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Abstract

We study the problem of verifying whether a given parame-
terized multi-agent system (PMAS) is safe, namely whether
none of its possible executions can lead to bad states. These
are captured by a state formula existentially quantifying over
agents. As the MAS is parameterized, it only describes the
finite set of possible agent templates, while the actual num-
ber of concrete agent instances that will be present at run-
time, for each template, is unbounded and cannot be fore-
seen. We solve this problem via infinite-state model checking
based on satisfiability modulo theories (SMT), relying on the
theory of array-based systems. We formally characterize the
soundness, completeness and termination guarantees of our
approach under specific assumptions. This gives us a tech-
nique that is implementable on top of third-party, SMT-based
model checkers. Finally, we discuss how this approach lends
itself to richer parameterized and data-aware MAS settings
beyond the state-of-the-art solutions in the literature.

Introduction
The automated verification of Multi-Agent Systems (MASs)
typically amounts to check the existence of execution strate-
gies for the achievement of given goals, or to compute coun-
terexamples as evidence of points of potential failure. Model
checking (Clarke et al. 2018) is one of the most common
approaches to the verification of MASs, often with a focus
on strategic abilities (Bulling, Goranko, and Jamroga 2015).
However, a common limitation in this literature is the as-
sumption that the system is finite-state and fully specified,
which in many applications requires to abstract or propo-
sitionalize crucial system features. Other approaches have
thus tackled the verification of MASs in settings that are
intrinsically infinite-state (Esparza et al. 2017), for which
explicit model-checking techniques cannot be used off-the-
shelf. In these settings, the model of the MAS is partially
specified or some sort of data component is present.

A notable example is that of parameterized MASs
(PMASs), addressed by a growing literature (Bloem, Jacobs,
and Khalimov 2015; Kouvaros and Lomuscio 2016, 2017;
Esparza et al. 2017; De Masellis and Goranko 2020). In
PMASs, the number of agents is unbounded and unknown,
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so that possibly infinitely many concrete MASs must be con-
sidered: the task is to check whether a property is satisfied
by any (or all) concrete MASs that adhere to a fixed behav-
ioral structure (such as a known catalogue of possible agent
templates), without fixing their number a priori.

In particular, the property we consider is that of safety:
a PMAS is said to be safe if bad states, characterized by a
state formula (existentially quantifying on agents), can never
be reached. Crucially, this must be verified irrespective of (i)
the number of agent instances that will be present at runtime,
(ii) the possible interactions they may have and executions
they may induce and (iii) the initial setup of the PMAS, i.e.,
the possible initial interpretation of a read-only, relational
data store that is used by PMASs for background data.

Safety checking is a key property not only of MASs but of
dynamic systems in general, with a long-standing tradition
(see, e.g., (Abdulla et al. 1996; Bloem, Jacobs, and Khal-
imov 2015)). Applications range from verification of proto-
cols for swarms to applications for Industry 4.0 and ‘cloud
manufacturing’, where an unbounded number of manufac-
turing resources must be considered (Alechina et al. 2019).

In this paper we illustrate our theoretical result based on
the application of satisfiability modulo theories (SMT) (Bar-
rett and Tinelli 2018) techniques for array-based systems
(ABSs) (Ghilardi et al. 2008; Ghilardi and Ranise 2010a; Al-
berti, Ghilardi, and Sharygina 2017; Calvanese et al. 2020),
and we characterize its soundness and completeness (and
decidability of the task). Specifically, we do so for the no-
table case of interleaved PMASs. This gives us the theoreti-
cal foundation for a practical implementation based on state-
of-the-art SMT-based model-checkers, which is showcased
in (Felli, Gianola, and Montali 2020b) for a class of PMASs
more restricted than the one we study here. The implemen-
tation is available at (Felli, Gianola, and Montali 2020a).

The paper is organized as follows. We first state the con-
tributions and discuss related literature. Then, we intro-
duce PMASs, their interleaved execution semantics, and the
(un)safety checking problem. We then encode PMASs into
ABSs, which allows us to apply SMT-based techniques for
their verification. We also show the theoretical guarantees of
our verification procedure. Finally we discuss future work.
A simple example. Consider a scenario in which a swarm
of robotic agents intends to reach a protected room denoted
as C. To do so, from their initial location they have to first
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move to a room A, then to a room B, then to C. The doors in
corridors between these locations are either open or closed.
There is no way a robot can move past a closed door, and the
information about the status of these doors is not known nor
controllable. Moreover, a security system prohibits to move
from room B to room C unless the system is first switched
off by interacting with a control panel in room A. However,
by moving from A to B, the security system automatically
turns on again. Moreover, in room C a further security sys-
tem, when armed, activates an electromagnetic pulse (EMP)
to disable robots in that room, and it is armed whenever C is
entered. The pulse becomes unarmed after use, but always
disables at least one robot. We want to check whether it is
possible, after the EMP is activated (hence after a robot en-
tered room C), that there can be robots in C that are not dis-
abled. By careful analysis, we can see that the answer is pos-
itive if all doors are open: at least two robots need to move to
A, then B. Then, a least one further robot must disable the se-
curity system by moving to A and using the control panel in
that room. After this, the other robots can move from B to C
(this action will arm the EMP). At this point the EMP will be
fired in room C, but there are chances that one of the robots
will not be disabled, although this is not guaranteed. Note
how the existence of this witness of unsafety relies on the
ability of considering that more robots are at the same time
in C, which is not something that is required by the protocol
of robots (a protocol describes the executability of actions).

In this paper we address this type of scenarios, and we
discuss at the end of the paper how our technique can be
directly extended to account for a number of features left
as future work. These include, e.g., considering a number
of alternative execution semantics (which is possible within
this framework as it is), and most importantly an extension
with read/write relational databases that the agents can use
during execution for storing data and exchanging messages.

Related Work and Contribution
Our work is related to the existing literature on parameter-
ized verification, which has however a number of differences
with respect to our approach. The verification problem for
parameterized systems has been studied extensively, and a
number of decidability results are known for various kinds of
specifications. For example, it is decidable for forms of regu-
lar specifications (Esparza et al. 2017) but undecidable even
for stuttering-insensitive properties such as LTL\X formulae
(Emerson and Kahlon 2003) if asynchronous rendezvous is
allowed. As summarized in (Bloem, Jacobs, and Khalimov
2015), decidability results for the verification of parameter-
ized systems are based on reduction to finite-state model
checking via abstraction (Pnueli, Xu, and Zuck 2002; John
et al. 2012), cutoff computations (a bound on the number of
instances that need to be verified (Emerson and Namjoshi
2003)), or by proving that they can be represented as well-
structured transition systems (Finkel and Schnoebelen 2001;
Abdulla et al. 1996). Our verification technique, although
limited to safety, is not based on (predicate and counter) ab-
stractions, cutoffs nor reductions to finite-state model check-
ing. Also, the MASs we consider do not assume a particu-

lar topology, and the types of disjunctive guards considered
in (Emerson and Kahlon 2003) are here extended toward a
FO setting by also allowing relation symbols (please refer
to the section on future work for more comments on this
point). The approach builds on the model-theoretic frame-
work of ABSs (Ghilardi and Ranise 2010a; Calvanese et al.
2020) and can be seen as a declarative, first-order coun-
terpart of theories of well-structured transition systems for
which compatible results are known (e.g., (Abdulla et al.
1996; Bloem, Jacobs, and Khalimov 2015)).

Regarding specifically the verification of PMASs, the
closest model are those of (Kouvaros and Lomuscio 2016,
2017; Belardinelli, Kouvaros, and Lomuscio 2017) and open
MASs (De Masellis and Goranko 2020; Kouvaros et al.
2019). In (De Masellis and Goranko 2020), the authors study
homogenous, dynamic MASs that are analogous to our def-
inition of PMASs. There, agents join and leave dynamically
during the execution and are partitioned into controllable
and uncontrollable, so that the main task is to verify strate-
gic properties of coalitions of at least n controllable agents
against coalitions of at most m uncontrollable ones. While
a mechanism for joining/leaving the system can be captured
natively in our formalization of PMASs, our approach is not
currently able to verify strategic, temporal properties.

The framework of (Kouvaros et al. 2019; Kouvaros and
Lomuscio 2016) and related papers is also similar. Again,
compared with that work, we restrict to the key task of
checking safety, instead of tackling model-checking of
modal specifications. Their results depend on the chosen
execution semantics, hence on the combinations of possi-
ble action types that are allowed. The same holds for our
technique: although not included in this paper, our approach
can be directly extended (with the same soundness and com-
pleteness guarantees) to the further variants of execution se-
mantics studied there, with the exception of those involv-
ing the global execution of synchronous action types. For
these, which we leave as future work due space limitations,
we can guarantee a weaker notion of soundness (see (Felli,
Gianola, and Montali 2020c)), consistently with the results
in (Kouvaros and Lomuscio 2016). Crucially, however, their
verification procedure requires to identify a cutoff even for
the PMASs considered in this paper (analogous to the class
of systems there called SMR): if a cutoff is found then the
verification result is correct, otherwise the procedure halts
with no result (hence, the procedure is sound but not com-
plete). The existence of a cutoff depends on the existence of
a simulation property (between the agent templates and the
environment) to be checked on the abstract system, which
has to be computed first. Conversely, our technique does
not require cutoffs: we are able to characterize our results
on soundness and completeness for the execution semantics
adopted here, while termination (thus a complete decision
procedure) can be directly obtained by a syntactic property
of the action guards and goal formula.

By departing from the literature above, we present here
a verification technique grounded in an SMT-based (Bar-
rett and Tinelli 2018) approach for ABSs (Ghilardi et al.
2008; Ghilardi and Ranise 2010a; Alberti, Ghilardi, and
Sharygina 2017; Calvanese et al. 2020). This is a very well-
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understood SMT-based formalism for which a number of re-
sults of practical applicability already exist (Calvanese et al.
2019c,a; Ghilardi et al. 2020). Our approach is the first to
establish a theoretical connection between the verification
of PMASs and the long-standing tradition of SMT-based
model checking for ABSs; moreover, our decidability result,
although inspired by an analogous condition in (Calvanese
et al. 2020), is a novel contribution for ABSs as well. This re-
sult is exploited operationally, by encoding safety-checking
of PMASs into the general-purpose model checker MCMT
(Ghilardi and Ranise 2010b).

PMASs: parameterised MASs
Let Θ be a set of (semantic) data types (e.g., reals, integers,
booleans). Each type θ ∈ Θ comes with a (possibly infi-
nite) domain ∆θ, and a type-wise equality operator =θ (we
simply write = when the type is clear). Let R be a set of
relations over Θ, which we treat as uninterpreted relations
(i.e. simple relation symbols), used to model background in-
formation in the MAS which is never updated during the ex-
ecution, thus representing a read-only component. E.g., the
information about corridors and doors in the example can be
modeled via these relations. We consider the usual notion of
FO interpretations I = (∆I , ·I) with ∆I =

⋃
Θ ∆θ and ·I

is an FOL interpretation function for symbols inR.

Definition 1. An agent template is a tuple T = 〈ID, L, l0,
V, type, val ,Aloc ,Asyn , P, δ〉 composed of:
• an infinite set ID of unique agent identifiers of sort ID;
• a finite set L of local states, with initial state l0 ∈ L;
• a finite set V of local (i.e., internal) agent state variables;
• a variable-type assignment type : V 7→ Θ;
• a variable-value assignment val : L×V 7→

⋃
Θ ∆θ, with

val(l, v) ∈ ∆θ for θ = type(v);
• a non-empty, finite set of action symbolsA .

= Aloc∪Asyn

(described later), s.t. Aloc ∩ Asyn = ∅;
• a protocol function specifying the conditions under which

each action is executable. It is a function P : A 7→ Ψ,
where Ψ are agent formulae, defined below, “querying”
the current state of the whole PMAS;

• a total transition function δ : L×A 7→ L, describing how
the local state is affected by the execution of an action
α: the template moves from a state l to a state l′ when
executing an action α iff δ(l, α) = l′, also denoted l α−→ l′.

The environment template is a special agent template Te
with fixed identifier (i.e., ID = {e}): there is exactly one
environment. Intuitively, a (concrete) agent is a triple com-
posed of an agent ID, its template and its current local state.
Analogously, a (concrete) environment is a pair consisting
of the template Te and its current state.

Let {T1, . . . , Tn, Te} be a set of agent (and environ-
ment) templates, with Tt = 〈IDt, Lt, l0t , Vt, typet, val t,
Aloc
t ,Asyn , Pt, δt〉 for t ∈ {1, . . . , n, e}. We denote a con-

crete agent with ID j, template Tt and local state lj by writ-
ing 〈j, lj〉t, and similarly we denote the concrete environ-
ment by 〈e, le〉e. We also denote a vector of k such concrete
agents of template Tt as 〈~I, ~L〉t, where ~I ∈ IDkt and ~L ∈ Lkt
are vectors of IDs and local states. We assume unique agent

IDs and disjoint template variables, i.e., IDt ∩ IDt′ = ∅ and
Vt ∩ Vt′ = ∅ for t, t′ ∈ {1, . . . , n, e}, t 6= t′.

A PMAS is a tupleM = 〈{T1, . . . , Tn}, Te,R〉 consist-
ing of n agent templates, one environment template and the
relations. Note that a PMAS specifies the initial local state of
all agents for each template, but does not specify how many
concrete agents exist for each template. A configuration is a
tuple g = 〈{〈~I1, ~L1〉1, . . . , 〈~In, ~Ln〉n}, 〈e, le〉e〉, which thus
identifies the number of agent instances (the size of each
~It, t ∈ [1, n], may differ). A configuration is initial iff all
agents are in their initial local state. Infinite possible initial
configurations exist, since the number of concrete agents is
unbounded. As shorthand, we denote the local state lj of
agent 〈j, lj〉t in configuration g as g.j, thus writing 〈j, g.j〉t.

We now define the agent formulae used for protocols in
Def. 1 as quantifier-free formulae ψ(j, self, e, v) where j are
the free variables of sort ID, self is a special constant used
to denote the current agent, e is the special ID (constant) of
the concrete environment, v are template variables (for any
template). These follow the grammar:

ψ
.
= (v [j] = k) | (v [j1]

1 = v
[j2]
2 ) |

| R(x1, · · · , xm) | j1 = j2 | ¬ψ | ψ1 ∨ ψ2

where v , v1 ∈ Vt, v2 ∈ Vt′ for templates t, t′ ∈
{1, . . . , n, e}, k is a constant in ∆θ for θ = typet(v), R is a
relation symbol inR of aritym ≥ 1 (over types θ1, . . . , θm),
each xi is either a variable v [j] of some template or a con-
stant ki ∈ ∆θi , and j, j1, j2 are either the variables of sort
ID in j or the constant self or the ID constant e for the envi-
ronment (with a little abuse of notation, in this paper we use
symbols j to denote variables of sort ID or concrete IDs). The
usual logical abbreviations apply. Note that, differently from
the restricted model in (Felli, Gianola, and Montali 2020b),
terms of the form R(x1, · · · , xm) can mention more than
one variable of sort ID and make comparisons of the form
v

[j1]
1 = v

[j2]
2 , possibly with j1 6= j2. This detail will play an

important role for our termination guarantees (see Thm. 2).
Intuitively, agent formulae are implicitly quantified exis-

tentially over agent IDs. As we will formalize next, they al-
low to test (dis)equality of agent variables w.r.t. other agent
variables and agent constants (IDs), and to check whether a
tuple is in a relation (whose elements are agent variables or
constants). For instance, (v [j] = k) informally means that
there exists an agent ID j so that v = k for such an agent.

An ID grounding of a formula ψ(j, self, e, v) in g is an
assignment σ which assigns each variable j of sort ID in
j, and the constant self , to a concrete agent ID in g (denoted
σ(j) and σ(self), resp.). It also assigns the constant e to itself,
i.e. σ(e) = e. Intuitively, for a formula to be true in g, one
needs to find a suitable σ that makes the formula true.

Definition 2. Given an interpretation I0, a configuration g
satisfies a formula ψ under I0, denoted g |=I0 ψ, iff there
exists an ID grounding σ of ψ in g s.t. g, σ |=I0 ψ, with:
• g, σ |=I0 (v [j] = k) iff val t(g.σ(j), v) = k, where
v ∈ Vt; i.e. the concrete agent 〈σ(j), g.σ(j)〉t, i.e. with
ID σ(j) and template Tt, is so that v = k;
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• g, σ |=I0 (v
[j1]
1 = v

[j2]
2 ) iff val t(g.σ(j1), v1) =

val t′(g.σ(j2), v2), where v1 ∈ Vt, v2 ∈ Vt′ ; i.e. the agents
〈σ(j1), g.σ(j1)〉t and 〈σ(j2), g.σ(j2)〉t′ with IDs σ(j1),
σ(j2) and templates Tt and Tt′ , are so that v1 = v2;

• g, σ |=I0 R(x1, · · · , xm) iffRI0(yi, . . . , ym), where yi is
as follows for each i ∈ [1,m]. If xi is a constant k, then yi
is k; if instead xi is a variable v [j] with vi ∈ Vt for some
template t ∈ {1, . . . , n, e} then yi is val t(g.σ(j), v). In-
tuitively, R holds under I0 for the constants and values of
variables, where the value of v [j] is taken from the local
state of agent with ID σ(j);

• g, σ |=I0 (j1 = j2) iff σ(j1) = σ(j2);
• g, σ |=I0 ¬ψ iff g, σ 6|=I0 ψ;
• g, σ |=I0 ψ1 ∨ ψ2 iff g, σ |=I0 ψ1 or g, σ |=I0 ψ2.

Note that self is freely assigned to an agent ID: if g sat-
isfies a formula with self , then an agent exists that can be
taken as self . Hence we write g |=j

I0 ψ, if needed, to denote
that there exists σ with σ(self) = j so that g, σ |=I0 ψ. This
informally reads as ψ is true in g for agent with ID j. E.g.,
assuming g is s.t. v1 = 6 for agent with ID 3, and v1 = 5 for
agent with ID 7, then g |=3

I0 (v
[self]
1 = 6) ∧ (v

[j]
1 = 5).

A (global) transition of a PMAS describes its evolution
when a vector of actions ~α (one for each concrete agent
and one for the environment) are executed from config-
uration g = 〈{〈~I1, ~L1〉1, . . . , 〈~In, ~Ln〉n}, 〈e, le〉〉, so that
a new configuration of the form g′ = 〈{〈~I1, ~L′1〉1, . . . ,
〈~In, ~L′n〉n}, 〈e, l′e〉〉 is reached. This is denoted by g ~α−→ g′.

Since each concrete agent and the environment may either
perform an action (in Aloc

t ∪ Asyn ) or remain idle, multiple
executions semantics can be defined, depending on the con-
straints we impose on ~α, and in this paper we consider one
of these, i.e., interleaved MASs. First, we describe the set
Aloc
t ∪ Asyn used in Def. 1.
Symbols in Aloc

t , for each t, are called local actions, and
those inAsyn synchronization actions. Actions inAloc

t can
only affect the local state of the concrete agent which exe-
cutes them, whereas actions in Asyn represent the synchro-
nization between one or more agents and the environment
and thus can affect the local state of each agent involved. In-
tuitively, synchronization actions in Asyn are used to model
explicit communication actions or any action with effects
that are not private to the single agent or to the environment.

Therefore, not every vector ~α is meaningful: typically, one
wants to constrain the possible evolutions so that synchro-
nization actions and local actions do not happen at the same
time, so that we can distinguish those steps in which the
PMAS evolves in response to public actions, events, mes-
sages, from those in which agents update their local state.

Interleaved PMASs. They are characterized by the fol-
lowing notion of legal transition. First, we consider a special
no-op action nop so that δt(l, nop) = l for each template t
and local state l. Hence, at each step, either: (i) a (possibly
not proper) subset of concrete agents and the environment
perform a (non nop) action in Aloc

t on their local state or
(ii) the environment and a subset of the agents synchronize
by executing the same action in Asyn . Local (non-nop) and

synchronization actions are not mixed. ~α.j denotes the ac-
tion of the agent with ID j, or of the environment if j = e.

Definition 3. For an interpretation I0, g ~α−→ g′ is legal iff:
• g′.j = δt(g.j, ~α.j) for every 〈j, g.j〉t, t ∈ {1, . . . , n, e},

i.e., agents and environment evolve as per their template;
• g |=j

I0 Pt(~α.j) for every 〈j, g.j〉t, i.e., each action is exe-
cutable and self is replaced by j for evaluating protocols;

• either only local actions are executed (by some agents
and the environment), or the environment and at least one
agent synchronize through action α ∈ Asyn . All other
agents perform nop. Formally, either:
− no j exists so that ~α.j ∈ Asyn , that is, no synchroniza-

tion action is executed; or
− the environment and at least one agent synchronize,

while other agents can either synchronize as well or
freely decide to remain idle. Formally, ~α.e = α ∈
Asyn and i 6= e exists with ~α.i = α, while ~α.j ∈
{α, nop} and g |=j

I0 Pt(~α.j) for every 〈j, g.j〉t.
Example 1. In the scenario, we use a template Tatt for
robots, with variables room (enumeration [init,A,B,C]) and
disabled (boolean). For the environment template Te, secON
and armed are used for specifying whether the security sys-
tem is active, and whether the pulse is armed. Template Tatt
has actions goA, goB and goC, plus additional actions off and
pulse representing the action of switching off the security
system and of “being disabled” by the pulse. The environ-
ment also has actions goB, goC and off, as the robot template.
Indeed, these are synchronization actions which have an ef-
fect on the environment as well: respectively, the security
system is re-activated, the EMP is armed, the security sys-
tem is disabled. The fact that corridors between rooms are
either open or closed is captured by elements in a binary
relation over rooms (e.g. Corr(A,B)). As we quantify over
initial interpretations, this captures the fact that the status
of doors is not known, but all possibilities are considered.

For example, the protocol of action goC in Tatt is
room[self] = B ∧ secON[e] = false ∧ Corr(B, C). Note that it
is not required to specify the template of variables, as these
sets are disjoint. Therefore, given a global state in which
an agent instance of Tatt (i.e., a robot) is in local state l
and Te is in local state le, the robot can execute a transition
l goC−−→ l′ only if Corr(B,C) is in I0, valatt(l, room) = B and
vale(le, secON) = false in Te. The resulting local state l′ of
the robot is such that valatt(l′, room) = C while the environ-
ment reaches a local state l′e so that vale(l′e, armed) = true
(plus further assignments for inertia). Other actions are de-
fined in a similar manner. E.g., the protocol of off in Tatt is
room[self] = A. The formula expressing the unwanted condi-
tion is given at the end of this section.

Runs and the Safety Checking Problem. Based on the
one-step definition of (legal) global transition, we now de-
fine the notion of runs for interleaved PMASs. Given a
PMASM = 〈{T1, . . . , Tn}, Te,R〉, a (global) run is a pair
〈ρ, I0〉 where ρ is a sequence ρ = g0 ~α1

−→ g1 ~α2

−→ · · · and
I0 is an interpretation for relation symbols as before. We re-
strict to runs that (i) are legal and (ii) start from an initial
configuration, i.e., with all concrete agents in their initial lo-

6324



cal state. A transition as above specifies how each concrete
agent g.j evolves depending on the nature of the action ~α.j.
As already stated, once fixed at the start of ρ, I0 does not
change and is used at each step for evaluating formulae.

Definition 4. An agent formula ψgoal is reachable inM iff
I0 and an initial configuration g0 exist such that a configu-
ration g with g |=I0 ψgoal is reachable through a run 〈ρ, I0〉
from g0.

If a formula is not reachable then it is so for any number of
agents and all possible interpretations. Finally, we can for-
mally state the task at hand.

Definition 5. Given a PMAS M and an agent formula
ψgoal , the safety checking problem is to check whether ψgoal

is not reachable inM. If this is the case thenM is said to
be safe w.r.t. ψgoal , otherwise it is unsafe w.r.t. ψgoal .

Example 2. In our running example, the agent formula
expressing the unwanted condition is room[j] = C ∧
destroyed[j] = false ∧ armed[e] = false.

PMASs as Array-based Systems
“Array-based Systems” (ABSs) is a generic term used to re-
fer to infinite-state transition systems implicitly specified us-
ing a declarative, logic-based formalism in which arrays are
manipulated via logical formulae. They are described using
a multi-sorted theory: one kind of sorts for the indexes of ar-
rays and another for the elements stored therein. The content
of an array is unbounded and updated during the evolution.
Nonetheless, note that our technique does not distinguish be-
tween unboundedness and infiniteness, and ABSs enjoy the
finite model property (Calvanese et al. 2020).

In order to introduce verification problems in the sym-
bolic setting of ABSs, one first has to specify the FO theo-
ries TInd and T (equipped with FO signatures ΣInd and Σ,
resp.) for array indexes and for the array elements. In this
paper, TInd will be the empty theory where ΣInd contains
only equality, and T will be EUF (the theory of uninterpreted
symbols), i.e., the empty theory with signature Σ containing
sorts S , relation symbolsRel and constantsC. This is a stan-
dard, common setting in the ABS literature. Then, one needs
to write the formulae representing the set of initial states and
the system evolution. We denote by z a tuple 〈z1, . . . , zm〉
and by φ(x, a) the formula with x as free individual vari-
ables and a as free array variables. In the following we use
the notation F (x) := case of {κ1(x) : t1; · · ·κn(x) :
tn} (where κi(x) are quantifier-free Σ-formulae and ti are
generic terms), or, equivalently, nested if-then-else expres-
sions: we call one such F case-defined function. We also
use λ-abstractions like b = λj.F (j, z) in place of ∀j. b(j) =
F (j, z), where typically F is a case-defined function or a
constant assignment. We consider three types of formulae:
• An initial formula ι(x, a) initializes individual and array
variables via assignments and λ-abstractions: (

∧m
i=1 xi =

ci) ∧ (
∧k
i=1 ai = λj.di), with ci,di constants from Σ;

• A state formula of the form ∃j φ(j, x, a) specifies con-
ditions on variables, where φ is a quantifier-free Σ-formula
and j are individual variables of the index sort;

• A transition formula τ̂ relates current and new (primed)
values of individual and array variables: ∃e (γ(e, x, a) ∧
(
∧m
i=1 x

′
i := c) ∧ (

∧k
i=1 a

′
i = λj.Fi(j, e, x, a))), where e

are individual variables (of both element and index sorts);
γ (the ‘guard’) is a quantifier-free Σ-formula; x′ and a′ are
renamed copies of x and a; c is a constant from Σ and Fj
(the “conditional update") is a case-defined function.

We now give a general definition of array-based systems,
one that helps us to narrow down the scope and consider the
kind that is suitable for our purposes (e.g. having the no-
tion of action), in place of a generic notion of array-based
system, that is extremely general. Then we show how a
PMAS can be encoded as a special case of such definition (in
Def. 7). Known results on ABS (Ghilardi and Ranise 2010a;
Calvanese et al. 2020) can directly be adapted to this variant.
Definition 6. An abstract AB-PMAS is a tuple:

〈Σ,Sind, x, arrY, act, ιa, τa〉
(i) Σ := 〈S, Rel, C〉 is a multi-sorted FO signature as be-
fore, such that there exists a specific sortAa ∈ S called ‘ac-
tions sort’ ; (ii) Sind is a set of sorts of index type; (iii) x is a
set of individual variables (containing the global variables
encoding the states of the environment); (iv) arrY is a set of
arrays, one for each variable y ∈ Y, where Y is an abstract
set of variables; (v) act is a set of arrays, with codomain
of type Aa; (vi) ιa is an initial formula, whose individual
variables are x and whose array variables are arrY and act;
(vii) τa is a disjunction of transition formulae, with individ-
ual and array variables x, x′ and arrY, act, arr′Y, act

′, resp.

Formally, a FO interpretation of Σ can be thought as an
instance of the ‘elements’ domain of an abstract AB-PMAS,
the individual variables are assigned to values taken from
this interpretation, Aa is interpreted over a finite set of ele-
ments called ‘actions’ and the sorts Sind are interpreted over
disjoint sets of concrete indexes. The array variables are as-
signed to functions from these sets of indexes to the instance
of the elements domain.

In what follows, we show how a specific abstract AB-
PMAS (simply called AB-PMAS) can be used to model a
PMAS as in the previous section. To this end, we consider
the different sorts and relations as in that section, and we
encode the set of agent and environment templates. Instead
of the abstract set arrY of arrays, for each template Tt with
t ∈ {1, . . . , n, e} we consider a set arrVt

of arrays, one for
each variable in Vt, that is used to store the current value of
that variable for each concrete agent of type t. Intuitively, the
‘cell’ for index j in the array for variable v ∈ Vt of template
Tt holds the value of v for the agent with ID (in correspon-
dence to) j in the current global state (see Fig. 1). Since only
one concrete environment exists, instead of arrays arrVe

we
use individual global variables of the form envVe . Accord-
ingly, the set Aa of generic actions is now ∪tAloc

t ∪ Asyn .
Additional global variables x, which we now denote by

glob for readability, are needed for book-keeping (that is,
to model any required low-level detail in the PMAS that is
needed to encode its execution, such as flags, counters, turn
indicators, etc). The global variable Phase, discussed later, is
an example of such variables.
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Definition 7. Given a PMASM := 〈{T1, . . . , Tn}, Te,R〉
and a set of initial states, its AB-PMAS is a tuple:

〈Σ, {SIDt
}t∈[1,n], glob, {arrVt

}t∈[1,n], {arrAt
}t∈[1,n], ι, τ〉

where: (i) Σ := 〈S,R, C〉, where S are sorts (including
sorts SAloc

t
and SAsyn ),R are the relation symbols ofM and

C a set of constants (including all values val t(l, v) for ev-
ery t, l, v ); (ii) {SIDt

}t∈[1,n] is a set of sorts of indexes type,
one for each IDt. (iii) glob is a set of individual variables
used to encode the local state of the environment plus any
book-keeping info (see later); (iv) {arrVt

}t∈[1,n] is a set of
sets of arrays, one for each variable in Vt of each Tt, whose
elements range over ∆θ for θ = type(v); (v) {arrAt

}t∈[1,n]

is a set of arrays, one for each Tt, whose codomain has type
SAloc

t
or SAsyn ; (vi) ι is an initial formula, with individual

variables glob and array variables arrVt
, arrAt

; (vii) τ is a
disjunction of transition formulae, with individual variables
glob, glob′, and array variables arrVt

, arrAt , arr′Vt
, arr′At

.
A model of an AB-PMAS is a FO interpretation of Σ ac-

counting for the ‘elements’ domain, equipped with an as-
signment of the individual variables to elements of that in-
terpretation; the action sorts SAloc

t
and SAsyn are resp. inter-

preted over setsAloc
t andAsyn ; the index sorts {SIDt

}t∈[1,n]

are interpreted over the disjoint sets of concrete agents IDs
IDt, for every t ∈ [1, n]. Array variables are assigned to
functions from these sets of IDs to the ‘elements’ domain.

Next, we finally encode a PMAS into an AB-PMAS,
which constitutes our first main contribution. As shown in
Fig. 1, for each t ∈ [1, n] there are kt arrays for local vari-
ables {v t1, · · · , v tkt} = Vt plus one array storing the cur-
rent chosen action (in Asyn ∪Aloc

t or nop as default value).
The environment is modeled with global variables: there is
one global variable for each template variable and one action
variable storing the current synchronization action in Asyn

(or nop). The initial formula is trivial to write (it has the
very same shape given before). The formula τ in Def. 7 is
the disjunction of transition formulae τ̂ , shown next.

Encoding interleaved PMAS as ABSs
In this section we present the ABS formulae that are needed
for capturing the execution semantics of our interleaved
PMASs. These formulae can be directly implemented into
MCMT, a infinite-state model checker that can verify ABSs:
the encoding into MCMT input files matches exactly the re-
duction from PMASs to AB-PMAS described here. Each
global transition of the PMAS is encoded as a sequence of
‘steps’ of the AB-PMAS, each specified by a disjunction
of transition formulae, ordered by means of an additional
global variable Phase used to guide the progression. This is
intuitively shown in Figure 1 (Below). The variables in each
agent template are encoded by array variables, so that the
value of each v for an agent with ID j can be written in the
position j of that array arrv (the length and content of ar-
rays is unbounded). An additional array arrAt

, one for each
template Tt, stores the action currently “declared" by agents.
So the local state l of a concrete agent 〈j, l〉t is encoded by
the values written for index j in the arrays for template Tt
(e.g., the red area in Figure 1). The environment variables

T1

arrv1
1

· · ·
arrv1

k1
arrA1

· · · · · · · · ·
index j →
· · ·
· · ·

Te

envv1
· · ·

envvkeenvact

0

L

S

(1)

(3)

(2)

(1)

(4)(5)

Figure 1: Above, a depiction of the encoding of an agent
template T1 and of the environment template Te. Below, the
phases used to capture the execution of an AB-PMAS.

are instead encoded via global variables, because only one
concrete environment exists. In the same figure (Below), we
show the how transition formulae of the ABS are used to en-
code the execution semantics of interleaved PMASs. Nodes
correspond to phases and edges to (disjunctions of) transi-
tion formulae. There are two kinds of progressions, corre-
sponding to the two semantics in Def. 3: either some non-
empty subset of concrete agents execute local actions on
their local state (upper branch) or a synchronization action
is performed by the environment and at least one concrete
agent (lower branch). The former case is realized by a non-
empty sequence of steps following formula (1), in which lo-
cal actions are written (‘declared’) in the appropriate posi-
tion j of array arrAt for some t, followed by a single step
in which the local state of all concrete agents that declared
an action is updated in bulk (by applying the function in
the λ-abstraction) as in (2). As transitions (τ̂ formulae) are
taken nondeterministically, this will capture all possible se-
quences of (1)-steps followed by a (2)-step. The latter case
is analogous: the formula in (3) makes sure that the environ-
ment and at least one concrete agent with ID j and type t
can execute a synchronization action, which is then written
in a global variable envact as well as in the array position
arrAt [j]. Then, a number of concrete agents can declare the
same action, updating their action array as specified by (4).
Nondeterministically, a bulk update is performed as in for-
mula (5), which also updates the environment. In both cases,
when the initial phase is reached again, the action arrays
arrAt

of each template Tt are reset to contain nop values.
As a result a possible evolution of an AB-PMAS template
corresponds to a possible path in this intuitive diagram.

We now list the transition formulae, numbered as in Fig-
ure 1 (Below). For encoding the first step of the upper branch
we use a disjunction of transition formulae as (1) below, for
each t ∈ {1, . . . , n, e} and local action α ∈ Aloc

t :(
Phase = 0 ∨
Phase = L

)
∧ ∃jself

 arrAt [jself] = nop ∧ Pt(α) ∧

Phase′
:= L ∧ arr′At

[jself] := α

 (1)

where a disjunction is used for compactness: we can write
this as two distinct formulae. Here, as in the rest of the paper,
when a primed array variable a′ does not appear explicitly,
the current content of a is propagated, as is, to the next state.

Remark 2. Above we denoted by Pt(α) the transfor-
mation of the (quantifier-free) agent formula Pt(α) =
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ψ(j, self, e, v) into a (quantifier-free) formula φ(j, x, a) for
AB-PMASs, with the same syntactic shape of state formu-
lae. This is required because agent formulae, e.g., make use
of local template variables, whereas array-based formulae
make use of individual and array variables. Such transfor-
mation is trivial and it is not formalized further: we simply
need to replace the variables of sort ID in ϕ with index vari-
ables from the sort used for agents in the AB-PMAS. As a
special case, we impose that self is always replaced with a
special index jself that is existentially quantified in (1): there
must exist an agent with index jself and template Tt that we
can take as self to evaluate Pt(α). If other index variables j
are present, these are existentially quantified as well.

The step above is repeated an unbounded number of times
(see the loop on stateL in Fig. 1), as long as a new index jself
exists. Then, nondeterministically, a further step can be ex-
ecuted, characterized by the transition formula below. Here,
as in the remainder of the section, we write arrVt

[j] = l
as a shorthand to denote that, for each variable v ∈ Vt for
some t ∈ {1, . . . , n, e}, arrv [j] = val(l, v), namely the set
of arrays arrVt

[j] for the concrete agent with ID j of type t
encode the local state l ∈ Lt (see Fig. 1, in red). The same
for arr′Vt

:= λj. case of {. . . , κi : val(l, v), . . . }. In this
formula, we perform a bulk update of all instances (indexes
j) by applying the transition function of each Tt (below, one
case is listed for each couple of local state-action):
Phase = L ∧ Phase′ := 0 ∧

∧
t∈{1,...,n,e}

arr′At
:= λj. nop ∧

∧
t∈{1,...,n,e}

arr′Vt
:=λj.


case of arrVt

[j]=l1 ∧ arrAt [j]=α1 : δt(l1, α1)

· · ·
arrVt

[j]=lm ∧ arrAt [j]=αk : δt(lm, αk)



(2)

Above, for each j one possible case applies. E.g., if α1 was
declared and the state is l1, then arrVt

[j] = δt(l1, α1).
For synchronization actions, for each α ∈ Asyn and tem-

plate Tt we have the following formula, making sure that at
least one concrete agent and the environment can perform
the same action, then written in the global variable envact :

Phase=0∧∃jself

 arrAt [jself] = nop ∧ envact = nop ∧
Pt(α) ∧ Pe(α) ∧

arr′At
[jself]:=α ∧ env′act :=α ∧ Phase′:=S


(3)

Then two possibilities exist: either an unbounded number
of agents participate in the synchronization (via (4)), or the
bulk progression is performed by applying the formula (5)
further below. Again, this is encoded as a disjunction of for-
mulae. For each t ∈ [1, n] and α ∈ Asyn :

Phase = S ∧ ∃jself

(
envact = α ∧ Pt(α) ∧ arrAt [jself] = nop

∧ Phase′:=S ∧ arr′At
[jself]:=α

)
(4)

Phase = S ∧ envact = α ∧ envVe = le ∧ env′Ve
:= δe(le, α)

∧ env′act := nop ∧ arr′At
:= λj. nop ∧ Phase′ := 0 ∧

∧
t∈[1,n]

arr′Vt
:= λj.


case of arrVt

[j] = l1 ∧ arrAt [j] = α : δt(l1, α)

· · ·
arrVt

[j] = lm ∧ arrAt [j] = α : δt(lm, α)}



(5)

Verification
We denote by ab(M) the AB-PMAS obtained by encoding a
PMASM as in the previous section. An unsafety formula
for ab(M) is a state formula φ of the form ∃j.φ(j, x, a).
These formulae are used to characterize undesired states of
ab(M).

By adopting a customary terminology for array-based sys-
tems, we say that ab(M) is safe with respect to φ if intu-
itively the system has no finite run leading from ι to φ. For-
mally, this means that there is no interpretation I0 of rela-
tions, no k ≥ 0 and no possible assignment to the individual
and array variables x0, a0, . . . , xk, ak such that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ τ(xk−1, ak−1, xk, ak) ∧ φ(xk, ak)

is valid in any model of ab(M). The safety problem for
ab(M) is the following: Given an unsafety formula φ as
before, decide whether ab(M) is safe with respect to φ. It
is immediate to see that this matches Def. 4: the AB-PMAS
cannot be safe w.r.t φ if there exists an initial interpretation
I0 so that a global state g with g |=I0 ψ, where ψ is an agent
formula with ψ = φ, is reachable through a run 〈ρ, I0〉, and
vice-versa (recall the description of ·̄ in Remark 2).

Proposition 1. An agent formula ψgoal is reachable in a
PMASM iff the AB-PMAS ab(M) is unsafe w.r.t. ψgoal .

Soundness, Completeness, Termination
The algorithm described in Fig. 1 shows the SMT-based
backward reachability procedure (or, backward search) for
handling the safety problem for an AB-PMAS ab(M). An
integral part of the algorithm is to compute symbolic preim-
ages. For that purpose, for any τ(z, z′) and φ(z) (where
z′ are renamed copies of z), we define Pre(τ, φ) as the
formula ∃z′(τ(z, z′) ∧ φ(z′)). The preimage of the set of
states described by a state formula φ(x) is the set of states
described by Pre(τ, φ) (notice that, when τ =

∨
τ̂ , then

Pre(τ, φ) =
∨

Pre(τ̂ , φ)). Backward search computes iter-
ated preimages of an unsafety formula φ, until a fixpoint
is reached (in that case, ab(M) is safe w.r.t. φ) or until a
set intersecting the initial states (i.e., satisfying ι) is found
(in that case, ab(M) is unsafe w.r.t. φ) . Inclusion (Line 2)
and disjointness (Line 3) tests can be discharged via proof
obligations to be handled by SMT solvers. The fixpoint is
reached when the test in Line 2 returns unsat: the preimage
of the set of the current states is included in the set of states
reached by the backward search so far (represented as the
iterated application of preimages to the unsafety formula φ).
The test at Line 3 is satisfiable when the states visited so far
by the backward search includes a possible initial state (i.e.,
a state satisfying ι). If this is the case, then ab(M) is unsafe
w.r.t. φ. We call PMAS-Backward search the procedure
that takes as input a PMAS M and a goal formula ψgoal ,
transforms them into its corresponding array-based system
ab(M) and into ψgoal resp., and then applies the backward
search BReach(ab(M), ψgoal). This procedure either does
not terminate or returns a SAFE/UNSAFE result. Given a PMAS
M and an agent formula ψgoal , a SAFE (resp. UNSAFE) result
is correct iffM is safe (resp. unsafe) w.r.t. ψgoal .
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Algorithm 1: backward search BReach(ab(M), φ)

1 B ←− ⊥;
2 while φ ∧ ¬B is satisfiable do
3 if (ι ∧ φ is satisfiable) then return UNSAFE;
4 B ←− φ ∨B;
5 φ←− Pre(τ, φ); // τ is as in Def. 7
6 return SAFE;

Theorem 1. PMAS-Backward search for the reachability
problem for interleaved PMASs is so that, (i) when it termi-
nates, it returns a correct result, and (ii) whenever UNSAFE
is the correct result, then UNSAFE is indeed returned.

Proof Sketch. Thanks to Proposition 1, establishing reach-
ability of ψgoal in M is equivalent to establishing the un-
safety of ab(M) w.r.t. ψgoal : hence, we can focus on the
latter. For both (i) and (ii) we need to prove, by taking in-
spiration from (Ghilardi and Ranise 2010a; Calvanese et al.
2019b), that every step in Alg. 1 can be effectively executed:
for doing so, we need suitable decision procedures for the
satisfiability tests at Lines 2-3. First, in order to guarantee
the regressability of the procedure, the fact that φ is a state
formula needs to be a loop invariant: this is obtained by
showing that the pre-image of a state formula can be con-
verted to a state formula. Then, to perform the tests at Lines
2-3, we can show that entailment between state formulae can
be decided via finite instantiation techniques: this is possi-
ble thanks to the specific shape of these formulae (which are
called ∃∀-formulae in (Felli, Gianola, and Montali 2020c)).
For (ii), we conclude the proof by noticing that finite unsafe
traces are found after finitely many steps. The full proof is
reported in (Felli, Gianola, and Montali 2020c).

Backward search for interleaved AB-PMAS is thus a
semi-decision procedure for checking that a PMASs is un-
safe. However, there is no guarantee of termination because
the pre-image computation can diverge on a safe AB-PMAS.

We show under which (sufficient) condition we can guar-
antee termination of the backward search, which will gives
us a decision procedure for unsafety. Although technical
proofs are quite involved at the syntactic level, they can be
intuitively understood as based on this locality condition:
the states “visited” by the backward search can be repre-
sented by state formulae which do not include direct/indirect
comparisons and “joins" of distinct state variables for differ-
ent agent IDs. E.g., we cannot use direct comparisons of the
form (v

[j1]
1 = v

[j2]
2 ), i.e., comparing template variables for

agent IDs j1 6= j2. Similarly, we cannot (indirectly) correlate
v

[j1]
1 and v

[j2]
2 by writing R(v

[j1]
1 , v

[j2]
2 ) for some relation R.

We can however write v
[j1]
1 = k, v [j2]

2 = k for a constant k.
Of course, if this property is true for φ, it does not nec-

essary hold for the formula obtained by “regressing" φ w.r.t.
some transition formula τ̂ , i.e., Pre(τ̂ , φ): τ̂ includes trans-
lations Pt(α) of template protocols Pt(α) for action α. For-
mally, we call a state formula local if it is a disjunction of

the formulae of the form:

∃j1 · · · ∃jm (Eq(j1, . . . , jm) ∧
m∧

k=1

φk(jk, x, a)) (6)

Here, Eq is a conjunction of variable (dis)equalities, φk are
quantifier-free formulae, and j1, . . . , jm are individual vari-
ables of index sort. Moving all the existential quantifiers ex-
ternally, it is easy to see that a local state formula is a state
formula. Note how each φk in (6) can contain only the ex-
istentially quantified index variable jk. As said before, this
limitation has an impact on transition formulae as well: we
say that a transition formula τ̂ is local if whenever a formula
φ is local, so is Pre(τ̂ , φ).

Theorem 2. BReach(ab(M), ψgoal) always terminates for
an interleaved AB-PMAS if its transition formula τ =

∨
τ̂ is

a disjunction of local transition formulae and ψgoal is local.

Proof Sketch. Although involved, the proof relies on the use
of a suitable well-quasi-order (wqo) definable thanks to lo-
cality. After introducing the algebraic notion of cyclic FO
structure (see (Felli, Gianola, and Montali 2020c) for the
formal definition), one can notice that, since our language
is relational, there are only finitely many cyclic FO struc-
tures that can be built. The particular format of local formu-
lae implies that it is sufficient to check the validity of a local
formula in cyclic structures in order to know if a local for-
mula holds in a generic model of AB-PMASs. This allows
us to introduce a specific wqo based on counting how many
copies of cyclic FO-structures every model of AB-PMASs
contains. We can show that a non-terminating backward
search would destroy the well-foundedness of this wqo. The
full proof is in (Felli, Gianola, and Montali 2020c).

Theorem 2 (with Thm. 1) gives a sufficient condition for
termination, inspired to a condition well-known in the lit-
erature of verification of data-aware processes (Calvanese
et al. 2020). There, an analogous result holds, and decid-
ability in the general case is still unknown. Our model of
PMASs does not require the restriction imposed by locality,
and indeed we proved only soundness and completeness of
backward search (Thm. 1), making it a semi-decision pro-
cedure for checking unsafety. This is consistent with our fo-
cus, which is not on decidability, but on the effectiveness of
employing the backward reachability procedure. Neverthe-
less, when locality is imposed, Thm. 2 proves that backward
search, thanks to termination, becomes a full decision proce-
dure. In particular, when relations and agent state variables
comparisons are disregarded, locality (thus decidability) is
always guaranteed: this in line with the models/results in
(Emerson and Kahlon 2000, 2003; Emerson and Namjoshi
1996) when only reachability is considered. The structure
of the proof of the theorem follows the schema of that of
Thm. 5.4 in (Calvanese et al. 2020), with a significant dif-
ference: decidability is there based on locality and applies to
ABSs whose FO-signatures do not have relational symbols,
while ABSs have free relational symbols.

It is immediate to verify that the transition formulae and
goal formula ψgoal for our running scenario are both lo-
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cal, hence checking safety is decidable. The PMAS can be
proved to be unsafe w.r.t. ψgoal as in Example 2.

Implementation

In this section, we illustrate our implementation approach
and the tool called SAFE , which makes available the third-
party model checker MCMT (Ghilardi and Ranise 2010b)
for checking the safety of PMASs. A thorough description
of SAFE and of its use in connection with MCMT for the
safety checking of PMASs is presented in (Felli, Gianola,
and Montali 2020b): we report here a brief discussion on
this implementation in order to show the feasibility of our
theoretical approach, and what follows is not intended either
as a proper tool description or as an experimental validation.

MCTM is a symbolic model checker for safety proper-
ties of infinite-state systems, based on backward reachability
and fixpoints computations (computed relying on an SMT
solver): every ABS can be processed by MCMT (with the
correct syntax). By using this tool-chain, the user is able to
(i) model a PMASM in a concrete syntax using SAFE , (ii)
generate its encoding into MCMT (this encoding follows ex-
actly the formalization presented in this paper) (iii) check
the safety of M w.r.t. a given agent formula via MCMT
(which also provides a witness in case of an unsafe verdict).

For lack of space, in this paper we do not describe the
MCMT input files, as these are only used as the internal rep-
resentation in our implementation. Instead, we briefly de-
scribe SAFE (Felli, Gianola, and Montali 2020a), i.e., our
implementation of a user interface allowing to use in prac-
tice the results presented in this paper. SAFE automatizes
the textual encoding of the PMAS into MCMT input files, by
relying on a MAS-oriented modeling approach. This allows
the user to focus on modeling the PMAS, i.e., the agent and
environment templates, without worrying about how their
constructs can be encoded for MCMT. The tool also allows
to convert the witnesses for unsafety that MCMT returns (for
unsafe ABSs) back into executions of the original PMAS.
SAFE Agent templates. In its present version, the repre-
sentation of agent and environment templates used by SAFE
differs slightly from the one used here, although it is equiv-
alent. Instead of an explicit state-transition representation as
in Def. 1, SAFE assumes a more succinct representation,
namely a STRIPS-like approach where actions are specified
by means of pre- and post- conditions.
Execution of SAFE -MCMT. We run here our tool-chain
over the example. As the PMAS is unsafe, this allows us
to comment in practice on how a witness of unsafety is
returned by MCMT. More examples (including safe ones)
are available through the GUI of SAFE (Felli, Gianola, and
Montali 2020a) and in (Felli, Gianola, and Montali 2020b),
and they are all reproducible running SAFE and then
MCMT. The textual encoding of the ABS corresponding
to the PMAS in the running example is solved by MCMT
v.3.0, on a machine with Ubuntu 18.04, 3.60 GHz Intel Core
i7-7700 CPU, in 2 minutes and 22 seconds and in 56 seconds
respectively using Yices (version 1.0.40) and Z3 (version
4.8.9.0) as background SMT solvers. MCMT correctly

reports that the system is unsafe.1 The generated input file
(“download MCMT input") contains 501 lines of code and
has 3 local variables for Tatt, 4 global variables and 15 tran-
sitions formulae. MCMT returns this witness for unsafety:
[t1_3][t2_2][t2_1][t3][t5_2][t9_1][t13][t6_3][t14]

[t4_2][t8_1][t12][t7_2][t15], where each tn_m repre-
sents the execution of the n-th transition in the input file,
in the order in which they appear, with m instantiated
index variables. In this case, this is sequence of actions
goA,goA,goA,goB,goB,off,goC,goC,pulse, where each
action is executed by one agent (and/or by the environment).

Conclusion and Future Work
We have presented a model of PMASs, defined the verifica-
tion task of checking safety, and provided a custom, MAS-
oriented tool that allows to make use of a generic SMT-
model checker off-the-shelf. Our tool supports a concrete
syntax for PMASs, and automatically encodes it into the in-
put format accepted by the MCTM model checker for ABSs.
The generality of our approach allows in principle any tool
accepting ABS inputs to be used, e.g. Cubicle (Conchon
et al. 2012). Cubicle, however, crucially does not support
data-aware verification, like relations with primary and for-
eign keys: MCMT, instead, will allow us to exploit these
features when, as commented below, data-aware extensions
of PMASs are considered. To the best of our knowledge,
this is the first paper that establishes a theoretical connection
between the verification of PMASs and SMT-based model
checking for ABSs, opening up the possibility of solving the
former via advanced techniques and tools for the latter. This
allows a number of interesting extensions.

From the foundational perspective, data-aware extensions
of our framework can be directly incorporated, along the line
studied in (Calvanese et al. 2020). This supports finite ac-
tion signatures with infinite number of possible parameter
values, and also to store and inspect infinite data values. For
instance, this will allow us to model and check for safety ex-
tended models of PMASs where agents are given read and
write access to private and public databases, hence allowing
us to model complex systems in which data is stored and
exchanged. Also, the background theories employed by the
SMT-solver in this paper are only the empty theory or EUF,
whereas further ones may be considered. Adding data ex-
tensions, theories, possibly arithmetics and cardinality con-
straints, are all future directions.

From the applied perspective, the SMT technology brings
effective techniques for symbolic reasoning, like decision
procedures for combined theories or quantifier handling
through instantiation and quantifier elimination. At the same
time, it features advanced heuristics and approximation tech-
niques, like acceleration, predicate abstraction and invariant
synthesis. This triggers a natural extension of our implemen-
tation, tailored for efficiency. In fact, it is well-known that
the performance of symbolic verification techniques can be
substantially improved when such techniques are suitably
developed for the domain at hand (Conchon et al. 2013).

1The example, modeled with SAFE , is publicly available at the
address: http://safeswarms.club/page/mcmt/rooms
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