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Abstract

Claim-augmented argumentation frameworks (CAFs) pro-
vide a formal basis to analyze conclusion-oriented problems
in argumentation by adapting a claim-focused perspective;
they extend Dung AFs by associating a claim to each argu-
ment representing its conclusion. This additional layer offers
various possibilities to generalize abstract argumentation se-
mantics, i.e. the re-interpretation of arguments in terms of
their claims can be performed at different stages in the evalua-
tion of the framework: One approach is to perform the evalua-
tion entirely at argument-level before interpreting arguments
by their claims (inherited semantics); alternatively, one can
perform certain steps in the process (e.g., maximization) al-
ready in terms of the arguments’ claims (claim-level seman-
tics). The inherent difference of these approaches not only
potentially results in different outcomes but, as we will show
in this paper, is also mirrored in terms of computational com-
plexity. To this end, we provide a comprehensive complex-
ity analysis of the four main reasoning problems with respect
to claim-level variants of preferred, naive, stable, semi-stable
and stage semantics and complete the complexity results of
inherited semantics by providing corresponding results for
semi-stable and stage semantics. Moreover, we show that de-
ciding, whether for a given framework the two approaches of
a semantics coincide (concurrence), can be surprisingly hard,
ranging up to the third level of the polynomial hierarchy.

Introduction
Abstract argumentation (Dung 1995) is nowadays acknowl-
edged as the core reasoning mechanism for argumentation
in the broad sense (Atkinson et al. 2017), in particular in
instantiation-based approaches (see e.g. (Gorogiannis and
Hunter 2011)). This instantiation process starts from a (typi-
cally inconsistent) knowledge base, from which all possible
arguments are constructed. An argument contains a claim
and a support, the latter being a subset of the knowledge
base. The relationship between arguments is then settled, for
instance an argument α attacks argument β if the claim of α
contradicts (parts of) the support of β. The resulting network
is then interpreted as an abstract argumentation framework
(AF) and semantics for AFs are used to obtain a collection of
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jointly acceptable sets of arguments, commonly referred to
as extensions. In a final step these extensions are then rein-
terpreted in terms of the claims of the accepted arguments,
thus restating the result in the domain of the initial setting.

Recent research (Baroni and Riveret 2019; Dvořák, Rap-
berger, and Woltran 2020) has addressed the fact that the
re-interpretation part is not as obvious as it seems at first
glance. For instance, consider preferred semantics, which is
defined at the AF level as subset-maximal admissible sets (a
set is admissible if it attacks all its attackers). When looking
for preferred extensions in terms of claims, we can either (a)
take the preferred extensions of the AF and replace each ar-
gument by its claim, or (b) take the admissible sets of the
AF, replace each argument by its claim, and then select the
subset-maximal ones from the resulting set of extensions.
Example 1. Consider the following AF where each argu-
ment is labelled with its claim.

a1

a

b1

b

c1

c d1 d

a2 a

b2 b

The admissible sets are given by ∅,{a1},{b1},{b2},{a1, b2},
{b1, b2}, {a2, b1}, {a1, b2, c1}, and {a2, b1, b2}. Selecting
the subset-maximal admissible sets before replacing each
argument by its claim (option (a)) thus yields the preferred
claim-sets {a, b, c}, {a, b}; observe that swapping those
steps (option (b)) results in the unique claim-set {a, b, c}.

Option (a) which we shall call inherited semantics in
what follows, is often used implicitly in instantiation-based
argumentation and has been explicitly studied in (Dvořák
and Woltran 2020). Option (b) has recently been advocated
in (Dvořák, Rapberger, and Woltran 2020) as an alterna-
tive way to lift concepts behind argumentation semantics to
claim-based semantics; we will refer to the latter as claim-
level semantics since parts of the semantic selection pro-
cess takes place on the claim- rather than on the argument-
level. As discussed in (Rapberger 2020), there are logic
programming semantics that, in the standard instantiation
model (Caminada et al. 2015a,b), correspond to claim-level
semantics and cannot be captured with inherited semantics.

To be independent from a particular instantiation schema,
Dvořák and Woltran (2020) introduced claim-augmented
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frameworks (CAFs), which are AFs where each argument
is assigned a claim; hence, a CAF is given by a triple
(A,R, claim) where (A,R) constitutes an AF and func-
tion claim maps arguments A to claims (indeed Exam-
ple 1 provides an example for a CAF). They also introduced
the important subclass of well-formed CAFs which restricts
the assignment of claims in the sense that arguments with
the same claim have to attack the same set of arguments
(thus reflecting the instantiation model for attacks outlined
above). AF semantics σ are then lifted to CAFs by setting
σc((A,R, claim)) = claim(σ(A,R)) in order to obtain in-
herited CAF semantics. Claim-level semantics follow a dif-
ferent line of definition as sketched in Example 1 for the case
of preferred semantics. We will introduce them in the next
section in detail.

We have already seen that the two approaches differ in
the above example; Dvořák, Rapberger, and Woltran (2020)
have analyzed these differences in detail, also showing that
there are some semantics where the two approaches coin-
cide on the class of well-formed CAFs. What remains open
is the question whether this difference is mirrored in terms
of computational complexity (an analysis for CAF seman-
tics has so far been only conducted for (most of) the inher-
ited semantics (Dvořák and Woltran 2020); the results show
an occasional increase of complexity compared to the corre-
sponding AF semantics). Another question is how hard it is
to decide for a given CAF whether the two approaches of a
semantics deliver the same result.

We tackle these two questions via a thorough complexity
analysis. Our main contributions are as follows:
• We settle the computational complexity of all the claim-

level semantics, i.e. stable, naive, preferred, semi-stable,
and stage semantics, introduced in (Dvořák, Rapberger,
and Woltran 2020) for the main decision problems of
credulous and skeptical acceptance, verification, and test-
ing for non-empty extensions. Among our findings is that
for naive semantics, the claim-level variant is harder than
its inherited counterpart, while for preferred semantics, it
is the inherited variant that shows higher complexity.

• We also provide complexity results for inherited semi-
stable and stage semantics which have not been investi-
gated in (Dvořák and Woltran 2020). As it turns out, for
these two semantics the complexity of the inherited and
claim-level variants coincides.

• We determine the complexity of the concurrence problem,
i.e. whether for a given CAF and a semantics, the inherited
and claim-level variant of that semantics coincide. Note
that showing this problem to be easy would suggest that
there are relatively natural classes of CAFs which charac-
terize whether or not the two variants collapse. However,
as we will see, concurrence can be surprisingly hard, up
to the third level of the polynomial hierarchy.

Preliminaries
We introduce (abstract) argumentation frameworks (Dung
1995) and fix U as countable infinite domain of arguments.
Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A ⊆ U is a finite set of arguments and

R ⊆ A×A is the attack relation.E ⊆ A attacks b if (a, b) ∈
R for some a ∈ E; we denote by E+

F = {b ∈ A | ∃a ∈ E :
(a, b) ∈ R} the set of arguments defeated by E. We call
E⊕F = E ∪ E+

F the range of E in F . An argument a ∈ A is
defended (in F ) by E if b ∈ E+

F for each b with (b, a) ∈ R.

Semantics for AFs are defined as functions σ which assign
to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions.
We consider for σ the functions cf , adm , naive , prf , stb,
sem and stg which stand for conflict-free, admissible, naive,
preferred, stable, semi-stable and stage, respectively.

Definition 2. Let F = (A,R) be an AF. A set E ⊆ A
is conflict-free (in F ), if there are no a, b ∈ E, such that
(a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets
in F . For E ∈ cf (F ) we have E ∈ adm(F ) if each a ∈ E
is defended by E in F . For E ∈ cf (F ), we define

• E ∈ naive(F ), if there is no D ∈ cf (F ) with E ⊂ D;
• E ∈ prf (F ), ifE∈adm(F ) and @D ∈ adm(F ):E⊂D;
• E ∈ stb(F ), if E⊕F = A;
• E ∈ sem(F ), if E ∈ adm(F ) and @D ∈ adm(F ):
E⊕F ⊂ D

⊕
F ;

• E ∈ stg(F ), if there is no D ∈ cf (F ) with E⊕F ⊂ D
⊕
F .

Next we introduce CAFs (Dvořák and Woltran 2020).

Definition 3. A claim-augmented argumentation framework
(CAF) is a triple (A,R, claim) where (A,R) is an AF and
claim : A → C assigns a claim to each argument in A;
C is a set of possible claims. The claim-function is extended
to sets in the natural way, i.e. claim(E) = {claim(a) |
a ∈ E}. A CAF (A,R, claim) is well-formed if {a}+(A,R) =

{b}+(A,R) for all a, b ∈ A with claim(a) = claim(b).

Well-formed CAFs naturally appear as result of instantia-
tion procedures where the construction of the attack relation
depends on the claim of the attacking argument. However,
formalisms which handle argument strengths or allow for
preference relations over arguments (assumptions/defeasible
rules) typically violate the property of well-formedness.

Semantics for CAFs. Here we give a short recap of inher-
ited semantics and claim-level semantics for CAFs. We will
first introduce inherited semantics (i-semantics).

Definition 4. For a CAF CF = (A,R, claim) and an
AF semantics σ, we define i-σ semantics as σc(CF ) =
{claim(E) | E ∈ σ((A,R))}. We call E ∈ σ((A,R)) with
claim(E) = S a σc-realization of S in CF .

Next we discuss claim-level semantics (cl-semantics) for
CAFs. Central for cl-variants of stable, semi-stable and stage
semantics is the following notion of claim-defeat.

Definition 5. Let CF = (A,R, claim), E ⊆ A and c ∈
claim(A). E defeats c (in CF ) if E attacks every a ∈ A
with claim(a) = c. We define νCF (E) = {c ∈ claim(A) |
E defeats c in CF}.

We will next introduce the notion of range for a claim-
set S. As different realizations of S might yield different sets
of defeated claims, the range of S is in general not unique
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and depends on the particular realization E of S. Observe
that in well-formed CAFs, each claim-set possesses a unique
range as each realization attacks the same arguments.

Definition 6. For a CAF CF = (A,R, claim), S ⊆
claim(A) and a semantics σ, let NCF

σ (S) = {νCF (E) |
E ∈ σ((A,R)), claim(E) = S}. For each S′ ∈ NCF

σ (S),
we call S ∪ S′ a range of S in CF .

We are now ready to introduce cl-semantics for CAFs.

Definition 7. For a CAF CF = (A,R, claim) and S ⊆
claim(A), we define

• S ∈ cl -prf (CF ) if S ∈ admc(CF ) and there is no T ∈
admc(CF ) with S ⊂ T ;

• S ∈ cl -naive(CF ) if S ∈ cfc(CF ) and there is no T ∈
cfc(CF ) with S ⊂ T ;

• S ∈ cl -stbτ (CF ), τ ∈ {cf , adm}, if there is S′ ∈
NCF
τ (S) with S ∪ S′ = claim(A);

• S ∈ cl -sem(CF ) if there is S′ ∈ NCF
adm(S) s.t. there is no

T ∈ admc(CF ), T ′ ∈ NCF
adm(T ) with S ∪ S′ ⊂ T ∪ T ′;

• S ∈ cl -stg(CF ) if there is S′ ∈ NCF
cf (S) s.t. there is no

T ∈ cfc(CF ), T ′ ∈ NCF
cf (T ) with S ∪ S′ ⊂ T ∪ T ′.

We say that a set E ⊆ A realizes a cl -σ claim-set S in CF
if claim(E) = S, E ∈ cf ((A,R)) (E ∈ adm((A,R)) re-
spectively) and S ∪ νCF (E) satisfies the respective require-
ments, e.g., S∪νCF (E) = claim(A) for τ -cl-stable seman-
tics. We call E also a cl -σ-realization of S in CF .

Computational Problems
We consider the following decision problems with respect to
a CAF-semantics σ:

• Credulous Acceptance (CredCAF
σ ): Given a CAF CF =

(A,R, claim) and claim c ∈ claim(A), is c contained in
some S ∈ σ(CF )?

• Skeptical Acceptance (SkeptCAF
σ ): Given a CAF CF =

(A,R, claim) and claim c ∈ claim(A), is c contained in
each S ∈ σ(CF )?

• Verification (VerCAF
σ ): Given a CAF CF =

(A,R, claim) and a set S ⊆ claim(A), is S ∈ σ(CF )?

• Non-emptiness (NECAF
σ ): Given a CAF CF =

(A,R, claim), is there a non-empty set S ⊆ claim(A)
such that S ∈ σ(CF )?

We also consider these reasoning problems restricted to
well-formed CAFs and denote them by Credwf

σ , Skeptwf
σ ,

Verwf
σ , and NEwf

σ . Moreover, we denote the corresponding
decision problems for AFs (which can be obtained by defin-
ing claim as the identity function) by CredAF

σ , SkeptAF
σ ,

VerAF
σ , and NEAF

σ . Finally, we introduce a new decision
problem which asks whether the two variants of a semantics
coincide on a given CAF.

• Concurrence (ConCAF
σ ): Given a CAF CF , does it hold

that σc(CF ) = cl -σ(CF )?

σ CredAF
σ SkeptAF

σ VerAF
σ NEAF

σ

cf in P trivial in P in P
adm NP-c trivial in P NP-c
stb NP-c coNP-c in P NP-c
prf NP-c ΠP

2 -c coNP-c NP-c
naive in P in P in P in P
sem ΣP

2 -c ΠP
2 -c coNP-c NP-c

stg ΣP
2 -c ΠP

2 -c coNP-c in P

Table 1: Complexity of AFs.

σ Cred∆
σ Skept∆σ VerCAF

σ /Verwf
σ NE∆

σ

cfc in P trivial NP-c / in P in P
admc NP-c trivial NP-c / in P NP-c
stbc NP-c coNP-c NP-c / in P NP-c
prfc NP-c ΠP

2 -c ΣP
2 -c / coNP-c NP-c

naivec in P coNP-c NP-c / in P in P

Table 2: Complexity for ∆ ∈ {CAF ,wf } of inherited se-
mantics. Results that deviate from the corresponding results
for AFs are bold-face.

For stable semantics, we write ConCAF
stbτ to specify the con-

sidered cl-stable variant (τ ∈ {adm, cf }). The concurrence
problem restricted to well-formed CAFs is denoted Conwf

σ .
The Tables 1 & 2 depict known complexity results for

AF semantics (Dimopoulos and Torres 1996; Dunne and
Bench-Capon 2002; Dvořák and Woltran 2010; Dvořák and
Dunne 2018); and for inherited CAF semantics (Dvořák and
Woltran 2020). Note that Table 2 lacks results for semi-
stable and stage semantics which have not been studied yet
in terms of complexity. We close this gap and complement
these results by an analysis of the claim-level variants.

Complexity of Reasoning Problems
The forthcoming analysis yields the following high level
picture: Credulous and skeptical reasoning as well as decid-
ing existence of a non-empty extension is of the same com-
plexity as in AFs except for the notable difference that skep-
tical reasoning with respect to cl-naive semantics goes up
two levels in the polynomial hierarchy and is thus also more
expensive than deciding skeptical acceptance for i-naive se-
mantics which has been shown to be coNP-complete. For
well-formed CAFs, skeptical reasoning admits the same
complexity for both claim-level and inherited naive seman-
tics but remains more expensive than in AFs.

For general CAFs, the verification problem is more ex-
pensive than for AFs for all of the considered seman-
tics. Comparing claim-level and inherited semantics we ob-
serve that the complexity of the verification problem for cl-
preferred semantics drops while the complexity for cl-naive
semantics admits a higher complexity than their inherited
counterparts; the claim-level and inherited variants of stable,
semi-stable and stage semantics admit the same complexity.
For well-formed CAFs, the complexity of the verification
problem coincides with the known results for AFs.
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σ CredCAF
σ SkeptCAF

σ VerCAF
σ NECAF

σ

semc ΣP
2 -c ΠP

2 -c ΣP
2 -c NP-c

stgc ΣP
2 -c ΠP

2 -c ΣP
2 -c in P

cl -stbadm NP-c coNP-c NP-c NP-c
cl -stbcf NP-c coNP-c NP-c NP-c
cl -prf NP-c ΠP

2 -c DP-c NP-c
cl -naive in P ΠP

2 -c DP-c in P

cl -sem ΣP
2 -c ΠP

2 -c ΣP
2 -c NP-c

cl -stg ΣP
2 -c ΠP

2 -c ΣP
2 -c in P

Table 3: Complexity of CAFs. Results that deviate from the
corresponding AF results are in bold-face; results that devi-
ate from those w.r.t. inherited semantics are underlined.

Theorem 1. The complexity results for CAFs depicted in
Table 3 hold.

In the following we provide proofs for the results in
Table 3. We will first discuss the membership proofs of
the considered decision problems. To begin with, we will
give poly-time respectively coNP procedures for decid-
ing whether a given set E of arguments is a σ-realization
for σ ∈ {cl -stbadm , cl -stbcf , cl -sem, cl -stg}. This lemma
yields upper bounds for the respective reasoning problems;
notice that the complexity goes up one level in the polyno-
mial hierarchy since one requires an additional guess for E.

Lemma 1. Given a CAF CF = (A,R, claim) and some
E ⊆ A. Deciding whether E realizes (1) a τ -cl-stable
claim-set in CF for τ ∈ {adm, cf } is in P; (2) a cl-semi-
stable (cl-stage) claim set in CF is in coNP.

Proof. Checking admissibility (conflict-freeness) of E is in
P (cf. Table 1); moreover, νCF (E) can be computed in poly-
nomial time by looping over all claims c ∈ claim(A) and
adding each c to νCF (E) ifE attacks each occurrence of c in
CF . For τ -cl-stable semantics, it remains to check whether
claim(E) ∪ νCF (E) = claim(A) to verify that E real-
izes a τ -cl-stable claim-set in CF . For cl-semi-stable (cl-
stage) semantics, we have to check that each E′ ⊆ A with
claim(E′)∪νCF (E′) ⊃ claim(E)∪νCF (E) is not admissi-
ble (conflict-free). This can be solved in coNP by a standard
guess & check algorithm, i.e. guess a set and verify that it
is admissible (conflict-free), compute the claims and verify
that they are a proper superset of the claims of the original
set, yielding a coNP algorithm to verify that E realizes a
cl-semi-stable (cl-stage) claim-set in CF .

We use this lemma to show membership results for
VerCAF

σ , σ ∈ {cl -stbτ , cl -sem, cl -stg}: For a CAF CF =
(A,R, claim), S ⊆ claim(A), one can verify S ∈ σ(CF )
by guessing a set of arguments E ⊆ A with claim(E) = S
and checking whether E is a σ-realization of S. The latter is
in P, respectively coNP by Lemma 1, yielding NP- and ΣP

2 -
procedures for the respective semantics. DP-membership of
VerCAF

σ for σ ∈ {cl -prf , cl -naive} is by (1) checking that
a given claim-set S is admissible (conflict-free) and (2) ver-
ifying subset-maximality of S. The former has been shown
to be NP-complete (cf. Table 2); the latter is in coNP: Guess

x1 1 y1 1

z̄1 1ȳ2 2

z2 2

x̄3 3 ȳ3 3

y4 4 z4 4

z̄4 4

x x y y

x̄ x̄ ȳ ȳ

a1 1

a2 2

a3 3

Figure 1: CAF from the proof of Proposition 1 for the for-
mula ∀xy∃zϕ, where ϕ is given by the clauses {{x, y,¬z},
{¬y, z}, {¬x,¬y}, {y, z,¬z}}.

a set of arguments E such that S ⊂ claim(E) and check
admissibility (conflict-freeness) of E. ΣP

2 -membership of
VerCAF

σc for σ ∈ {sem, stg} is by guessing a set E ⊆ A
and checking E ∈ σ((A,R)) which is coNP-complete by
known results for AFs (cf. Table 1).

Membership proofs for SkeptCAF
σ are via the complemen-

tary problem: For a claim c ∈ claim(A), guess a set E ⊆ A
such that c /∈ claim(E) and check claim(E) ∈ σ(CF ). For
σ ∈ {cl -stbτ , cl -sem, cl -stg}, the latter can be verified in P
respectively coNP by Lemma 1; for σ ∈ {cl -prf , cl -naive},
we use the result for VerCAF

σ , i.e., claim(E) ∈ σ(CF )
can be verified via two NP-oracle calls, which shows that
SkeptCAF

σ is in ΠP
2 ; for σ ∈ {semc, stgc}, it suffices to check

E ∈ sem((A,R)) or E ∈ stg((A,R))–both are in coNP
(cf. Table 1)–to derive the desired upper bound.

Membership for CredCAF
σ follows the same line of rea-

soning for σ ∈ {cl -stbτ , cl -sem, cl -stg , semc, stgc}. For cl-
preferred and cl-naive semantics, we exploit the fact a claim
c ∈ claim(A) is credulously accepted with respect to cl-
preferred (cl-naive) semantics iff it is contained in some i-
admissible (i-conflict-free) claim-set and thus the complex-
ity of CredCAF

θ for θ ∈ {cfc, admc} (cf. Table 2) applies.
Finally, NECAF

σ for σ ∈ {semc, stgc, cl -prf , cl -naive,
cl -sem, cl -stg} coincides with either NEAF

adm or NEAF
cf

and we get the complexity directly from Table 1. For σ ∈
{cl -stbadm , cl -stbcf }, NECAF

σ can be verified by guessing
a non-empty set E ⊆ A and utilizing Lemma 1 (1).

We now turn to the hardness results. First observe that one
can reduce AF decision problems to the corresponding prob-
lems for CAFs by assigning each argument a unique claim.
Thus CAF decision problems generalize the corresponding
problems for AFs and are therefore at least as hard. It re-
mains to provide hardness proofs for the decision problems
with higher complexity. We will first present a reduction
from QSAT ∀2 to show ΠP

2 -hardness of SkeptCAF
cl-naive before

we address the verification problem: DP-hardness with re-
spect to cl-preferred and cl-naive semantics is by reductions
from SAT-UNSAT; ΣP

2 - hardness with respect to i-semi-
stable and i-stage semantics are by reductions from credu-
lous reasoning for AFs with the respective semantics; the
remaining hardness results are shown via reductions from
appropriate decision problems for inherited semantics.

Proposition 1. SkeptCAF
cl-naive is ΠP

2 -hard.

Proof. We present a reduction from QSAT ∀2 ; see Figure 1
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for an illustration. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance
of QSAT ∀2 , where ϕ is a 3-CNF given by a set of clauses
C = {cl1, . . . , cln} over atoms in X = Y ∪ Z. We con-
struct a CAF CF = (A,R, claim) as follows: For each
clause cli, we introduce three arguments representing the lit-
erals contained in cli and assign them claim i; moreover, we
add arguments representing literals over Y and assign them
unique names; furthermore, we add arguments a1, . . . , an−1

with claims 1, . . . , n− 1; formally, A = {xi | x ∈ cli, i ≤
n} ∪ {x̄i | ¬x ∈ cli, i ≤ n}∪ Y ∪ Ȳ ∪ {a1, . . . , an−1}
where Ȳ = {ȳ | y ∈ Y }, and claim(xi) = claim(x̄i) =
claim(ai) = i, claim(y) = y, claim(ȳ) = ȳ. We introduce
conflicts between each argument representing a variable x ∈
X and its negation; moreover, the additional n − 1 argu-
ments attack every argument xi, x̄i representing literals in
clauses cli; i.e.,R = {(xi, x̄j), | i, j ≤ n}∪{(y, ȳi), (yi, ȳ),
(y, ȳ) | y ∈ Y } ∪ {(ai, xj), (ai, x̄j) | i < n, j ≤ n}.

It can be shown that Ψ is valid iff the claim n is skeptically
accepted with respect to cl-naive semantics in CF : For every
Y ′ ⊆ Y , the set Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {a1, . . . , an−1} is
conflict-free in (A,R) by construction, and therefore Y ′ ∪
{ȳ | y /∈ Y ′}∪ {1, . . . , n− 1} is in cfc(CF ). Consequently,
n is skeptically accepted with respect to cl-naive semantics
iff for every Y ′ ⊆ Y , the set Y ′∪{ȳ | y /∈ Y ′}∪{1, . . . , n}
is cl-naive. It suffices to check that for every Y ′ ⊆ Y , the
set Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n} is cl-naive iff there is
Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a model of ϕ.

Hardness results for verification admits a higher complex-
ity compared to AFs. We first recall the standard reduction
that provides the basis for DP-hardness of verification with
respect to cl-preferred semantics.

Reduction 1. Let ϕ be given by a set of clauses C =
{cl1, . . . , cln} over atoms in X . We construct (A,R) with

• A = X ∪ X̄ ∪ C ∪ {ϕ}, with X̄ = {x̄ | x ∈ X};
• R = {(x, cl) | cl ∈ C, x ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈
cl} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪ {(cl, ϕ) | cl ∈ C}.

Proposition 2. VerCAF
cl-prf is DP-hard.

Proof. We present a reduction from SAT-UNSAT. Let
(ϕ1, ϕ2) be an instance of SAT-UNSAT, where ϕi, i = 1, 2,
is given over a set of clauses Ci over atoms in Xi with
X1 ∩X2 = ∅. We will construct a CAF CF which consists
of two independent frameworks CF i = (Ai, Ri, claimi),
i = 1, 2, both representing one of the formulas ϕ1, ϕ2: For
the formula ϕi, let (Ai, Ri) be defined as in Reduction 1.
Let CF i = (Ai, R

′
i, claimi) with R′i = Ri ∪ {(cl, cl) |

cl ∈ Ci}; moreover, we define claimi(x) = claimi(x̄) = x
for all x ∈ Xi, claimi(cl) = d for all cl ∈ Ci and
claimi(ϕi) = ϕi. We define CF = CF 1 ∪ CF 2 as the
component-wise union of CF 1 and CF 2.

It can be checked that ϕi is satisfiable iff Xi ∪ {ϕi} is
a cl-preferred claim-set of CF i. Since Xi is i-admissible in
CF i (for an admc-realization, consider X ′ ∪ {x̄ | x /∈ X ′}
for any X ′ ⊆ Xi), we furthermore obtain that ϕi is unsatis-
fiable iff Xi is a cl-preferred claim-set of CF i. Since CF 1

and CF 2 are unconnected and have no common arguments,
we have cl -prf (CF ) = {S ∪ T | S ∈ cl -prf (CF 1), T ∈

cl -prf (CF 2)}. Thus X1 ∪X2 ∪ {ϕ1} is cl-preferred in CF
iff ϕ1 is satisfiable and ϕ2 is unsatisfiable.

DP-hardness of verification with respect to cl-naive se-
mantics can be shown via a reduction from SAT-UNSAT
by combining ideas from the previous propositions. As in
Proposition 2, one constructs two independent frameworks
CF 1, CF 2 representing the formulas (3-CNFs) ϕ1, ϕ2 with
sets of clauses C1 = {cl1, . . . , clm} respectively C2 =
{clm+1, . . . , cln}. The construction is similar to the one in
Proposition 1, i.e., one introduces an argument with claim i
for each literal in a clause cli ∈ Cj and adds |Cj | − 1 argu-
ments with claims 1, . . . ,m−1 respectivelym+1, . . . , n−1.
One can show that {1, . . . , n− 1} is cl-naive in CF 1 ∪CF 2

iff ϕ1 is satisfiable and ϕ2 is unsatisfiable.

Proposition 3. VerCAF
cl-naive is DP-hard.

In the following, we show ΣP
2 -hardness of the verification

problem for CAFs with respect to i-semi-stable and i-stage
semantics, utilizing a reduction from the respective credu-
lous acceptance problem for AFs.

Proposition 4. VerCAF
semc and VerCAF

stgc are ΣP
2 -hard.

Proof. We present a proof for VerCAF
semc , the proof for VerCAF

stgc

is analogous. For an instance (A,R), b ∈ A of CredAF
sem , we

construct a CAF CF = (A′, R, claim) with A′ = A ∪ {x},
x 6∈ A and claim(b) = c1, claim(a) = c2 for all a ∈
A′ \ {b}. Then, as the argument x is not involved in any at-
tack, it is contained in every semi-stable extension of (A′, R)
and thus, as claim(x) = c2, c2 is contained in every i-semi-
stable claim-set of CF . Furthermore, as CF contains only
two claims, the only candidates for i-semi-stable claim-sets
are {c1, c2} and {c2}. Moreover, as b is the only argument
with claim c1, {c1, c2} is i-semi-stable iff b is contained in
some semi-stable set of arguments in (A′, R). Thus, b is
credulously accepted in (A,R) w.r.t. semi-stable semantics
iff {c1, c2} is i-semi-stable in CF . ΣP

2 -hardness of VerCAF
semc

thus follows from known results for AFs.

Finally, we provide hardness results for cl-semi-stable,
τ -cl-stable and cl-stage semantics. We will present reduc-
tions from the verification problem of suitable inherited se-
mantics. To that end, we consider the following translations.

Definition 8. For a CAF CF = (A,R, claim), we define
Tr1(CF ) = (A′, R′, claim ′) with

• A′ = A ∪ {a′ | a ∈ A};
• R′ = R ∪ {(a, a′), (a′, a′) | a ∈ A}; and
• claim ′(a) = claim(a) for a ∈ A, claim(a′) = ca for
a′ ∈ {a′ | a ∈ A} and fresh claims ca /∈ claim(A).

Moreover, we define Tr2(CF ) = (A′, R′2, claim
′) with

R′2 = R′ ∪ {(a, b′) | (a, b) ∈ R}; and Tr3(CF ) =
(A′, R′3, claim

′) with R′3 = R′2 ∪ {(b, a) | (a, b) ∈ R} ∪
{(a, b) | a ∈ A, (b, b) ∈ R}.

It can be shown that Tr1 maps i-preferred semantics to
cl-semi-stable semantics, while Tr2 (Tr3) maps inherited to
claim-level stable (respectively stage) semantics.

Lemma 2. For a CAF CF = (A,R, claim),
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σ Credwf
σ Skeptwf

σ Verwf
σ NEwf

σ

semc ΣP
2 -c ΠP

2 -c coNP-c NP-c
stgc ΣP

2 -c ΠP
2 -c coNP-c in P

cl -stbcf NP-c coNP-c in P NP-c
cl -stbadm NP-c coNP-c in P NP-c
cl -naive in P coNP-c in P in P
cl -prf NP-c ΠP

2 -c coNP-c NP-c
cl -sem ΣP

2 -c ΠP
2 -c coNP-c NP-c

cl -stg ΣP
2 -c ΠP

2 -c coNP-c in P

Table 4: Complexity of well-formed CAFs. Results that de-
viate from general CAFs (cf. Table 3) are in bold-face.

1. prfc(CF ) = prfc(Tr1(CF )) = cl -sem(Tr1(CF ));
2. stbc(CF ) = stbc(Tr2(CF )) = cl -stbτ (Tr2(CF )) for
τ ∈ {adm, cf };

3. stgc(CF ) = stgc(Tr3(CF )) = cl -stg(Tr3(CF )).

Lower bounds for VerCAF
σ , σ ∈ {cl -stbadm , cl -stbcf ,

cl -sem, cl -stg}, thus follow from the results of the respec-
tive inherited semantics: For a given CAF CF = (A,R,
claim) and a set of claims S ⊆ claim(A), one can check
S ∈ σ′c(CF ), σ′ ∈ {stb, prf , stg}, by applying the respec-
tive translation and checking whether S is a σ-realization in
the resulting CAF. This concludes the proof of Theorem 1.

We next turn to the complexity of well-formed CAFs.

Theorem 2. The complexity results for well-formed CAFs
depicted in Table 4 hold.

First observe that all upper bounds from Theorem 1 carry
over since well-formed CAFs are a special case of CAFs.
It remains to give improved upper bounds for verification
with respect to all of the considered semantics as well as
for Skeptwf

cl-naive . The latter also requires a genuine hardness
proof as it remains harder than the corresponding problem
for AFs even in the well-formed case. For the remaining se-
mantics, we obtain hardness results from the corresponding
problems for AFs since they constitute a special case of the
respective problems for CAFs.

We first discuss improved upper bounds for verification.
For preferred as well as for both variants of cl-stable seman-
tics, membership is immediate by the corresponding results
for inherited semantics as the respective semantics collapse
in the well-formed case (Dvořák, Rapberger, and Woltran
2020). For the remaining semantics, we exploit the follow-
ing observation (Dvořák and Woltran 2020).

Lemma 3. Let CF = (A,R, claim) be well-formed. For
S ⊆ claim(A), let E0(S) = {a ∈ A | cl(a) ∈ S},
E1(S) = E0(S)\E0(S)+

(A,R), and E2 = {a ∈ E1(S) | b ∈
E1(S)+

(A,R) for all (b, a) ∈ R}. Then S ∈ cfc(CF ) iff S =

claim(E1(S)) and S ∈ admc(CF ) iff S = claim(E2(S)).

To check whether a set S ⊆ claim(A) is cl-naive in a
given well-formed CAF CF = (A,R, claim), we utilize
Lemma 3 to test (i) S ∈ cfc(CF ) and (ii) S∪{c} /∈ cfc(CF )
for all c ∈ claim(A)\S, which yields a poly-time procedure
for Verwf

naive . For inherited as well as claim-level semi-stable

prf naive stbτ sem stg

ConCAF
σ ΠP

2 -c coNP-c ΠP
2 -c ΠP

3 -c ΠP
3 -c

Conwf
σ trivial in coNP trivial ΠP

2 -c ΠP
2 -c

Table 5: Complexity of deciding ConCAF
σ and Conwf

σ .

and stage semantics, we first compute E1(S), respectively
E2(S) in P (cf. Lemma 3). For cl-semi-stable (cl-stage) se-
mantics, utilize Lemma 1 to check in coNP whether E2(S)
(E1(S)) realizes a cl-semi-stable (cl-stage) claim set; sim-
ilarly, for i-semi-stable (i-stage) semantics, we check that
E2(S) ∈ sem((A,F )) (E1(S) ∈ stg((A,F ))), which is
known to be coNP-complete.

Finally, we will discuss coNP-completeness of skeptical
reasoning in well-formed CAFs w.r.t. cl-naive semantics.

Proposition 5. Skeptwf
cl-naive is coNP-complete.

Proof. As the verification problem is in P, the membership
is by a standard guess and check algorithm. Hardness can be
shown via a reduction from UNSAT: For a formula ϕ with
clauses C = {cl1, . . . , cln} over the atoms X , let (A,R) be
defined as in Reduction 1. We define CF = (A′, R′, claim)
with A′ = A \ {ϕ} and R′ = R \ {(cli, ϕ) | i ≤ n}, more-
over, we set claim(x) = x, claim(x̄) = x̄, claim(cli) = ϕ̄.
Observe that CF is indeed well-formed. It can be checked
that ϕ is unsatisfiable iff ϕ̄ is skeptically accepted with re-
spect to cl-naive semantics.

Deciding Concurrence
This section examines the complexity of deciding concur-
rence of the different variants of the considered semantics.
Our results (cf. Table 5) reveal that deciding concurrence
is in general computationally hard; observe that for semi-
stable and stage semantics, the problem is complete for the
third level of the polynomial hierarchy.
Theorem 3. The complexity results depicted in Table 5 hold.

In what follows, we will present upper bounds for the
(non-trivial) problems and discuss ΠP

3 -hardness of deciding
concurrence for semi-stable and stage semantics.

Membership of deciding concurrence is by the following
generic guess and check procedure for the complementary
problem: To verify for a given (well-formed) CAF CF =
(A,R, claim) that σc(CF ) = cl -σ(CF ) one first guesses
a set of claims S ⊆ claim(A) and checks whether S ∈
σc(CF ) and S /∈ cl -σ(CF ) or vice versa. The complexity
of the procedure thus follows from the corresponding results
for verification with respect to the considered semantics.

For preferred and naive semantics, we get improved up-
per bounds by the following observation: If a CAF CF ad-
mits incomparable i-preferred (i-naive) claim-sets then both
variants of the respective semantics coincide; that is, for
σ ∈ {prf ,naive}, σc(CF ) = cl -σ(CF ) if and only if
σc(CF ) is incomparable. Thus it suffices to verify incompa-
rability of σc(CF ). We give a ΣP

2 (NP resp.) procedure for
the complementary problem: Guess E,G ⊆ A and check
(i) E,G ∈ σ((A,R)) and (ii) claim(E) ⊂ claim(G). The
former is in coNP for prf (in P for naive) by Table 1.

6301



ϕ

ϕ

d1

d

d2

d

ϕ̄

ϕ̄

cl1 ϕ̄ cl2 ϕ̄ cl3 ϕ̄

x
x

x̄
x̄

y
y

ȳ
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Figure 2: Reduction 2 for the formula ∃X∀Y ∃Zϕ(X,Y, Z)
with clauses {{z1, x, y}, {¬x,¬y,¬z2, y}, {¬z1, z2, y}}.

We next extend Reduction 1 in order to show ΠP
3 -hardness

of concurrence with respect to semi-stable semantics.

Reduction 2. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an in-
stance of QSAT ∃3 , where ϕ is given by a set of clauses
C = {cl1, . . . , cln} over atoms in V = X ∪ Y ∪ Z. We
can assume that there is a variable y0 ∈ Y with y0 ∈ cli for
all i ≤ n (otherwise we can add such a y0 without changing
the validity of Ψ). Let (A,R) be the AF constructed from ϕ
as in Reduction 1. We define CF = (A′, R′, claim) with

• A′ = A ∪ {d1, d2, ϕ̄} ∪ {dv, dv̄ | v ∈ X ∪ Y };
• R′ = R ∪ {(a, da), (da, da), | a ∈ X ∪ X̄ ∪ Y ∪ Ȳ } ∪
{(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, d1)} ∪ {(di, dj) | i, j ≤ 2};

• claim(v) = claim(v̄) = v for v ∈ Y ∪Z; claim(cli) = ϕ̄
for i ≤ n; claim(di) = d for i = 1, 2; claim(a) = a else.

An illustrative example of the reduction is given in Fig-
ure 2. Next we provide some properties for the reduction
making use of the observation that for any instance of
QSAT ∃3 , each i-semi-stable and each cl-semi-stable claim-
set in the resulting CAF is of the form X ′ ∪ {x̄ | x /∈ X ′}∪
Y ∪ Z ∪ {e} for some X ′ ⊆ X and for e ∈ {ϕ, ϕ̄}; in
fact, it can be shown that each such set is cl -sem-realizable.
Note that this is not the case for i-semi-stable semantics (as a
counter-example, consider e = ϕ̄ andX = {x} in Figure 2).

Lemma 4. Let CF = (A,R, claim) be as in Reduction 2
for an instance ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT ∃3 . Then, (1)
cl -sem(CF )={X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{e} | X ′⊆X,
e ∈ {ϕ, ϕ̄}}; (2) semc(CF ) ⊆ cl -sem(CF ); and (3) X ′∪
{x̄ | x /∈ X ′} ∪ Y ∪Z ∪ {ϕ} ∈ semc(CF ) for all X ′ ⊆ X .

Proposition 6. ConCAF
sem is ΠP

3 -hard.

Proof. Let CF = (A,R, claim) be the CAF generated
by Reduction 2 from Ψ = ∃X∀Y ∃Zϕ(X,Y, Z). We
show Ψ is valid iff semc(CF ) 6= cl -sem(CF ). Since
semc(CF ) ⊆ cl -sem(CF ) by Lemma 4 (2), the latter re-
duces to semc(CF ) ⊂ cl -sem(CF ). By Lemma 4 (3), this
is the case if there is some X ′ ⊆ X such that X ′ ∪ {x̄ | x /∈
X ′} ∪ Y ∪ Z ∪ {ϕ̄} is not semc-realizable.

Assume Ψ is valid, then there is X ′ ⊆ X such that
Ψ′ = ∀Y ∃Zϕ(X ′, Y, Z) is valid (ϕ(X ′, Y, Z) is the for-
mula which arises after replacing each x ∈ X with >

in case x ∈ X ′ and ⊥ if x /∈ X ′). One can show that
S = X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{ϕ̄} /∈ semc(CF ): Towards
a contradiction, assume there is a semc-realization E of S
(observe that ϕ̄ ∈ E and d1, d2 /∈ E⊕(A,R)). Let Y ′ = E ∩ Y
and consider the set D = M ∪ {v̄ | v /∈ M} ∪ {ϕ},
where M = X ′ ∪ Y ′ ∪ Z ′ is a model of ϕ (since Ψ′ is
valid, there is such a Z ′ ⊆ Z). It can be checked that D
is admissible; moreover, D attacks d1 since ϕ ∈ D. Thus
D⊕(A,R) ⊃ E

⊕
(A,R), contradiction to E ∈ sem((A,R)).

In case Ψ is not valid, one can show that for all X ′ ⊆ X ,
X ′∪{x̄ | x /∈ X ′}∪Y ∪Z∪{ϕ̄} ∈ semc(CF ). LetX ′ ⊆ X .
Since Ψ is not valid, there is Y ′ ⊆ Y such that for all Z ′ ⊆
Z, X ′ ∪ Y ′ ∪ Z ′ is not a model of ϕ. It can be shown that
X ′∪Y ′∪Z ′∪{v̄ | v /∈ X ′∪Y ′∪Z ′}∪C′∪{ϕ̄}, where Z ′ ⊆
Z and C′ ⊆ C being all clauses which are not satisfied, is
semi-stable in (A,R). Thus semc(CF ) = cl -sem(CF ).

The ΠP
3 -hardness proof of ConCAF

stg also uses Reduction 2;
in fact, we have stgc(CF ) = semc(CF ) and cl -stg(CF ) =
cl -sem(CF ) for all CAFs CF generated via the reduction.

Well-formed CAFs. For well-formed CAFs, cl-preferred
and i-preferred as well as all considered variants of sta-
ble semantics coincide (Dvořák, Rapberger, and Woltran
2020) thus the respective problems become trivial. Since for
semi-stable and stage semantics, the complexity for verifica-
tion drops for both variants, we get the ΠP

2 -membership re-
sults. Hardness is by a reduction from QSAT ∀2 by appropri-
ate adaptions of Reduction 1. Concurrence for well-formed
CAFs with respect to naive semantics is a special case of
CAFs and is therefore in coNP; establishing a correspond-
ing lower bound remains an open problem.

Discussion
In this work we complemented complexity results for inher-
ited semantics and provided a full complexity analysis of
claim-level semantics. We highlight three observations here:
(a) for both approaches the verification problem is harder
than in the AF setting, which is in particular relevant when it
comes to the enumeration of extensions; (b) however, when
restricted to well-formed CAFs the complexity of verifica-
tion drops to the complexity of AFs; and (c) the complexity
of inherited and claim-level semantics differs for naive and
preferred semantics. Our complexity analysis paves the way
for reduction-based implementation (Charwat et al. 2015) of
the considered semantics which is next on our agenda.

We also settled the complexity of the concurrence prob-
lem, i.e., deciding whether two variants of a semantics coin-
cide on a CAF. The concurrence problem is in the tradition
of the well-known coherence problem (Dunne and Bench-
Capon 2002), whose complexity for inherited semantics has
been studied in (Dvořák and Woltran 2020); for claim-based
semantics this remains for future research. While we focused
on two different claim-based argumentation semantics in
this paper, exploring further concepts of claim-focused eval-
uation – as also recently addressed in (Baroni and Riveret
2019) indicating alternative ways of lifting semantics to the
claim-level – is a further point on our agenda.
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