happens in Example 4, it can be proven
that whenever there is a vertex xi for which every walk start-
ing at it has length at mostm, thenm also bounds the lengths
of the walks starting at px1, . . . xnq in

śn
i“1 GpIq.

Combining the bounds for the fixpoint and MVF given by
Lemmas 2 and 3, we can define a function that returns an
upper approximation of the fixpoint, for any subset of the
domain of an interpretation, as follows.
Definition 5. Let I “ p∆I , ¨Iq be a finite interpretation and
X “ tx1, . . . , xnu Ď ∆I . Also let

Xlim “ tx P X | Dm P N : every walk
starting at x in GpIq has length ď mu.

The function dI : Pp∆Iq ÞÑ N is defined as follows:

dI pXq “

"

d´ 1 if Xlim ‰ H

d ¨mmvfpGpIqq otherwise,

where d “ mvf p
śn

i“1 GpIq, px1, . . . , xnqq.
Next, we prove that function dI is indeed an upper bound

for the fixpoint of an MMSC. The idea sustaining Lemma 4
is that if x P X Ď ∆I and every walk in GpIq starting at x
has length at most m, then m can be used as a fixpoint depth
for the MMSC of X in I. Lemma 2 covers the cases where
vertices are the starting point of walks of any length.
Lemma 4. Let I “ p∆I , ¨Iq be a finite interpretation and
X Ď ∆I . Then, for any k P N, it holds that:

mmsc pX, I, dI pXqqI Ď mmsc pX, I, kqI .

Proof Sketch. LetX “ tx1, . . . , xnu Ď ∆I . If k ď dI pXq,
the lemma holds trivially. For k ą dI pXq we divide the
proof in two cases. First, if there is a xi P X such that
every walk in GpIq starting at xi has length at most m
for some m P N, then as stated in Lemma 3, every walk
in

śn
i“1 GpIq starting at px1, . . . , xnq has length at most

mvf p
śn

i“1 GpIq, px1, . . . , xnqq ´ 1.
In other words, even when k ą dI pXq, we have:

śn
i“1 GpIqxk “

śn
i“1 GpIqxdIpXq

, and therefore, we can ap-

ply Lemma 1 to conclude that: mmsc pX, I, dI pXqqI Ď

mmsc pX, I, kqI . Otherwise, if Xlim ‰ H, the lemma is
a direct consequence of Definition 5 and Lemma 2.

In the remaining of this paper, we write mmsc pX, Iq as
a shorthand for mmsc pX, I, dI pXqq. An important conse-
quence of Lemma 4 and the definition of MMSC is that, for
any ELK concept expression C and finite interpretation I, it
holds that CI “ mmsc

`

CI , I
˘I

.

Lemma 5. Let I “ p∆I , ¨Iq be a finite interpretation.
Then, for all ELK concept expression C it holds that:
mmsc

`

CI , I
˘I
“ CI .

Proof. Direct consequence of Lemma 4.4 (vi) of (Borch-
mann, Distel, and Kriegel 2016) and Lemma 4.

We use this result below to define a finite set of concept
expressions MI for building a base of the CIs valid in I.

Definition 6. Let I “ p∆I , ¨Iq be a finite interpretation.
The set MI is the union of tKu Y NC and

tDr.mmsc pX, Iq | r P NR and X Ď ∆I , X ‰ Hu

We also define ΛI “ t
d
U | U ĎMIu.

Building the base mostly relies on the fact that, given a
finite interpretation I, for any ELK concept expression C,
there is a concept expression D P ΛI such that CI “ DI .
Theorem 2. Let I be a finite interpretation and let ΛI be
defined as above. Then,

BpIq “tC ” mmsc
`

CI , I
˘

| C P ΛIu Y

tC Ď D | C,D P ΛI and I |ù C Ď Du

is a finite ELK base for I.

Proof Sketch. As ΛI is finite, so is BpIq. The CIs are clearly
sound and the soundness of the equivalences is due to
Lemma 5. For completeness, assume that I |ù C Ď D.
Using an adaptation of Lemma 5.8 from (Distel 2011) and
Lemma 5 above, we can prove, by induction on the struc-
ture of the concept expressions C and D, that there are
concept expressions E,F P ΛI such that BpIq |ù E ”

mmsc
`

CI , I
˘

, BpIq |ù F ” mmsc
`

DI , I
˘

, BpIq |ù C ”

mmsc
`

CI , I
˘

, and BpIq |ù D ” mmsc
`

DI , I
˘

. By con-
struction, as E Ď F P BpIq, we can prove that whenever
I |ù C Ď D, so does BpIq.

Recall the interpretation I in Figure 6. In order to com-
pute a base for I, we should compute an MMSC with role
depth at least 29. An important benefit of our approach is
that the role depth of the other MMSCs, which are part of
the mined CIs in the base may be smaller. For instance, the
role depth of mmsc ptx1u, Iq is 10. In the next section, we
show that one can compute the MVF of a vertex in a graph
in linear time in the size of the graph.

5 Computing the MVF
As discussed in Section 4, the MVF is the key to provide
an upper bound for the fixpoint for each MMSC. An easy
way to estimate the MVF would consist in computing the
number of vertices reachable from v in the description graph
G. Let reachpG, vq be such a function. By definition it holds
that mvfpG, vq ď reachpG, vq. Although reachpG, vq can be
computed in polynomial time, the difference between these
two metrics can be quite large. For instance, consider that v
is the root of a description graph G that is a binary tree with
2n nodes. Then mvfpG, vq “ n, while reachpG, vq “ 2n.

In this section, we present an algorithm to compute
mvfpG, vq that takes linear time in the size of G, but first we
need to recall some fundamental concepts from Graph The-
ory, one of them is the notion of strongly connected compo-
nents (Definition 7).
Definition 7. Let G “ pV,E, Lq be a description graph.
The strongly connected components (SCCs) of G, in symbols
SCCpGq, are the partitions V1, . . . , Vn of V such that for all
1 ď i ď n: if u, v P Vi then there is a path from u to v and
a path from v to u in G. Additionally, we define a function
sccpG, vq, which returns the SCC of G that contains v.

6372

tx1u

tx3u

tx5u tx6u tx2, x7u tx4u

Figure 7: Condensation of the description graph in Figure 4.
Every vertex is an SCC of the original graph and the edges
indicate accessibility between the SCCs. Also, the conden-
sation has no labels.

A compact way of representing a description graph G con-
sists in regarding each SCC in G as a single vertex. This
compact graph is a directed acyclic graph (DAG), also called
condensation of G (Harary, Norman, and Cartwright 1965),
and it is formalised in Definition 8.
Definition 8. Let G “ pV,E, Lq be a description graph.
The condensation of G is the directed acyclic graph G˚ “
pV ˚, E˚q where V ˚ “ tsccpG, uq | u P V u and E˚ “
tpsccpG, uq, sccpG, vqq | pu, r, vq P E and sccpG, uq ‰
sccpG, vqu. Also, if w˚ is path in G˚, the weight of w˚, in
symbols weightpG˚q, is the sum of the sizes of the SCCs that
appear as vertices of w˚.

We use these notions to link the MVF (Definition 3) to the
paths in the condensation graph in Lemma 6.
Lemma 6. Let G “ pV,E,Lq be a description graph, let
G˚ “ pV ˚, E˚q be the condensation of G, and v P V . Then:

mvfpG, vq “max tweightpw˚q |

w˚ is a path in G˚ starting at sccpG, vqu .

Proof Sketch. First we prove that every path w˚ “

V1, . . . , Vm in G˚ starting at sccpG, vq induces a walk w in
G starting at v with vnumpwq “ weightpw˚q. Then, we show
that if w˚ has maximal weight, then no walk in G starting at
v can visit more than weightpw˚q vertices.

By Lemma 6, we only need to compute the maximum
weight of a path in G˚ that starts at sccpG˚, vq to obtain the
MVF of a vertex v in a description graph G. Algorithm 1
relies on this result and proceeds as follows: first, it com-
putes the SCCs of the description graph and the condensa-
tion graph. Then, the algorithm transverses the condensation
graph, using an adaptation of depth-first search to determine
the maximum path weight for the initial SCC.

Algorithm 1 assumes that the SCCs and condensation are
computed correctly. Besides keeping the computed values,
the array wgt prevents recursive calls on SCCs that have al-
ready been processed. According to Lemma 6, to prove that
Algorithm 1 is correct we just need to prove that the function
maxWeight in fact returns the maximum weight of a path in
the condensation given a starting vertex (which corresponds
to an SCC in the original graph).
Lemma 7. Given G “ pV,E,Lq and v P V as input, Al-
gorithm 1 returns the maximum weight of a path in the con-
densation of G starting at sccpG, vq.

Proof Sketch. Let G˚ “ pV ˚, E˚q be the condensation of
G. If sccpG, vq has no successor in G˚, then the output of

Algorithm 1: Computing MVF via Lemma 6
Input: A description graph G “ pV,E,Lq and a

vertex v P V
Output: The MVF of v in G, i.e., mvfpG, vq

1 V ˚ Ð SCCpGq
2 E˚ Ð condensepG, V ˚q
3 G˚ Ð pV ˚, E˚q
4 for V 1 P V ˚ do
5 wgtrV 1s Ð null
6 return maxWeightpG˚, sccpG, vq, wgtq
// Auxiliary function

7 Function maxWeightpG˚, V 1, wgtq:
8 currentÐ 0
9 for W 1 P tU 1 P V ˚ | pV 1, U 1q P E˚u do

10 if wgtrW 1s “ null then
11 currentÐ

maxpcurrent,maxWeightpG˚,W 1, wgtqq
12 else
13 currentÐ wgtrW 1s

14 wgtrV 1s Ð current` |V 1|
15 return wgtrV 1s

maxWeight is correct. If sccpG, vq has successors, then the
maximum weight of a path staring at sccpG, vq in G˚ is given
by |sccpG, vq| plus the maximum value computed among its
successors. This equation holds because G˚ is a DAG.

Lemmas 6 and 7 imply that Algorithm 1 computes the
MVF of v in G correctly. Moreover, the computation of
SCCs can be done in time Op|V | ` |E|q (Tarjan 1972), the
condensation in time Op|E|q (Martello and Toth 1982) and
the depth-first transversal via maxWeight in time Op|V | `
|E|q. Hence, it is possible to compute the MVF of a vertex
in a graph in linear time in the size of the description graph
even if it consists solely of cycles. Yet, given an interpreta-
tion I “ p∆I , ¨Iq the graph given as input to Algorithm 1
might be a product graph with an exponential number of ver-
tices in |∆I |. Also, Algorithm 1 can be modified to compute
the MVF for all vertices by starting the function maxWeight
from an unvisited SCC until all vertices are visited in poly-
nomial time in the size of the graph.

6 Conclusion
In this work, we introduce a way of computing ELK bases
from finite interpretations that adapts the role depth of con-
cepts according to the the structure of interpretations. Our
definition relies on a notion that relates vertices in a graph
to sets of vertices, called MVF. We have also shown that the
MVF computation can be performed in polynomial time in
the size of the underlying graph structure. Our ELK base,
however, is not minimal. As future work, we plan to build
on previous results combining FCA and DLs to define a base
with minimal cardinality. We will also investigate the prob-
lem of mining CIs in the presence of noise in the dataset. We
plan to use the support and confidence measures from asso-
ciation rule mining to deal with noisy data and implement
our approach using knowledge graphs as datasets.

6373

Acknowledgements
Parts of this work have been done in the context of CEDAS
(Center for Data Science, University of Bergen, Norway).
This work was supported by the Free University of Bozen-
Bolzano, Italy, under the project PACO.

References
Baader, F. 1995. Computing a Minimal Representation of
the Subsumption Lattice of All Conjunctions of Concepts
Defined in a Terminology. In Proc. Intl. KRUSE Symposium,
168–178.
Baader, F. 2003. Terminological Cycles in a Description
Logic with Existential Restrictions. In IJCAI, 325–330.
Morgan Kaufmann.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
Envelope. In Kaelbling, L. P.; and Saffiotti, A., eds., IJCAI,
364–369. Professional Book Center.
Baader, F.; and Distel, F. 2008. A Finite Basis for the Set
of EL-Implications Holding in a Finite Model. In Medina,
R.; and Obiedkov, S., eds., ICFCA 2008, 46–61. Springer-
Verlag.
Baader, F.; Ganter, B.; Sertkaya, B.; and Sattler, U. 2007.
Completing Description Logic Knowledge Bases using For-
mal Concept Analysis. In Veloso, M. M., ed., IJCAI, 230–
235. AAAI Press.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Baader, F.; and Molitor, R. 2000. Building and Structur-
ing Description Logic Knowledge Bases Using Least Com-
mon Subsumers and Concept Analysis. In ICCS, 292–305.
Springer.
Borchmann, D. 2014. Learning Terminological Knowledge
with High Confidence from Erroneous Data. Ph.D. thesis,
Dresden University of Technology.
Borchmann, D.; and Distel, F. 2011. Mining of EL-GCIs.
In Spiliopoulou, M.; Wang, H.; Cook, D. J.; Pei, J.; Wang,
W.; Zaïane, O. R.; and Wu, X., eds., Data Mining Work-
shops (ICDMW), 2011 IEEE 11th International Conference
on, 1083–1090. IEEE Computer Society.
Borchmann, D.; Distel, F.; and Kriegel, F. 2016. Axioma-
tisation of general concept inclusions from finite interpreta-
tions. Journal of Applied Non-Classical Logics 26(1): 1–46.
Distel, F. 2011. Learning description logic knowledge bases
from data using methods from formal concept analysis.
Ph.D. thesis, Dresden University of Technology.
Ganter, B.; and Wille, R. 1999. Formal Concept Analysis:
Mathematical Foundations. Berlin/Heidelberg: Springer.
Guimarães, R.; Ozaki, A.; Persia, C.; and Sertkaya, B. 2021.
Mining ELK Bases with Adaptable Role Depth. arXiv e-
prints arXiv:2102.10689.
Harary, F.; Norman, R. Z.; and Cartwright, D. 1965.
Structural models: an introduction to the theory of di-
rected graphs. New York: John Wiley & Sons. ISBN
9780471351306.

Kriegel, F. 2019a. Constructing and Extending Description
Logic Ontologies using Methods of Formal Concept Analy-
sis. Ph.D. thesis, Technische Universität Dresden, Dresden,
Germany.
Kriegel, F. 2019b. Learning Description Logic Axioms from
Discrete Probability Distributions over Description Graphs.
In Calimeri, F.; Leone, N.; and Manna, M., eds., JELIA
2019, 399–417. Springer.
Kuznetsov, S. O. 2004. On the Intractability of Computing
the Duquenne-Guigues Base. J. UCS 10(8): 927–933.
Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas,
D.; Mendes, P. N.; Hellmann, S.; Morsey, M.; van Kleef, P.;
Auer, S.; and Bizer, C. 2015. DBpedia - A large-scale, multi-
lingual knowledge base extracted from Wikipedia. Semantic
Web 6(2): 167–195.
Martello, S.; and Toth, P. 1982. Finding a minimum equiva-
lent graph of a digraph. Networks 12(2): 89–100.
Monnin, P.; Lezoche, M.; Napoli, A.; and Coulet, A. 2017.
Using Formal Concept Analysis for Checking the Structure
of an Ontology in LOD: The Example of DBpedia. In ISMIS,
674–683. Springer.
Ozaki, A. 2020. Learning Description Logic Ontologies:
Five Approaches. Where Do They Stand? KI - Künstliche
Intelligenz .
Rudolph, S. 2004. Exploring Relational Structures Via
FLE . In Wolff, K. E.; Pfeiffer, H. D.; and Delugach, H. S.,
eds., ICCS, 196–212. Springer-Verlag.
Rudolph, S. 2006. Relational exploration: Combining De-
scription Logics and Formal Concept Analysis for knowl-
edge specification. Ph.D. thesis, Fakultät Mathematik und
Naturwissenschaften, TU Dresden, Germany.
Sertkaya, B. 2010. A Survey on how Description Logic
Ontologies Benefit from Formal Concept Analysis. In
Kryszkiewicz, M.; and Obiedkov, S., eds., CLA, volume 672
of CEUR Workshop Proceedings, 2–21.
Spackman, K.; Campbell, K.; and Cote, R. 1997. SNOMED
RT: A reference terminology for health care. J. American
Medical Informatics Association 640–644. Fall Symposium
Supplement.
Tarjan, R. 1972. Depth-First Search and Linear Graph Al-
gorithms. SIAM Journal on Computing 1(2): 146–160.

6374

