
Answering Regular Path Queries Under Approximate Semantics
in Lightweight Description Logics

Oliver Fernández Gil, Anni-Yasmin Turhan
Institute of Theoretical Computer Science, TU Dresden, Germany

{oliver.fernandez, anni-yasmin.turhan}@tu-dresden.de

Abstract

Classical regular path queries (RPQs) can be too restrictive
for some applications and answering such queries under ap-
proximate semantics to relax the query is desirable. While
for answering regular path queries over graph databases un-
der approximate semantics algorithms are available, such al-
gorithms are scarce for the ontology-mediated setting. In
this paper we extend an approach for answering RPQs over
graph databases that uses weighted transducers to approxi-
mate paths from the query in two ways. The first extension is
to answering approximate conjunctive two-way regular path
queries (C2RPQs) over graph databases and the second is to
answering C2RPQs over ELH and DL-LiteR ontologies. We
provide results on the computational complexity of the un-
derlying reasoning problems and devise approximate query
answering algorithms.

Introduction
Regular path queries (RPQs) are a well-investigated query
language that attracted much attention in research on semi-
structured data and graph databases due to its capabilities to
navigate graph-structured data (Mendelzon and Wood 1995;
Florescu, Levy, and Suciu 1998). This interest has revived in
recent years since in many application areas data is graph-
structured and represented in graph database models. RPQs
and its extensions are part of SPARQL, which is the standard
language recommended by the W3C to query RDF data. In
general, a graph database can be viewed as a labeled directed
graph, where edge labels state relations between data items.
An RPQ consists of a regular language over these labels,
and retrieves pairs of data items (a, b) that are connected
by paths complying to the specified regular language. The
extension two-way RPQs (2RPQ) can traverse graph edges
backwards and conjunctive 2RPQs (C2RPQ) allow conjunc-
tions of 2RPQs that share variables.

In scenarios where an RPQ yields no answer over a par-
ticular database, it can be useful to relax the query to retrieve
more than the classical answers, i.e., pairs that are connected
by paths that approximate those paths required by the query.
This can be practical to provide feasible alternatives in ap-
plications where data is gathered automatically from hetero-
geneous data sources and exact semantics need not yield the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expected results. Similarly, in applications where the data
is irregular and evolves in structure and content, it can be
hard for users to have full knowledge of its structure and to
formulate adequate queries. In such situations, queries that
over-approximate the set of answers can be very helpful.

Several approaches have been investigated to address ap-
proximate semantics for RPQs, as for instance, (Jagadish,
Mendelzon, and Milo 1995; Kanza and Sagiv 2001; Grahne
and Thomo 2006; Poulovassilis, Selmer, and Wood 2016).
In particular, (Grahne and Thomo 2006) proposes a tractable
solution that uses weighted finite-state transducers (WFTs)
to define the approximate semantics. Intuitively, such a
transducer transforms input words into corresponding out-
put words, and computes a weight quantifying the cost of
this so-called distortion operation. The idea for RPQs is that
a transducer specifies (i) which paths are allowed as dis-
tortions of the “ideal” paths required by the query, and (ii)
the corresponding distortion costs. Approximate answers are
then tuples (a, b, η), where η is the cost of distorting a path
satisfying the query into one leading from a to b in the data.

Path queries have also been investigated in the setting of
ontology-mediated query answering (OMQA), in which se-
mantic knowledge provided in an ontology is used to enrich
the data (Poggi et al. 2008; Bienvenu and Ortiz 2015). In
contrast to query answering over (graph) databases, OMQA
usually adopts the open world assumption by computing cer-
tain answers, which are answers that hold in all possible
models of the ontology and the data. Ontologies are often
formulated in Description Logics (DLs), which are a well-
investigated family of fragments of first-order logic that can
be used to represent the conceptual knowledge of an appli-
cation domain in a structured and formal way (Baader et al.
2003, 2017). Answering C2RPQs has been studied for very
expressive DLs (Calvanese, Eiter, and Ortiz 2014), and for
families of lightweight DLs (Calvanese et al. 2007; Bien-
venu, Ortiz, and Simkus 2015; Stefanoni et al. 2014). How-
ever, approaches for query answering under approximate se-
mantics in the OMQA setting are scarce. There is prior work
on the simple case of instance queries (Ecke, Peñaloza, and
Turhan 2015) and on C2RPQs in the restricted setting of
acyclic ontologies formulated in a fragment of RDFs (Poulo-
vassilis, Selmer, and Wood 2016).

The goal of this paper is to define approximate semantics
for C2RPQs in DLs and to devise computation algorithms

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

6340

for answering them in the DLs ELH and DL-LiteR. These
two DLs are part of the EL (Baader, Brandt, and Lutz 2005)
and DL-Lite (Calvanese et al. 2007) families of DLs, which
underlie the OWL 2 EL and OWL 2 QL profiles.1 As ap-
proximation mechanism we adopt the transducer-based ap-
proach provided by (Grahne and Thomo 2006) since, on the
one hand, it yields a tractable approximate query answering
problem, whereas the solutions proposed by (Kanza and Sa-
giv 2001) and (Jagadish, Mendelzon, and Milo 1995) have
intractable and undecidable query answering problems, re-
spectively. On the other hand, WFTs are a preferred tool
to define transformations of regular languages, that can ad-
ditionally compute weights to express how costly (likely,
etc...) these transformations are. Since RPQs can be defined
by non-deterministic finite automata (NFAs) and WFTs are
essentially NFAs with output (and weights), WFTs are thus
a natural choice to provide approximate semantics for RPQs.
In fact, (Poulovassilis, Selmer, and Wood 2016) already mo-
tivates (and gives positive results for) the use of WFTs to
define approximate semantics for the OMQA setting. They
use the word edit distance as approximation tool, which can
be expressed using a WFT.

Our contributions are 1) to extend the transducer-based
approximate semantics from RPQs to the more general
query language of C2RPQs in the graph database setting;
2) to define approximate semantics for answering C2RPQs
over DL ontologies. We define the notion of certain approx-
imate answers as a generalization of the classical certain an-
swers; 3) to investigate two reasoning problems for certain
approximate answers: a) the “τ -entailment” problem which
asks, given a threshold value µ and a tuple ā, is ā a certain
approximate answer with approximation cost of at most µ?,
and b) the computation problem for the exact approximation
cost of ā. For 2RPQs, we show that τ -entailment is in NL
(PTime) in data (combined) complexity for DL-LiteR, and
in PTime for ELH. As for C2RPQs, the problem can be de-
cided in PTime (PSpace) in data (combined) complexity for
both DLs. Finally, the computational problem can be solved
in PTime for 2RPQs, and PTime (ExpTime) for C2RPQs in
data (combined) complexity. Except for the data complex-
ity of C2RPQs in DL-LiteR, all our upper bounds match
the lower bounds inherited from the classical semantics, pre-
sented in (Bienvenu, Ortiz, and Simkus 2015).

Due to space restrictions, we give the full proofs of the
results in the accompanying technical report (Fernández Gil
and Turhan 2020).

Preliminaries
The Description Logics ELH and DL-LiteR
We introduce the syntax and semantics of the DLs ELH and
DL-LiteR and notions relevant for query answering.

Syntax and Semantics. Let NC, NR and NI be countable
sets of concept, role and individuals names, respectively.
The set CEL of EL concept descriptions is built inductively
from NC using the concept constructors conjunction (CuD),
existential restriction (∃r.C), and top (>), according to the

1see https://www.w3.org/TR/owl2-profiles/

rule: C ::= > | A | C u C | ∃r.C, where A ∈ NC, r ∈ NR

and C ∈ CEL.
In DL-Lite, two additional constructors are available: in-

verse role (r−) and negation (¬). Complex concepts and
roles are built according to the rules: B ::= A | ∃P ; C ::=
B | ¬B; P ::= r | r−; S ::= P | ¬P . We call concepts
(roles) of the form B (P) basic and of the form C (S) gen-
eral. We define N−R := {r− | r∈NR}, N±R :=NR ∪ N−R , and
write P− for P−=r if P =r− and P−=r− if P =r.

A DL knowledge base (KB) is a pair K = (T ,A) con-
sisting of a TBox T and an ABox A. A TBox is a finite
set of inclusions, which can be of two types, either general
concept inclusions (GCIs) or role inclusions (RIs), and their
forms vary according to the DL in use. In EL, inclusions are
GCIs of the form C v D where C,D ∈ CEL. In DL-Lite
GCIs have the form B v C, where B and C are as above.
The DLs ELH and DL-LiteR are the extensions of EL and
DL-Lite additionally allowing in the TBox RIs of the form
r v s and P v S, respectively, where r, s ∈ NR and P, S
are as above. An ABox A is a finite set of assertions of the
form A(a) (concept assertion) and r(a, b) (role assertion),
where A ∈ NC, r ∈ NR and a, b ∈ NI. We denote as Ind(A)
the set of individuals occurring in A.

The semantics for EL and DL-Lite is given by means
of first-order logic interpretations. An interpretation I =
(∆I , .I) consists of a non-empty domain ∆I and an inter-
pretation function .I that maps each A ∈ NC to AI ⊆ ∆I ,
each r ∈ NR to rI ⊆ ∆I×∆I and each a ∈ NI to aI ∈ ∆I .
The function .I is inductively extended to arbitrary roles and
concepts in the following way:2

>I :=∆I , (C uD)I :=CI ∩DI , ¬BI :=∆I \B,
¬P I :=(∆I×∆I)\P I , (r−)I :={(x, y) |(y, x) ∈ rI},
(∃r.C)I := {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}.

An interpretation I satisfies an inclusionGvH ifGI⊆HI ,
and an assertion A(a) (r(a, b)) if aI ∈ AI ((aI , bI) ∈ rI).
An interpretation is a model of T if it satisfies all inclusions
in T , a model of A if it satisfies all assertions in A, and a
model of K = (T ,A) if it satisfies T and A. A KB K is
satisfiable if it has at least one model. We write I |= X to
denote that I is a model of X ∈{T ,A,K}. Finally, let α be
an inclusion or an ABox assertion, we say that X entails α
(denoted as X |=α) if I satisfies α for all models I of X .

We assume that ELH TBoxes are in normal form, i.e., all
its GCIs are of one of the following forms: A v B, A1 u
A2 v B, A v ∃r.B or ∃r.A v B, where A,B,A1, A2 ∈
NC ∪ {>}. This is without loss of generality by results
shown in (Baader, Brandt, and Lutz 2005). Last, we denote
as sig(T) the signature of T , and as CT the set NC ∩ sig(T)
if T is an ELH TBox, or (NC ∩ sig(T)) ∪ {∃r, ∃r− | r ∈
NR ∩ sig(T)} if T is a DL-LiteR TBox.

Canonical Models. We recall the definition of the canon-
ical model of an ELH or a DL-LiteR KB, as presented in
(Bienvenu, Ortiz, and Simkus 2015). The canonical model
UK = (∆UK , ·UK) of an ELH or a DL-LiteR KB K =
(T ,A) has domain ∆UK , which consists of sequences e of

2The constructor ∃P is an abbreviation for ∃P.>.

6341

the form aP1C1 . . . PnCn (n ≥ 0), where a ∈ Ind(A),
Pi ∈ N±R and Ci is a concept. For ELH, each role Pi is
of the form ri ∈ NR and each concept Ci is a concept name
Ai ∈ NC. In addition, e is required to satisfy:
• K |= ∃r1.A1(a), if n ≥ 1, and
• T |= Ai v ∃ri+1.Ai+1, for all 1 ≤ i < n.

As for DL-LiteR, each Ci is of the form ∃P−i and e must
fulfill the following conditions:
• K |= ∃P1(a), if n ≥ 1, and

• T |= ∃P−i v ∃Pi+1, for all 1 ≤ i < n.

It remains to fix the interpretation function ·UK of UK. Given
e ∈ ∆UK , tail(e) denotes the final concept Cn in e, i.e.,
either An or ∃P−n . Then, ·UK is defined as follows:
• AUK := {a ∈ Ind(A) | K |= A(a)} ∪

{e ∈ ∆UK \ Ind(A) | T |= tail(e) v A},
• rUK := {(a, b) | K |= r(a, b)} ∪
{(e, ePC) | T |= P v r} ∪{(ePC, e) | T |= P v r−},

• aUK := a, for all a ∈ Ind(A).
Notice that UK consists of a sub-structure representing A
and of (possibly infinite) trees rooted at each a ∈ Ind(A)
containing anonymous individuals. Given e, e′ ∈ ∆UK , Te
denotes the subtree rooted at e in UK and e′ ∈ Te means
that e′ is an element in Te. An important property of UK is
that if e, e′ ∈ ∆UK \ Ind(A) and tail(e) = tail(e′), then Te
and Te′ are isomorphic. Further, the depth d(e) of e in UK is
defined as 0 if e ∈ Ind(A) and as d(e′) + 1 if e = e′PC.
Finally, T(UK) denotes the set of tails of UK. Notice that this
set consists of elements A or ∃P− occurring in T .

Regular Path Queries
We introduce conjunctive two-way regular path queries and
some of its sublanguages for which we define approximate
semantics later on. Regular path queries are defined using
regular languages, represented either by a regular expres-
sion (r.e.) or a non-deterministic finite automaton. Since
our complexity results (provided in later sections) consist
of upper bounds, and r.e. can be polynomially translated
into equivalent NFAs, we adopt without loss of general-
ity the NFA representation. As usual, an NFA R is a tuple
R = (QR,Σ, δR, IR, FR) and L(R) denotes the regular
language defined by R.

A conjunctive two-way regular path query is of the form
q(x̄) = ∃ȳ.ϕ(x̄, ȳ), where x̄, ȳ are disjoint tuples of vari-
ables, and ϕ(x̄, ȳ) is a conjunction of atoms of the formA(t)
and R(t, t′), where A∈NC, t, t′ ∈ x̄ ∪ ȳ ∪ NI, and R is an
NFA with Σ a finite subset of N±R ∪ {A? | A ∈ NC}. Vari-
ables and individuals are called terms. Variables in x̄ are the
answer variables and those in ȳ are the quantified variables
of q. We denote the sets of terms, variables, answer variables
and quantified variables of q as terms(q), vars(q), avars(q)
and qvars(q), respectively. If avars(q) = ∅, q is a Boolean
query. We sometimes write at∈q to refer to an atom at of q,
and ∧pj=1Rj(tj , t

′
j) to denote a C2RPQ with p atoms.

We consider two sublanguages of C2RPQs. Two-way reg-
ular path queries are of the form q(x, z) = R(x, z), where

x, z∈ avars(q). Regular path queries are the special case of
2RPQs that do not use symbols from N−R .

Next we define the semantics of C2RPQs. Let I =
(∆I , .I) be an interpretation and d, d′ ∈ ∆I . A path π from
d to d′ in I is a sequence d0u1d1u2d2 . . . umdm such that
m ≥ 0, d0 = d, dm = d′ and for all 1 ≤ j ≤ m:
• dj ∈ ∆I and uj ∈ N±R ∪ {A? | A ∈ NC},
• uj = A? implies dj−1 = dj and dj ∈ AI , and

• uj ∈ N±R implies (dj−1, dj) ∈ (uj)
I .

The label of π is defined as `(π) := u1 . . . um if m > 0,
and as the empty word ε if π = d0. We write d I,u−−→ d′ to
state that there is a path from d to d′ with label u in I. For
π = d0, we simply write d0

I,ε−−→ d0. A match for a C2RPQ
q in I is a mapping h : terms(q)→ ∆I such that:
• h(a) = aI for all a ∈ terms(q) ∩ NI,
• h(t) ∈ AI for all A(t) ∈ q, and
• for all R(t, t′) ∈ q: ∃u ∈ L(R) such that h(t) I,u−−→h(t′).
Given a KB K = (T ,A) and a C2RPQ q with answer vari-
ables x1, . . . , xk, a tuple of individual names (a1, . . . , ak)
from Ind(A) is a certain answer of q w.r.t. K if for each
model I ofK there is a match h for q in I such that h(xi) =
aIi . The set of certain answers of q w.r.t. K is denoted as
cert(q,K). If q is a Boolean query, then cert(q,K) = {()},
if q has a match in every model of K. Due to the semantics,
atoms A(t) are equivalent to A?(t, t) and we can assume
w.l.o.g. that C2RPQs have only atoms of the form R(t, t′).

An important result shown in (Bienvenu, Ortiz, and
Simkus 2015), for DL-LiteR and ELH, is that the set
cert(q,K) can be characterized by only considering matches
of q in the canonical model UK.
Lemma 1. Let K = (T ,A) be an ELH or a satisfiable
DL-LiteR KB, q(x̄) a C2RPQ of arity k and ā a k-tuple of
individuals fromA. Then, ā ∈ cert(q,K) iff there is a match
h for q in UK such that h(x̄) = ā.

We have defined the semantics of C2RPQs over DL KBs,
but initially these were defined over graph databases. Both,
DL interpretations and basic forms of graph databases can be
seen as relational structures over (unary and) binary predi-
cates (Consens and Mendelzon 1990). For the rest of the
paper we consider graph databases as finite DL interpre-
tations (see (Fernández Gil and Turhan 2020) for a formal
correspondence between the two notions). The semantics of
C2RPQs over graph databases adopt the closed world as-
sumption, i.e., answers to a C2RPQ q are simply matches in
the graph database IG . In this setting, NI is ∆IG and aIG = a
for all a ∈ ∆IG . We denote by ans(q, IG) the set of answers
of q in IG .

Approximate Semantics for Path Queries
Our approximate semantics for RPQs over DL KBs extends
those of RPQs over graph databases proposed in (Grahne
and Thomo 2006). We recall their original transducer-based
approach for RPQs over graph databases, and extend it to an-
swering C2RPQs under approximate semantics over graph
databases, which are then in turn extended to approximate
semantics for answering C2RPQs over DL KBs.

6342

R :

s0 s1

s2

u1

v1 u1

u2
T :

t0

t1

t2

t3

u1, u1, 0

u1, v2
, 3

ε, v
1 , 2

u
2 , ε, 1

v1 , v2 , 1 u1, u1, 0

IG :
a b

c

d
v2

v2

v1

u1

Figure 1: NFA R, dT T, and graph DB IG from Example 1.

Approximate Semantics for RPQs
In general, weighted transducers are defined for arbitrary
semirings (Mehryar 2004), while the ones used in (Grahne
and Thomo 2006) are defined over the tropical semiring (Si-
mon 1978). We refer to these as distortion transducers.
Definition 1. A distortion transducer (dT) is a tuple T =
(Σ, Q, δ, I, F) where Q is a finite set of states, Σ is a fi-
nite input/output alphabet, I, F ⊆ Q are the sets of ini-
tial and final states, respectively. The transition relation is
δ ⊆ Q × Σ ∪ {ε} × Σ ∪ {ε} × N × Q. Given a dT T =
(Σ, Q, δ, I, F), a run of T on a word u ∈ Σ∗ is a sequence
of tuples ρ=(q1, u1, v1, w1, q2), . . . , (qn, un, vn, wn, qn+1)
such that u = u1 . . . un, q1 ∈ I , qn+1 ∈ F , and each
(qi, ui, vi, wi, qi+1) ∈ δ (for i ≤ n). The weight of the
run ρ is wt(ρ) := w1 + . . . + wn. A run ρ distorts u into
v = v1 . . . vn with cost wt(ρ). Let R(T, u, v) be the set of
all pairs (ρ, wt(ρ)) such that ρ is a run of T distorting u into
v. The cost of distorting u into v through T is defined as:3

cT(u, v) := min{wt(ρ) |(ρ, wt(ρ))∈R(T, u, v)}.
We illustrate the idea from (Grahne and Thomo 2006) of

how to use a distortion transducer to model “acceptable” dis-
tortions of the words required by an RPQ atom and the cor-
responding distortion cost, by the following example.
Example 1. Figure 1 depicts an NFA R with L(R) =
{u1u

∗
2} ∪ {v1u1u

∗
2}, a dT T, and a graph database IG . One

can see that, querying IG through the RPQ q(x, z) defined
by R yields ans(q, IG) = {(c, d)}. By using T “in between”
R and IG , the set ans(q, IG) can be (over) approximated.
For instance, T states that v2 is an allowed distortion of the
word u1u2 and the use of this distortion is “penalized” with
cost 4. Then, since u1u2 ∈ L(R) and a path with label v2

connects a to b in IG , instead of dismissing (a, b) as an an-
swer one can now obtain it as an approximate answer with
cost 4. The tuple (a, d) admits two distortions: v1u1 into
v2u1 with costs 1 and u1 into v2v1 with costs 5. In this case,
the smallest distortion cost gives the distortion cost of (a, d).
Since T gives no way to distort a word in L(R) into v1, the
tuple (b, d) is an approximate answer with distortion cost∞.

Based on this idea, we introduce approximate answers for
RPQs formally.4 Given an RPQ q(x, z) = R(x, z) and a

3The minimum of the empty set is defined as ∞.
4(Grahne and Thomo 2006) do not cover symbols such as A?.

graph database IG . The set of approximate answers of q in
IG , through a dT T with Σ ⊆ NR, is defined as:

ãnsT(q, IG) :=
{

(a, b, ηa,b) | a, b ∈ ∆IG and

ηa,b = min{cT(u, v) | u ∈ L(R) ∧ a IG ,v−−−→ b}
}
.

(1)

We say that (a, b) is an approximate answer with distortion
cost ηa,b. In Example 1 approximate answers with η < ∞
are the tuples (c, d, 0), (a, d, 1), (a, b, 4), and (a, c, 4).

In principle, the approach allows to relax and/or restrain
the classical semantics of RPQs. Intuitively, a relaxation
would preserve classical answers of q in IG (with cost 0)
in the approximation. To achieve this, it suffices to add to
T a state t′0 that is initial and final with neutral transitions
(t′0, u, u, 0, t

′
0) for all u ∈ Σ (Grahne and Thomo 2006).

Moreover, the approach can implement a variety of approx-
imations. For instance, one can use ε-transitions to build
transducers whose distortion costs correspond to the word
edit distance, see (Poulovassilis, Selmer, and Wood 2016).

Approximate Semantics for C2RPQs
As for RPQs, we define the approximate answers of a
C2RPQ q of arity k as pairs of the form (ā, ηā), where ā is a
k-tuple of elements in ∆IG and ηā is the approximation cost
for ā. Intuitively, ηā expresses “how distant” ā is to be an
answer of q in IG . In contrast to RPQs, C2RPQs may con-
tain symbols from N−R , quantified variables and more than
one atom. The use of inverse roles in the NFA simply means
for the approximate semantics, to use them in the dT as well.
However, the two last differences require adaptations in the
definition of ηā given for RPQs in Equation (1).

First, we take into account the quantified variables by con-
sidering all possible mappings h : terms(q)→ ∆IG such that
h(x̄) = ā. For each such mapping we define an approxima-
tion cost hc that measures how distant h is to be a match for
q in IG . The lowest such cost hc of a mapping is then the
cost value ηā in (ā, ηā). Second, the value hc is obtained by:
i) computing for each Rj(tj , t

′
j) ∈ q the distortion cost ηj of

the pair (h(tj), h(t′j)) using (1), and ii) combining all these
values into hc using an appropriate function.

Which combining function is appropriate depends highly
on the application at hand. We deliberately treat such a func-
tion as a parameter of the approximation formalism, so that
our approximation semantics is flexible enough to accom-
modate the needs of different applications. Namely, a func-
tion f : (N ∪ {∞})p → N ∪ {∞} is a p-ary combining
function if it is monotonic,

• commutative, i.e., f(c1, . . . , cp) = f(cσ(1), . . . , cσ(p)),
where σ is any permutation of the indices 1 . . . p, and

• zero closed, i.e., f(c1, . . . , cp) = 0 if ci = 0 (1 ≤ i ≤ p).

Commutativity of f ensures that the order of atoms in q
does not influence the value of hc, whereas zero closed-
ness implies hc = 0 if h is a classical match. For efficiency
reasons, we restrict our attention to polynomial time com-
putable functions, e.g. the sum, minimum and maximum.

We now define the notion of approximate match for a
C2RPQ q in an interpretation I. An approximate match hq,IT,f

6343

for q in I, through a dT T and combining function f , is a pair
hq,IT,f = (h, hc) where h : terms(q)→ ∆I is a mapping s.t.:

• h(a) = aI for all a ∈ terms(q) ∩ NI; and
• the approximation cost hc ∈ N ∪ {∞} is defined as

hc := f
R(t,t′)∈q

min
{
cT(u, v) |u ∈ L(R) ∧ h(t) I,v−−→h(t′)

}
.

For C2RPQs, approximate answers need to take into account
all of the approximate matches. For an arbitrary k-tuple ā of
elements in ∆I , we denote by Hq,I

T,f (ā) the set of approx-
imate matches satisfying h(x̄) = ā. We are now ready to
extend the notion of approximate answer to C2RPQs.
Definition 2. Let q be a C2RPQ with p atoms, IG a graph
database, T a dT with Σ ⊆ N±R ∪ {A? | A ∈ NC} and
f a p-ary combining function. Then, the set of approximate
answers of q in IG , through T and f , is defined as:

ãnsT,f(q, IG) :=
{

(ā, ηā) | ā ∈ ∆IG and

ηā = min{hc | (h, hc) ∈ Hq,IG
T,f (ā)}

}
.

We say that ā is an approximate answer with approxima-
tion cost ηā. This definition is an extension of the approxi-
mate semantics for RPQs, in the following sense: if f is the
identity function id , both give the same results. Since 2RPQs
(like RPQs) consist of one atom, we assume from now on
that f = id when considering 2RPQs. Moreover, requiring f
to be zero closed ensures that as for RPQs, relaxation would
preserve classical answers of C2RPQs by modifying T by a
new state as explained above.

Approximate Semantics over DL KBs
Classical query answering over graph databases adopts the
closed world assumption and regards one model, while over
KBs it adopts the open world assumption and regards all
models by computing the certain answers. Our approximate
semantics that extends the classical one pursuits this idea.

In order to get the certain approximate answers to
C2RPQs, the approximate semantics uses an upper bound
on the approximation costs that holds w.r.t. all models. More
precisely, an answer tuple ā of ABox individuals incurs in
each model a certain (minimal) cost for the combination of
the distortions of the query atoms. The most costly of these
approximations supplies an upper bound on the approxima-
tion costs ηā for this tuple over all models.
Definition 3. Let K = (T ,A) be a knowledge base and
q(x̄) a C2RPQ with p atoms. The set of certain approximate
answers of q w.r.t. K, through a dT T with Σ ⊆ N±R ∪ {A? |
A ∈ NC} and a p-ary combining function f , is defined as:

c̃ertT,f(q,K) :=
{

(ā, ηā) | ā ∈ Ind(A) and

ηā = sup
I|=K
{min {hc | (h, hc) ∈ Hq,I

T,f (āI)}}
}
.

Similarly to cert(q,K), in ELH and DL-LiteR the set
c̃ertT,f(q,K) can be characterized by considering approxi-
mate matches in the canonical model UK only. The follow-
ing lemma generalizes the result in Lemma 1.

t0 t2

t1

t3

t4
Tex:

h-p, h
-p, 0

h-p, i-p-o−−−, 1 ε, ε, 0

h-p, h-p, 0 M?,M?, 0

h-p, h-p, 0
ε, ε, 0
M?,M?, 0

h-p, h-c, 3

h-p, h-c, 2

a b : Car

Aex(IGex):
h-c

c d : CarFleet e
i-p-o h-p

f g : Car l : Motor
h-p h-c

Figure 2: The dT Tex and ABox Aex.

classical s. approximate s. (f = +)

IGex ∅ {((f, l), 2), ((g, l), 3),
((f, g), 5), ((g, f), 5)}

Kex {(a, b), (b, a), (f, g),
(g, f), (f, l), (g, l)}

S ∪
{((d, c), 1), ((c, d), 1)}

Table 1: Answers to qex from Example 2.

Lemma 2. Let K = (T ,A) be an ELH or a satisfiable
DL-LiteR KB, q(x̄) a C2RPQ with p atoms, T a dT and f
a p-ary combining function. Then, (ā, ηā) ∈ c̃ertT,f(q,K)

iff ηā = min{hc | (h, hc) ∈ Hq,UK
T,f (ā)}.

We illustrate the effects of using classical vs. approximate
semantics in the graph database vs. the OMQA settings.
Example 2. Consider L(R1) = has-part+ and L(R2) =
has-part∗, the C2RPQ qex(x, y) = R1(x, z) ∧ R2(y, z) ∧
Motor?(z) and the KB Kex = (Tex,Aex), with:
Tex= {∃is-part-of.CarFleet v Car,

Car v ∃has-part.Motor, has-component v has-part}.
The ABox Aex and the employed dT Tex are depicted in
Figure 2 with names abbreviated. The graph database IGex
is defined by viewing Aex as an interpretation. The sets of
answers to qex over IGex vs. Kex and under classical vs.
approximate semantics are collected in Table 1, where the
set S := {((o1, o2), 0) | (o1, o2)∈cert(qex,Kex)}.5

While querying IGex under classical semantics returns
no answer, the approximation through Tex yields several
approximate answers with cost < ∞. For example, to
obtain ((f, g), 5), all possible mappings h of the quanti-
fied variable z are considered and the distortion costs of
(h(x), h(z)), (h(y), h(z)) and (h(z), h(z)) are computed
and combined. For instance, by considering h(z) = l the
corresponding distortion costs (in the same order) are:
• 2 by transforming h-p h-p into h-p h-c, 3 by transforming
h-p into h-c, and 0 since h(z) = l is an instance of Motor
and Tex has a neutral transition for the symbol Motor.
5Approximate answers with infinite cost and answers where

both answer variables are mapped to one individual are omitted.

6344

Combining these values with f = + yields the approxima-
tion cost 5, and one can verify that no other mapping for z
yields a combined cost smaller than 5.

When switching to the OMQA setting, the axioms in Tex
provide information that is not stated in Aex. This results
in new classical answers of qex w.r.t. Kex as noted in Ta-
ble 1, but it can also enable new distortions that incur better
approximation costs for some tuples. For instance, for the
tuple (d, c) we have that ((d, c),∞) ∈ ãnsTex,f(q, IGex).
However, the knowledge stated in Kex gives the following:

• the first GCI in Tex implies that c is an instance of Car,
which then implies (by the second GCI) that c has an
anonymous (has-part)-successor o which is a Motor.

Then, if z is mapped to o, the only atom in qex not satisfied
under classical semantics is R1(x, z). This atom is approx-
imated using Tex, by transforming h-p h-p into i-p-o− h-p
which has distortion cost 1, and thus ((d, c), 1) is an approx-
imate certain answer of q w.r.t. Kex.

We now state the reasoning problems to be investigated in
the next sections. The τ -entailment decision problem asks,
given a KB K, a dT T, a C2RPQ q, a combining function
f , a tuple ā and a threshold value µ ∈ N, whether ā is a
certain approximate answer of q w.r.t. K, f , and T with ap-
proximation cost ηā ≤ µ. In addition, we consider the cost
computation problem, which consists of computing ηā. To
measure the computational complexity of these problems,
we consider the usual measures of combined and data com-
plexity (Vardi 1982). The combined complexity is calculated
by considering K,T, q, ā and µ as inputs, whereas the data
complexity takes only A as input and assumes that all other
parameters are fixed. Further, we assume that µ and all num-
bers in T are encoded in binary.

Answering Approximate 2RPQs
(Grahne and Thomo 2006) provide a polynomial time algo-
rithm to answer RPQs under approximate semantics, which
amounts to finding the shortest path in a weighted graph ob-
tained from the Cartesian product of the query’s NFA, the
distortion transducer, and the queried database. Based on
Lemma 2, we lift this approach to the OMQA setting by
using UK instead of just the data in the ABox.

Definition 4. Let K be an ELH or a DL-LiteR knowl-
edge base. Further, let R(x, z) be a 2RPQ with R =
(QR,Σ, δR, IR, FR) and T = (QT,Σ, δT, IT, FT) a dT,
where Σ ⊆ N±R ∪ {A? | A ∈ NC}. The weighted graph
GR×T×UK is a tuple (V,E) where:

• V := QR ×QT ×∆UK is the set of vertices, and
• E ⊆ V × N × V is a set of weighted edges such that

((s, t, e), w, (s′, t′, e′)) ∈ E iff its components satisfy one
of the following set of conditions:
– (s, u, s′)∈δR, (t, u, v, w, t′) ∈ δT and e UK,v−−−→ e′.
– s = s′, (t, ε, v, w, t′) ∈ δT and e UK,v−−−→ e′.

A path π in GR×T×UK is a sequence v1w1v2 . . . wn−1vn
where (vi, wi,vi+1) ∈ E for all 1 ≤ i < n. The cost c(π) of
π is the sum of all its weights.

For simplicity, we use GUK to refer to GR×T×UK . The
following lemma uses GUK to characterize c̃ertT(q,K).

Lemma 3. Let K = (T ,A) be an ELH or a satisfiable
DL-LiteR KB, q(x, z) = R(x, z) a 2RPQ, T a dT, and a, b ∈
Ind(A). Then, (a, b, η) ∈ c̃ertT(q,K) iff the smallest cost of
a path in GUK from a vertex (s0, t0, a) to a vertex (sf , tf , b)
is η, where s0∈IR, t0∈IT, sf ∈FR, and tf ∈FT.

Since UK may be infinite, we cannot use GUK directly
to obtain algorithms to decide τ -entailment or to compute
c̃ertT(q,K). To overcome this, we extend the idea used
in (Bienvenu, Ortiz, and Simkus 2015) to decide whether
(a, b) ∈ cert(q,K), which applies a symbolic computation to
solve a reachability problem in the (infinite) graph GR×UK .

Deciding τ -entailment
We start by introducing the notion of an e-path in GUK .

Definition 5. Let e ∈ ∆UK . An e-path in GUK is a path of
the form (s, t, e) γ (s′, t′, e) such that:

• γ ∈ N implies e ∈ ∆UK \ Ind(A), and
• γ only visits vertices (s′′, t′′, e′) such that e′ ∈ ∆UK \
Ind(A) and e′ ∈ Te.

Notice that an e-path may visit more than two vertices of the
form (, , e) if e ∈ ∆UK \ Ind(A), but not if e ∈ Ind(A).

Now, any given path π of the form (s, t, a) . . . (s′, t′, b) in
GUK with a, b ∈ Ind(A), can be decomposed as follows:

(s1, t1, a1) γ1 (s2, t2, a2) γ2 . . . γn−1 (sn, tn, an)

where n ≥ 1, s1 = s, t1 = t, sn = s′, tn = t′, ai ∈ Ind(A),
a1 =a, an=b, and for all γi either i) γi ∈ N, or ii) ai = ai+1

and (si, ti, ai) γi (si+1, ti+1, ai) is an ai-path.
We use this decomposition in Algorithm 1 to decide

τ -entailment. More precisely, the algorithm guesses a
sequence of vertices (s0, t0, a) . . . (s`, t`, b) where s0, t0
(s`, t`) are initial (final) states in R and T. For each
pair ((si, ti, ai), (si+1, ti+1, ai+1)), it guesses whether
(si, ti, ai) γi (si+1, ti+1, ai+1) shall be an edge or an ai-
path in GUK forced by a concept B ∈ CT (lines 6 and 8).
If an edge is chosen, its weight w is added to the cost c of
the path guessed so far. Otherwise, c is incremented with the
minimal cost of an ai-path of such a form. This cost is stored
in the table sp in entries of the form [(s, t), (s′, t′), B].

To obtain sp we exploit that an a-path has the form:

(s, t, a) w1 (s1, t1, aPC) γ (s2, t2, aPC) w2 (s′, t′, a)

where (s1, t1, aPC)γ(s2, t2, aPC) is an aPC-path. Hence,
to compute sp, it is enough to know the minimal cost of
such an aPC-path. To this end, we use an additional table
spa with entries of the form [(s, t), (s′, t′), C] where C ∈
T(UK). Such an entry contains the minimal cost of an e-path
(s, t, e) . . . (s′, t′, e), where e∈∆UK \ Ind(A) and tail(e) =
C. The tables sp and spa can be seen as generalizations of
the tables ALoopα and Loopα from (Bienvenu, Ortiz, and
Simkus 2015), which store just whether the corresponding
paths exist or not. In (Fernández Gil and Turhan 2020), we
formally show how to extend the computation of ALoopα
and Loopα to correctly compute sp and spa . Once we know

6345

Algorithm 1 Answering 2RPQs under approx. semantics.
Input:K=(T ,A), T, q=R(x, z), a, b∈ Ind(A) and µ ∈ N.
Output: yes iff (a, b, ηa,b) ∈ c̃ertT(q,K) and ηa,b ≤ µ.

1: if K is unsatisfiable then return yes;
2: i := 1; n := |QR| · |QT| · |A|; c := 0;
3: (s, t, d) :=(s0, t0, a); F :={(s, t, b) | (s, t)∈FR×FT};
4: while i < n and c ≤ µ and (s, t, d) 6∈ F do
5: guess (s′, t′, d′) ∈ QR ×QT × Ind(A);
6: non-det. choose (s, t, d) w (s′, t′, d′) in GUK
7: if there is no such edge then w =∞;
8: or choose B ∈ CT
9: if d=d′ and K|=B(d) then

10: w := sp[(s, t), (s′, t′), B] else w :=∞;
11: c := c+ w; (s, t, d) := (s′, t′, d′); i := i+ 1;
12: return yes iff c ≤ µ and (s, t, d) ∈ F .

that spa and sp contain the intended values, it is not hard to
see that Algorithm 1 is correct.

Satisfiability tests of a KB and entailment checks used
for the non-deterministic choices are in PTime for ELH
(Baader, Brandt, and Lutz 2005) and in NL for DL-LiteR
(Calvanese et al. 2007). The tables sp and spa can be com-
puted in polynomial time in the size of the whole input,
and in constant time in the size of A. Hence, Algorithm 1
runs in polynomial time, and in non-deterministic logarith-
mic space in the size of A for DL-LiteR (n, i, c are encoded
in binary). Finally, it is not hard to transform Algorithm 1
into a polynomial time algorithm (called Algorithm 1c), that
uses Dijkstra’s shortest path algorithm to compute the set
c̃ertT(q,K). All the details are provided in (Fernández Gil
and Turhan 2020). Thus, together with the lower bounds pre-
sented in (Bienvenu, Ortiz, and Simkus 2015) for the classi-
cal semantics, we obtain the following results.
Theorem 6. For 2RPQs, τ -entailment is NL-complete (P-
complete) in data (combined) complexity for DL-LiteR, and
P-complete for ELH. The cost η of a certain approximate
answer is computable in polynomial time for both DLs.

Answering Approximate C2RPQs
In (Bienvenu, Ortiz, and Simkus 2015), a query rewriting
procedure is developed to answer C2RPQs under classical
semantics that uses only polynomial space (combined com-
plexity). Such a procedure would be desirable for the ap-
proximate semantics as well. However, a rewritten query
need not preserve the regular languages required by atoms
in the initial query and thus it is unclear how to reuse this
procedure to answer C2RPQs under approximate semantics.

Our solution is based on proving that we can restrict our
attention to a finite fragment UK(q) of UK to decide τ -
entailment for Boolean C2RPQs (bC2RPQs). This fragment
is the restriction of UK to elements of depth at most g · m,

where g := p+1 andm := |T(UK)|·
p∏
j=1

(|QRj |·|QT|)2. The

following lemma is one of the main results of this section.
Lemma 4. Let K = (T ,A) be an ELH or a satisfiable
DL-LiteR KB, q a bC2RPQ with p atoms, T a dT and f a

p-ary combining function. Then, ((), η) ∈ c̃ertT,f(q,K) iff
η = min{hc | (h, hc) ∈ Hq,UK(q)

T,f (())}.
This is then exploited to obtain the second main contribu-

tion of this section: PSpace procedures to answer C2RPQs
under approximate semantics in both considered DLs. Since
classical semantics is subsumed by approximate semantics,
these procedures constitute a worst-case optimal alternative
to the approach from (Bienvenu, Ortiz, and Simkus 2015).

Proof Idea of Lemma 4
The proof idea for Lemma 4 is that each approximate match
outside UK(q) can be “made better” in the following sense.
Definition 7. Let K = (T ,A) be an ELH or DL-LiteR
KB, q a bC2RPQ, y ∈ vars(q) and (h, hc) ∈ Hq,UK

T,f (()).
We say that (h, hc) can be improved w.r.t. y if there is
(h′, h′c)∈H

q,UK
T,f (()) such that: h′c ≤ hc, d(h′(y))<d(h(y))

and d(h′(z))≤d(h(z)) for all z∈vars(q).

The goal is to show that every (h, hc) ∈Hq,UK
T,f (()) such

that d(h(y)) > g · m for some y, can be improved w.r.t. y.
This is shown in our technical report in the following lemma.
Lemma 5. Let K = (T ,A) be an ELH or DL-LiteR KB, q
a bC2RPQ, (h, hc) ∈ Hq,UK

T,f (()), and y ∈ vars(q) such that
d(h(y)) > g ·m. Then, (h, hc) can be improved w.r.t. y.

From this, it is straightforward to conclude that Lemma 4
holds. Next, we sketch how to use this bound to obtain a
NPSpace decision procedure for τ -entailment.

A PSpace Algorithm
For simplicity, we only consider ELH, but all the results
also apply for DL-LiteR. The idea is to guess the mapping h
and compute the distortion cost for each pair (h(tj), h(t′j))
on-the-fly in a bottom-up manner. This is implemented in
Algorithm 2, which we continue to explain in more details.

Let us start by describing how a run ρ of the algorithm
guesses a mapping hρ : vars(q) → ∆UK(q). This is done in
the while-loop with the help of s and s′. Formally, s (and s′)
is a set of tuples (Y, λ) such that:
• λ ∈ Se ∪ Ind(A) where Se := (NR × T(UK)) ∪ {()},
Y⊆vars(q), Y does not appear twice in s, and

• the family sY :={Y | (Y,)∈s} is a partition of vars(q).
We say that s′ is coarser than s if the partition s′Y is coarser
than sY , i.e., for all Y∈sY there is Y ′∈s′Y s.t. Y ⊆ Y ′.

The intuition behind s and s′ is as follows. At each it-
eration, the element λ of a tuple (Y, λ) guessed in s′ rep-
resents the ith-component of the sequence hρ(y) for each
variable y ∈ Y . In case λ= (), this means that the depth of
hρ(y) has not yet been reached by the iteration. Otherwise,
λ stands for riAi (or a, if i = 0). Then, ρ induces the map-
ping hρ(y) := ar1A1 . . . rnyAny , where ny is the greatest i
such that y ∈ Y and λ 6=() for some (Y, λ)∈s′. In the tech-
nical report, we show that each sequence ar1A1 . . . rny

Any

is well-defined, unique and represents an element in UK(q).
Next, we describe how ρ computes the distortion cost ηj

of (hρ(tj), hρ(t
′
j)) for each Rj(tj , t

′
j) ∈ q. As shown in

6346

Algorithm 2 Deciding τ -entailment for bC2RPQs.
Input: A bC2RPQ q = R1(t1, t

′
1) ∧ . . . ∧ Rp(tp, t

′
p), K =

(T ,A), a dT T, a p-ary combining function f and µ ∈ N.
Output: yes iff ((), η) ∈ ãnsT,f(q,K) and η ≤ µ.

1: i := g ·m; (i is encoded in binary)
2: s := {({y}, ()) | y ∈ vars(q)}; η{1...p} :=∞;
3: while i ≥ 0 do
4: guess s′ coarser than s (with λ ∈ Ind(A), if i = 0);
5: for all (Y, λ) ∈ s such that λ = (r,A) do
6: select (Y ′, λ′) ∈ s′ s.t. Y ⊆ Y ′;
7: if λ′ = () then fail;
8: if i > 0 and T 6|= [λ′.A] v ∃r.A then fail;
9: if i = 0 and K 6|= ∃r.A(λ′) then fail;

10: update spy↑ and spy↓ (for all y ∈ vars(q));
11: for all 1 ≤ j ≤ p do
12: if i = 0 then update ηj applying (5) w.r.t. s′
13: if i > 0, (Y, (r,A)) ∈ s′ and tj , t′j ∈ Y then
14: update ηj applying (4) with tail(ei) = A

15: s := s′; i := i− 1;
16: return success iff f(η1, . . . , ηp) ≤ µ

Lemma 3, ηj is the minimal cost of a path π of the form
(s0, t0, h(tj)) . . . (sf , tf , h(t′j)) in GjUK , which is of one of
the following two (mutually exclusive) forms:
• π visits no node (, , b) with b ∈ Ind(A). This means that

there exists e ∈ ∆UK \ Ind(A) such that h(tj), h(t′j)∈Te
and π can be decomposed as:

(s0, t0, h(tj))γ↑ (s, t, e)γ (s′, t′, e)γ↓ (sf , tf , h(t′j)) (2)

where nodes (, , f) visited in γ↑, γ↓ and γ satisfy that
f ∈Te, and f 6=e for γ{↑,↓}.

• π does visit a node (, , b) and can be decomposed as:

(s0, t0, h(tj))γ↑(s, t, a)γ(s′, t′, a′)γ↓(sf , tf , h(t′j)) (3)

where a, a′ ∈ Ind(A), h(tj) ∈ Ta, h(t′j) ∈ Ta′ , γ is arbi-
trary and γ{↑,↓} are as in the previous case w.r.t. T{a,a′}.

Hence, ηj is the minimum between the minimal costs of
a path of the form (2) and (3). For paths of the form (2),
tj , t
′
j must be variables y, z, which means that h(y) =

ar1A1 . . . rny
Any

and h(z) = a′s1B1 . . . snz
Bnz

. Fur-
ther, since h(y), h(z) ∈ Te, e must be a common prefix
a . . . riAi = a′ . . . siBi of h(y) and h(z), for some i > 0.
We denote a as e0, ar1A1 as e1, and so on until eny = h(y).
Similarly, we use f0, . . . , fnz for h(z). Based on these con-
siderations, we define the tables spy↑ and spz↓ with entries of
the form [(s, t), i] such that:
• spy↑[(s, t), i] and spz↓[(s, t), i] are the minimal cost

of a path of the form (s0, t0, h(y)) γ↑ (s, t, ei) and
(s, t, fi) γ↓ (sf , tf , h(z)), respectively.

Finally, one can see that (s, t, e) γ (s′, t′, e) in (2) is an e-
path in GjUK . As noted in the previous section, the table spa
stores the minimal cost of a path of such a form. Hence, Al-
gorithm 2 updates ηj at line 14 by minimizing the expression

spy↑[(s, t), i]+spa[(s, t), (s′, t′), tail(ei)]+sp
z
↓[(s

′, t′), i] (4)

over all (s, t), (s′, t′) ∈ QRj ×QT. Regarding (3), a sim-
ple change in Algorithm 1c allows to compute the minimal
cost sp [(s, t, a), (s′, t′, a′)] of a path (s, t, a) γ (s′, t′, a′)

in GjUK . Hence, since a = e0 and a′ = f0, when i = 0 the
algorithm updates ηj by minimizing
spy↑[(s, t), 0]+sp [(s, t, a), (s′, t′, a′)]+spz↓[(s

′, t′), 0] (5)

As for the tables spy↑, a path (s0, t0, h(y)) γ↑ (s, t, ei)

can be decomposed as (s0, t0, h(y)) γ↑ (s1, t1, ei+1)
γ(s2, t2, ei+1) w (s, t, ei). This means that spy↑[(s, t), i]

can be expressed in terms of spy↑[(s1, t1), i + 1] and
spa[(s1, t1), (s2, t2), tail(ei+1)]. Hence, there is no need to
store a copy of spy↑ for each i, but two copies suffice to per-
form the update at line 10. The same applies to spy↓.

Based on this last observation, it is not hard to see that
the algorithm runs in non-deterministic polynomial space.
Further, note that any computation requires at most poly-
nomial time in the size of A, including the computation of
sp to update ηj . Hence, the algorithm runs in polynomial
time in the size of A. In (Fernández Gil and Turhan 2020),
we formally prove that Algorithm 2 decides τ -entailment for
bC2RPQs, and also show how to reuse it to compute the ap-
proximation costs. Overall, we obtain the following results.
Theorem 8. Deciding τ -entailment of C2RPQs is in PTime
for DL-LiteR and P-complete for ELH in data complexity,
and PSpace-complete in combined complexity for both DLs.
The cost η of a certain approximate answer is computable in
polynomial (exponential) time in data (combined) complex-
ity for both DLs.

Conclusions
Approximate semantics are useful for applications requir-
ing flexible query answering. In this paper, we have intro-
duced such semantics for answering C2RPQs over ELH
and DL-LiteR ontologies. We have extended the approach
from (Grahne and Thomo 2006), that uses WFT to define
approximate semantics for RPQs in graph databases, to the
more general query language of C2RPQs posed over graph
databases and, more importantly, over DL ontologies. Our
approach is flexible to be adapted to different applications—
as it can be parameterized with a transducer and a com-
bining function. Moreover, we have developed algorithms
for computing the certain approximate answers for 2RPQs
and C2RPQs over ELH and DL-LiteRontologies. Our algo-
rithms for C2RPQs are, to the best of our knowledge, the
first ones for computing answers of such queries under ap-
proximate semantics in the presence of DL ontologies.

As future work we plan extensions to more expressive
DLs, starting with ELI (Baader, Brandt, and Lutz 2005) and
ALC (Schmidt-Schauß and Smolka 1991). For ELI , we ex-
pect the data complexity to remain in PTime and that the
canonical model can be bounded in a similar way. The com-
bined complexity would inherit ExpTime-hardness already
from instance checking (Baader, Lutz, and Brandt 2008).
The DL ALC does not enjoy the canonical model property
and thus it is interesting to investigate whether the cross-
product of query NFA, transducer and a tree automaton rep-
resenting the models of the KB can be used in a similar way.

6347

Acknowledgments
The first author is partially supported by the DFG in
grant 389792660 as part of TRR 248 (https://perspicuous-
computing.science) and grant BA 1122/20-1. The second
author is partially supported by the German Research Foun-
dation (DFG) in the Research Training Group QuantLA
(GRK 1763). We would also like to thank the anonymous
reviewers for their helpful comments, which helped us to
improve this paper substantially.

References
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
Envelope. In Proc. of the 19th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI 2005), 364–369. Professional Book
Center.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Baader, F.; Lutz, C.; and Brandt, S. 2008. Pushing the EL
Envelope Further. In Proceedings of the Fourth OWLED
Workshop on OWL: Experiences and Directions 2008, vol-
ume 496 of CEUR Workshop Proceedings. CEUR-WS.org.
Bienvenu, M.; and Ortiz, M. 2015. Ontology-Mediated
Query Answering with Data-Tractable Description Logics.
In Reasoning Web. Web Logic Rules - 11th International
Summer School 2015, Tutorial Lectures, volume 9203 of
Lecture Notes in Computer Science, 218–307. Springer.
Bienvenu, M.; Ortiz, M.; and Simkus, M. 2015. Regular Path
Queries in Lightweight Description Logics: Complexity and
Algorithms. J. Artif. Intell. Res. 53: 315–374.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Fam-
ily. J. Autom. Reasoning 39(3): 385–429.
Calvanese, D.; Eiter, T.; and Ortiz, M. 2014. Answering
regular path queries in expressive Description Logics via al-
ternating tree-automata. Inf. Comput. 237: 12–55.
Consens, M. P.; and Mendelzon, A. O. 1990. GraphLog: a
Visual Formalism for Real Life Recursion. In Proc. of the
9th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’90), 404–416. ACM Press.
Ecke, A.; Peñaloza, R.; and Turhan, A.-Y. 2015. Similarity-
based Relaxed Instance Queries. Journal of Applied Logic
13(4, Part 1): 480–508. Special Issue for the Workshop on
Weighted Logics for AI 2013.
Fernández Gil, O.; and Turhan, A.-Y. 2020. Answer-
ing Regular Path Queries Under Approximate Semantics
in Lightweight Description Logics. LTCS-Report LTCS-
20-05, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden. See
http://lat.inf.tu-dresden.de/research/reports.html.

Florescu, D.; Levy, A. Y.; and Suciu, D. 1998. Query Con-
tainment for Conjunctive Queries with Regular Expressions.
In Mendelzon, A. O.; and Paredaens, J., eds., Proc. of the
17th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’98), 139–148. ACM Press.
Grahne, G.; and Thomo, A. 2006. Regular path queries un-
der approximate semantics. Ann. Math. Artif. Intell. 46(1-2):
165–190.
Jagadish, H. V.; Mendelzon, A. O.; and Milo, T. 1995.
Similarity-Based Queries. In Proc. of the 14th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’95), 36–45. ACM Press.
Kanza, Y.; and Sagiv, Y. 2001. Flexible Queries Over
Semistructured Data. In Proc. of the 20th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2001). ACM.
Mehryar, M. 2004. Weighted Finite-State Transducer Algo-
rithms. An Overview. In Martı́n-Vide, C.; Mitrana, V.; and
Păun, G., eds., Formal Languages and Applications, 551–
563. Springer Berlin Heidelberg.
Mendelzon, A. O.; and Wood, P. T. 1995. Finding Regular
Simple Paths in Graph Databases. SIAM J. Comput. 24(6):
1235–1258.
Poggi, A.; Lembo, D.; Calvanese, D.; Giacomo, G. D.; Lenz-
erini, M.; and Rosati, R. 2008. Linking Data to Ontologies.
J. Data Semantics 10: 133–173.
Poulovassilis, A.; Selmer, P.; and Wood, P. T. 2016. Approx-
imation and relaxation of semantic web path queries. J. Web
Semant. 40: 1–21.
Schmidt-Schauß, M.; and Smolka, G. 1991. Attributive
Concept Descriptions with Complements. Artif. Intell.
48(1): 1–26.
Simon, I. 1978. Limited Subsets of a Free Monoid. In Proc.
of the 19th Annual Symp. on the Foundations of Computer
Science (FOCS’78), 143–150. IEEE Computer Society.
Stefanoni, G.; Motik, B.; Krötzsch, M.; and Rudolph, S.
2014. The Complexity of Answering Conjunctive and Navi-
gational Queries over OWL 2 EL Knowledge Bases. J. Artif.
Intell. Res. 51: 645–705.
Vardi, M. Y. 1982. The Complexity of Relational Query
Languages (Extended Abstract). In Proc. of the 14th ACM
SIGACT Symp. on Theory of Computing (STOC’82), 137–
146. ACM.

6348

