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Abstract

The Craig interpolation property (CIP) states that an inter-
polant for an implication exists iff it is valid. The projective
Beth definability property (PBDP) states that an explicit defi-
nition exists iff a formula stating implicit definability is valid.
Thus, the CIP and PBDP transform potentially hard existence
problems into deduction problems in the underlying logic.
Description Logics with nominals and/or role inclusions do
not enjoy the CIP nor PBDP, but interpolants and explicit
definitions have many potential applications in ontology engi-
neering and ontology-based data management. In this article
we show the following: even without Craig and Beth, the ex-
istence of interpolants and explicit definitions is decidable in
description logics with nominals and/or role inclusions such
as ALCO, ALCH and ALCHIO. However, living without
Craig and Beth makes this problem harder than deduction:
we prove that the existence problems become 2EXPTIME-
complete, thus one exponential harder than validity. The ex-
istence of explicit definitions is 2EXPTIME-hard even if one
asks for a definition of a nominal using any symbol distinct
from that nominal, but it becomes EXPTIME-complete if one
asks for a definition of a concept name using any symbol dis-
tinct from that concept name.

Introduction
The Craig Interpolation Property (CIP) for a logic L states
that an implication ϕ ⇒ ψ is valid in L iff there exists a
formula χ in L using only the common symbols of ϕ and ψ
such that ϕ ⇒ χ and χ ⇒ ψ are both valid in L. χ is then
called an L-interpolant for ϕ⇒ ψ. The CIP is generally re-
garded as one of the most important and useful properties in
formal logic (Van Benthem 2008), with numerous applica-
tions ranging from formal verification (McMillan 2003), to
theory combinations (Cimatti, Griggio, and Sebastiani 2009;
Goel, Krstic, and Tinelli 2009; Calvanese et al. 2020) and
query reformulation and rewriting in databases (Marx 2007;
Toman and Weddell 2011; Benedikt et al. 2016). Description
logics (DLs) are no exception (ten Cate et al. 2006; Seylan,
Franconi, and de Bruijn 2009; Konev et al. 2010; ten Cate,
Franconi, and Seylan 2013; Lutz, Seylan, and Wolter 2019;
Jiménez-Ruiz et al. 2016). A particularly important conse-
quence of the CIP in DLs is the projective Beth definability
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property (PBDP), which states that a concept is implicitly
definable using a signature Σ of symbols iff it is explicitly
definable using Σ. If the concept is a concept name and Σ
the set of all symbols distinct from that concept name, then
we speak of the (non-projective) Beth definability property
(BDP).

The BDP and PBDP have been used in ontology engi-
neering to extract equivalent acyclic terminologies from on-
tologies (ten Cate et al. 2006; ten Cate, Franconi, and Sey-
lan 2013), they have been investigated in ontology-based
data management to equivalently rewrite ontology-mediated
queries (Seylan, Franconi, and de Bruijn 2009; Toman and
Weddell 2020), and they have been proposed to support the
construction of alignments between ontologies (Jiménez-
Ruiz et al. 2016). The CIP is often used as a tool to compute
explicit definitions (ten Cate et al. 2006; ten Cate, Franconi,
and Seylan 2013; Toman and Weddell 2020). It is also the
basic logical property that ensures the robust behaviour of
ontology modules (Konev et al. 2009). In the form of par-
allel interpolation it has been investigated in (Konev et al.
2010) to decompose ontologies. In (Lutz, Seylan, and Wolter
2019), it is used to study P/NP dichotomies in ontology-
based query answering. The PBDP is also related to the
computation of referring expressions in linguistics (Krahmer
and van Deemter 2012) and in ontology-based data man-
agement (Borgida, Toman, and Weddell 2016). It has been
convincingly argued (Borgida, Toman, and Weddell 2017)
that very often in applications the individual names used in
ontologies are insufficient “to allow humans to figure out
what real-world objects they refer to.” A natural way to ad-
dress this problem is to check for such an individual name
a whether there exists a concept C not using a that provides
an explicit definition of a under the ontology O and present
such a concept C to the human user. Also very recently, it
has been observed that strongly separating concepts for pos-
itive and negative examples given as data items in a knowl-
edge base can be represented as interpolants, for appropri-
ately defined ontologies and implications (Funk et al. 2019;
Jung et al. 2020a,b). Thus, under the approach to DL concept
learning proposed in (Fanizzi, d’Amato, and Esposito 2008;
Lisi 2012), searching for a solution to the concept learning
problem can be reduced to computing an interpolant.

The CIP, PBDP, and BDP are so powerful because intu-
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itively very hard existence questions are reduced to straight-
forward deduction questions: an interpolant exists iff an
implication is valid and an explicit definition exists iff a
straightforward formula stating implicit definability is valid.
The existence problems are thus not harder than validity. For
example, in the DL ALC, the existence of an interpolant or
an explicit definition can be decided in EXPTIME simply
because deduction in ALC is in EXPTIME (and without on-
tology even in PSPACE).

Unfortunately, the CIP and the PBDP fail to hold for many
standard DLs. Particularly important examples of failure are
the extension ALCO of ALC with nominals, the extension
ALCH ofALC with role inclusions, and extensions of these
with inverse roles and the universal role. To illustrate, even
for very simple implications such as ({a} u ∃r.{a}) v
({b} → ∃r.{b}) no ALCO-interpolant exists. Moreover, at
least for nominals, there is no satisfactory way to extend the
expressive power of (expressive) DLs with nominals to en-
sure the existence of interpolants as validity is undecidable
in any extension of ALCO with the CIP (ten Cate 2005a).

The aim of this paper is to investigate the complexity of
deciding the existence of interpolants and explicit defini-
tions for DLs in which this cannot be deduced using the
CIP or PBDP. We consider ALCO and ALCH and their
extensions by inverse roles and/or the universal role. We
note that both role inclusions and nominals are part of the
OWL 2 DL standard and are used in many real-world on-
tologies (Whetzel et al. 2011). We prove that the existence of
interpolants and the existence of explicit definitions are both
2EXPTIME-complete in all cases, thus confirming the sus-
picion that these are harder problems than deduction if one
has to live without Beth and Craig. For DLs with nominals,
the 2EXPTIME lower bound even holds if one asks for an
explicit definition of a nominal over the signature contain-
ing all symbols distinct from that nominal, a scenario that is
of particular interest for the study of referring expressions.

For the BDP, the situation is different as ALCH and
its extensions without nominals enjoy the BDP (ten Cate
2005b; ten Cate et al. 2006). Moreover, while ALCO and
ALCHO do not enjoy the BDP (ten Cate 2005b; ten Cate
et al. 2006), we show here that their extensions with the
universal role (ten Cate 2005b; ten Cate et al. 2006) and/or
inverse roles do. In fact, despite the fact that ALCO and
ALCHO do not enjoy the BDP, we show that for all DLs
considered in this paper the problem to decide the existence
of an explicit definition of a concept name over the signa-
ture containing all symbols distinct from that concept name
is EXPTIME-complete, thus not harder than deduction.

Detailed proofs are provided in the full version (Artale
et al. 2020).

Related Work
The CIP, PBDP, and BDP have been investigated exten-
sively. In addition to the work discussed in the introduc-
tion, we mention the investigation of interpolation and de-
finability in modal logic in general (Maksimova and Gab-
bay 2005) and in hybrid modal logic in particular (Areces,
Blackburn, and Marx 2001; ten Cate 2005a). Also related
is work on interpolation in guarded logics (Hoogland, Marx,

and Otto 1999; Hoogland and Marx 2002; Bárány, Benedikt,
and ten Cate 2018; Benedikt, ten Cate, and Vanden Boom
2016, 2015).

Relevant work on Craig interpolation and Beth definabil-
ity in description logic has been discussed in the introduc-
tion. Craig interpolation should not be confused with work
on uniform interpolation, both in description logic (Lutz,
Seylan, and Wolter 2012; Lutz and Wolter 2011; Nikitina
and Rudolph 2014; Koopmann and Schmidt 2015) and in
modal logic (Visser et al. 1996; Kowalski and Metcalfe
2019; Iemhoff 2019). Uniform interpolants generalize Craig
interpolants in the sense that a uniform interpolant is an in-
terpolant for a fixed antecedent and any formula implied by
the antecedent and sharing with it a fixed set of symbols.

Interpolant and explicit definition existence have hardly
been investigated for logics that do not enjoy the CIP or
PBDP. Exceptions include linear temporal logic, LTL, for
which the decidability of interpolant existence has been
shown in (Place and Zeitoun 2016; Henkell 1988; Henkell
et al. 2010) and the guarded fragment for which decidabil-
ity and 3EXPTIME completenss for interpolant existence are
shown in (Jung and Wolter 2020). This is in contrast to work
on uniform interpolants in description logics which has in
fact focused on the existence and computation of uniform
interpolants that do not always exist.

Finally, we note that in (Borgida, Toman, and Weddell
2016, 2017; Toman and Weddell 2019), the authors propose
the use of referring expressions in a query answering con-
text with weaker DLs. The focus is on using functional roles
to generate referring expressions for individuals for which
there might not be a denoting individual name at all in the
language.

Preliminaries
We use standard DL notation, see (Baader et al. 2017) for de-
tails. Let NC, NR, and NI be mutually disjoint and countably
infinite sets of concept, role, and individual names. A role
is a role name s or an inverse role s−, with s a role name
and (s−)− = s. We use u to denote the universal role. A
nominal takes the form {a}, with a an individual name. An
ALCIOu-concept is defined according to the syntax rule

C,D ::= > | A | {a} | ¬C | C uD | ∃r.C

where a ranges over individual names, A over concept
names, and r over roles. We use C t D as abbreviation for
¬(¬Cu¬D), C → D for ¬CtD, and ∀r.C for ¬∃r.(¬C).
We use several fragments of ALCIOu, including ALCIO,
obtained by dropping the universal role, ALCOu, obtained
by dropping inverse roles, ALCO, obtained from ALCOu
by dropping the universal role, and ALC, obtained from
ALCO by dropping nominals. If L is any of the DLs above,
then an L-concept inclusion (L-CI) takes the form C v D
with C and D L-concepts. An L-ontology is a finite set of
L-CIs. We also consider DLs with role inclusions (RIs), ex-
pressions of the form r v s, where r and s are roles. As
usual, the addition of RIs is indicated by adding the let-
ter H to the name of the DL, where inverse roles occur in
RIs only if the DL admits inverse roles. Thus, for example,
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[AtomC] for all (d, e) ∈ S: d ∈ AI iff e ∈ AJ
[AtomI] for all (d, e) ∈ S: d = aI iff e = aJ

[Forth] if (d, e) ∈ S and (d, d′) ∈ rI , then
there is a e′ with (e, e′) ∈ rJ and (d′, e′) ∈ S.

[Back] if (d, e) ∈ S and (e, e′) ∈ rJ , then
there is a d′ with (d, d′) ∈ rI and (d′, e′) ∈ S.

Figure 1: Conditions on S ⊆ ∆I ×∆J .

ALCH-ontologies are finite sets ofALC-CIs and RIs not us-
ing inverse roles and ALCHIOu-ontologies are finite sets
of ALCIOu-CIs and RIs. In what follows we use DLnr to
denote the set of DLs ALCO, ALCIO, ALCH, ALCHO,
ALCHIO, and their extensions with the universal role. To
simplify notation we do not drop the letterH when speaking
about the concepts and CIs of a DL with RIs. Thus, for ex-
ample, we sometimes use the expressionsALCHO-concept
and ALCHO-CI to denote ALCO-concepts and CIs, re-
spectively.

The semantics is defined in terms of interpretations I =
(∆I , ·I) as usual, see (Baader et al. 2017). An interpretation
I satisfies an L-CI C v D if CI ⊆ DI and an RI r v s
if rI ⊆ sI . We say that I is a model of an ontology O if
it satisfies all inclusions in it. We say that an inclusion α
follows from an ontology O, in symbols O |= α, if every
model of O satisfies α. We write O |= C ≡ D if O |= C v
D and O |= D v C. A concept C is satisfiable w.r.t. an
ontology O if there is a model I of O with CI 6= ∅.

A signature Σ is a set of concept, role, and individual
names, uniformly referred to as symbols. Following standard
practice we do not regard the universal role as a symbol but
as a logical connective. Thus, the universal role is not con-
tained in any signature. We use sig(X) to denote the set of
symbols used in any syntactic object X such as a concept
or an ontology. An L(Σ)-concept is an L-concept C with
sig(C) ⊆ Σ.

We next recall model-theoretic characterizations of when
nodes in interpretations are indistinguishable by concepts
formulated in one of the DLs L introduced above. A pointed
interpretation is a pair I, d with I an interpretation and
d ∈ ∆I . For pointed interpretations I, d and J , e and a
signature Σ, we write I, d ≡L,Σ J , e and say that I, d and
J , e are L(Σ)-equivalent if d ∈ CI iff e ∈ CJ , for all
L(Σ)-concepts C.

As for the model-theoretic characterizations, we start with
ALC. Let Σ be a signature. A relation S ⊆ ∆I × ∆J

is an ALC(Σ)-bisimulation if conditions [AtomC], [Forth]
and [Back] from Figure 1 hold, where A and r range over
all concept and role names in Σ, respectively. We write
I, d ∼ALC,Σ J , e and call I, d and J , e ALC(Σ)-bisimilar
if there exists an ALC(Σ)-bisimulation S such that (d, e) ∈
S. For ALCO, we define ∼ALCO,Σ analogously, but now
demand that, in Figure 1, also condition [AtomI] holds for
all individual names a ∈ Σ. For languages L with inverse
roles, we demand that, in Figure 1, r additionally ranges over
inverse roles. For languages L with the universal role we ex-
tend the respective conditions by demanding that the domain
dom(S) and range ran(S) of S contain ∆I and ∆J , respec-

tively. If a DL L has RIs, then we use I, d ∼L,Σ J , e to
state that I, d ∼L′,Σ J , e for the fragment L′ of L without
RIs.

The next lemma summarizes the model-theoretic charac-
terizations for all relevant DLs (Lutz, Piro, and Wolter 2011;
Goranko and Otto 2007). For the definition of ω-saturated
structures, we refer the reader to (Chang and Keisler 1998).
Lemma 1 Let I, d and J , e be pointed interpretations and
ω-saturated. Let L ∈ DLnr and Σ a signature. Then

I, d ≡L,Σ J , e iff I, d ∼L,Σ J , e.

For the “if”-direction, the ω-saturatednesses condition can
be dropped.

Craig Interpolation and Beth Definability
We introduce the Craig interpolation property (CIP) and the
(projective) Beth definability property ((P)BDP) as defined
in (ten Cate, Franconi, and Seylan 2013). We recall their re-
lationship and observe that no DL in DLnr enjoys the CIP or
PBDP while all exceptALCO andALCHO enjoy the BDP.

LetO1,O2 beL-ontologies and letC1, C2 beL-concepts.
We set sig(O, C) = sig(O)∪sig(C), for any ontologyO and
concept C. Then an L-concept D is called an L-interpolant
for C1 v C2 under O1 ∪ O2 if
• sig(D) ⊆ sig(O1, C1) ∩ sig(O2, C2);
• O1 ∪ O2 |= C1 v D;
• O1 ∪ O2 |= D v C2.

Definition 1 A DL L has the Craig interpolation property
(CIP) if for anyL-ontologiesO1,O2 andL-conceptsC1, C2

such thatO1∪O2 |= C1 v C2 there exists an L-interpolant
for C1 v C2 under O1 ∪ O2.

We next define the relevant definability notions. Let O be
an ontology and C a concept. Let Σ ⊆ sig(O, C) be a sig-
nature. An L(Σ)-concept D is an explicit L(Σ)-definition of
C under O if O |= C ≡ D. We call C explicitly definable
in L(Σ) under O if there is an explicit L(Σ)-definition of
C under O. The Σ-reduct I|Σ of an interpretation I coin-
cides with I except that no non-Σ symbol is interpreted in
I|Σ. A concept C is called implicitly definable from Σ under
O if the Σ-reduct of any model I of O determines the set
CI ; in other words, if I and J are both models of O such
that I|Σ = J|Σ, then CI = CJ . It is easy to see that im-
plicit definability can be reformulated as a standard reason-
ing problem as follows: a concept C is implicitly definable
from Σ under O iff O∪OΣ |= C ≡ CΣ, where OΣ and CΣ

are obtained from O and, respectively, C by replacing ev-
ery non-Σ symbol uniformly by a fresh symbol. If a concept
is explicitly definable in L(Σ) under O, then it is implicitly
definable from Σ under O, for any language L. A logic en-
joys the projective Beth definability property if the converse
implication holds as well:
Definition 2 A DL L has the projective Beth definability
property (PBDP) if for any L-ontologyO, L-conceptC, and
signature Σ ⊆ sig(O, C) the following holds: if C is implic-
itly definable from Σ under O, then C is explicitly L(Σ)-
definable under O.
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It is known that the CIP and PBDP are tightly linked (ten
Cate, Franconi, and Seylan 2013).
Lemma 2 If L enjoys the CIP, then L enjoys the PBDP.
To see this, assume that an L-concept C is implicitly defin-
able from Σ under an L-ontology O, for some signature Σ.
Then O ∪OΣ |= C ≡ CΣ, with OΣ and CΣ as above. Take
an L-interpolant D for C v CΣ under O ∪ OΣ. Then D is
an explicit L(Σ)-definition of C under O.

An important special case of explicit definability is the
explicit definability of a concept name A from sig(O)\{A}
under an ontology O. For this case, we consider the follow-
ing non-projective version of the Beth definability property:
A DL L enjoys the Beth definability property (BDP) if for
any L-ontology O and any concept name A the following
holds: if A is implicitly definable from sig(O) \ {A} under
O, then A is explicitly L(sig(O) \ {A})-definable under O.
Clearly, the PBDP implies the BDP, but not vice versa.

Many DLs including ALC, ALCI , and ALCIu, enjoy
CIP and (P)BDP. However, DLs supporting nominals or role
inclusions do not enjoy PBDP and thus, by Lemma 2, also
not the CIP (ten Cate, Franconi, and Seylan 2013). The fol-
lowing theorem summarizes the situation.
Theorem 3 (1) No L ∈ DLnr enjoys the CIP or the PBDP.
(2) All L ∈ DLnr \ {ALCO,ALCHO} enjoy the BDP.
ALCO and ALCHO do not enjoy the BDP.

To see Part (1) of the theorem, we provide two example
ontologies. Consider first the ALCO-ontology
O1 = { {a} v ∃r.{a}, A u ¬{a} v ∀r.(¬{a} → ¬A),

¬A u ¬{a} v ∀r.(¬{a} → A) }.
Thus, O1 implies that a is reflexive and that no node dis-

tinct from a is reflexive. Let Σ = {r,A}. Then {a} is im-
plicitly definable from Σ under O1 since O1 |= ∀x((x =
a) ↔ r(x, x)), but one can show that {a} is not explicitly
L(Σ)-definable under O1 for any L ∈ DLnr with nominals.

Consider now the ALCH-ontology
O2 = { r v r1, r v r2, ¬∃r.> u ∃r1.A v ∀r2.¬A,

¬∃r.> u ∃r1.¬A v ∀r2.A }
from (ten Cate, Franconi, and Seylan 2013). Then ∃r.>
is implicitly definable from Σ = {r1, r2} under O2 as
O2 |= ∀x

(
∃y r(x, y) ↔ ∃y (r1(x, y) ∧ r2(x, y))

)
, but it

is not explicitly definable from Σ under O2 in any DL from
DLnr.

Part (2) of Theorem 3 for L ∈ DLnr without nominals
or with the universal role follows from Theorems 2.5.4 and
6.2.4 in (ten Cate 2005b), respectively, see also (ten Cate
et al. 2006). That ALCO and ALCHO do not enjoy the
BDP is shown in (ten Cate et al. 2006). It remains to prove
that ALCIO and ALCHIO enjoy the BDP. This is done in
the appendix using a generalized version of cartesian prod-
ucts called bisimulation products.

Notions Studied and Main Result
The failure of CIP and (P)BDP reported in Theorem 3 mo-
tivates the investigation of the respective decision problems
of interpolant existence and projective and non-projective
definition existence, which are defined as follows.

Definition 3 Let L be a DL. Then L-interpolant existence
is the problem to decide for any L-ontologies O1,O2 and
L-concepts C1, C2 whether there exists an L-interpolant for
C1 v C2 under O1 ∪ O2.

Definition 4 Let L be a DL. Projective L-definition exis-
tence is the problem to decide for any L-ontology O, L-
concept C, and signature Σ ⊆ sig(O, C) whether there
exists an explicit L(Σ)-definition of C under O. (Non-
projective) L-definition existence is the sub-problem where
C ranges only over concept namesA and Σ = sig(O)\{A}.
Observe that interpolant existence reduces to checkingO1∪
O2 |= C1 v C2 for logics with the CIP but that this is not
the case for logics without the CIP. Similarly, projective defi-
nition existence reduces to checking implicit definability for
logics with the PBDP but not for logics without the PBDP.
Also observe that the following reduction can be proved sim-
ilarly to the proof of Lemma 2.

Lemma 4 Let L be a DL. There is a polynomial time re-
duction of projective L-definition existence to L-interpolant
existence.

In terms of applications of the introduced decision prob-
lems, we note that non-projective definition existence is par-
ticularly relevant for the extraction of acyclic terminologies
from ontologies (ten Cate et al. 2006), while the flexibility of
projective definition existence is useful in most other appli-
cations discussed in the introduction. When it comes to com-
puting referring expressions as discussed in the introduction,
we are interested in the case when C ranges over nominals
{a}. We then speak of projective L-referring expression ex-
istence and of (non-projective) L-referring expression exis-
tence, if Σ = sig(O) \ {a}.

The main concern of the present paper is to study the com-
putational complexity of the introduced decision problems.
As a preliminary step, we provide model-theoretic charac-
terizations for the existence of interpolants and explicit defi-
nitions in terms of bisimulations as captured in the following
central notion.

Definition 5 (Joint consistency) Let L ∈ DLnr. Let
O1,O2 be L-ontologies, C1, C2 be L-concepts, and
Σ ⊆ sig(O1,O2, C1, C2) be a signature. Then O1, C1

and O2, C2 are called jointly consistent modulo L(Σ)-
bisimulations if there exist pointed models I1, d1 and I2, d2

such that Ii is a model of Oi, di ∈ CIii , for i = 1, 2, and
I1, d1 ∼L,Σ I2, d2.

The associated decision problem, joint consistency modulo
L-bisimulations, is defined in the expected way. The fol-
lowing result characterizes the existence of interpolants us-
ing joint consistency moduloL(Σ)-bisimulations. The proof
uses Lemma 1.

Theorem 5 Let L ∈ DLnr. Let O1,O2 be L-ontologies
and let C1, C2 be L-concepts, and Σ = sig(O1, C1) ∩
sig(O2, C2). Then the following conditions are equivalent:

1. there is no L-interpolant for C1 v C2 under O1 ∪ O2;
2. O1∪O2, C1 andO1∪O2,¬C2 are jointly consistent mod-

ulo L(Σ)-bisimulations.
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The following characterization of the existence of explicit
definitions is a direct consequence of Theorem 5.

Theorem 6 LetL ∈ DLnr. LetO be anL-ontology,C anL-
concept, and Σ ⊆ sig(O, C) a signature. Then the following
conditions are equivalent:

1. there is no explicit L(Σ)-definition of C under O;
2. O, C and O,¬C are jointly consistent modulo L(Σ)-

bisimulations.

In the remainder of the paper we establish the following tight
complexity results for the introduced decision problems.

Theorem 7 Let L ∈ DLnr. Then, (i) L-interpolant exis-
tence and projective L-definition existence are 2EXPTIME-
complete, (ii) if L admits nominals, then both projective
and non-projective L-referring expression existence are
2EXPTIME-complete, and (iii) non-projective L-definition
existence is EXPTIME-complete.

Observe that the characterizations given in Theorems 5
and 6 provide reductions of interpolant and definition ex-
istence to the complement of joint consistency modulo L-
bisimulations. Hence for the upper bounds in Points (i)
and (ii), it suffices to decide the latter in double exponential
time which is what we do in the next section. After that, we
provide lower bounds for definition existence and referring
expression existence which imply the corresponding lower
bounds for interpolant existence via Lemma 4. Finally, we
show the upper bounds of Point (iii); the lower bounds are
inherited from validity.

The 2ExpTime Upper Bound
We provide a double exponential time mosaic-style
algorithm that decides joint consistency modulo L-
bisimulations, for all L ∈ DLnr.

Theorem 8 Let L ∈ DLnr. Then joint consistency modulo
L-bisimulations is in 2EXPTIME.

Assume L ∈ DLnr. We may assume that L extends
ALCHO. Consider L-ontologies O1 and O2 and L-
concepts C1 and C2. Let Σ ⊆ sig(O1,O2, C1, C2) be a
signature. Let Ξ = sub(O1,O2, C1, C2) denote the closure
under single negation of the set of subconcepts of concepts
inO1,O2, C1, C2. A Ξ-type t is a subset of Ξ such that there
exists an interpretation I and d ∈ ∆I with t = tpΞ(I, d),
where

tpΞ(I, d) = {C ∈ Ξ | d ∈ CI}
is the Ξ-type realized at d in I. Let T (Ξ) denote the set
of all Ξ-types. Let r be a role. A pair (t1, t2) of Ξ-types
t1, t2 is r-coherent for Oi, in symbols t1  r,Oi

t2, if the
following condition holds for all roles s with Oi |= r v s:
(1) if ¬∃s.C ∈ t1, then C 6∈ t2 and (2) if ¬∃s−.C ∈ t2, then
C 6∈ t1. We aim to work with pairs (T1, T2) ∈ 2T (Ξ)×2T (Ξ)

such that all t ∈ T1 ∪ T2 are realized in mutually L(Σ)-
bisimilar nodes of models of Oi, for i = 1, 2.

Thus, we now formulate conditions on a set S ⊆ 2T (Ξ) ×
2T (Ξ) which ensure that one can construct from S models
Ii of Oi such that for any pair (T1, T2) ∈ S and all t ∈ Ti,
i = 1, 2, there are nodes dt ∈ ∆Ii realizing t, such that all

dt, t ∈ T1∪T2 are mutually L(Σ)-bisimilar. We lift the defi-
nition of r-coherence from pairs of types to pairs of elements
of 2T (Ξ) × 2T (Ξ). Let r be a role. We call a pair (T1, T2),
(T ′1, T

′
2) r-coherent, in symbols (T1, T2) r (T ′1, T

′
2), if for

i = 1, 2 and any t ∈ Ti there exists a t′ ∈ T ′i such that
t  r,Oi

t′. Moreover, to deal with DLs with inverse roles,
we say that (T1, T2), (T ′1, T

′
2) are fully r-coherent, in sym-

bols (T1, T2) !r (T ′1, T
′
2) if the converse holds as well:

for i = 1, 2 and any t′ ∈ T ′i there exists a t ∈ Ti such that
t r,Oi t

′.
We first formulate conditions that ensure that nominals

are interpreted as singletons and that individuals in Σ are
preserved by the bisimulation. Say that S is good for nom-
inals if for every individual name a ∈ sig(Ξ) and i = 1, 2
there exists exactly one tia with {a} ∈ tia ∈

⋃
(T1,T2)∈S Ti

and exactly one pair (T1, T2) ∈ S with tia ∈ Ti. Moreover,
if a ∈ Σ, then that pair either takes the form ({t1a}, {t2a}) or
the form ({t1a}, ∅) and (∅, {t2a}), respectively.

Secondly, we ensure that the types used in S are consistent
withO1 andO2, respectively. Say that S is good forO1,O2

if (∅, ∅) 6∈ S and for every (T1, T2) ∈ S all types t ∈ Ti are
realizable in a model of Oi, i = 1, 2.

Finally, we need to ensure that concept names in Σ are
preserved by the bisimulation and that the back and forth
condition of bisimulations hold. S is called ALCHO(Σ)-
good if it is good for nominals and O1,O2, and the follow-
ing conditions hold:

1. Σ-concept name coherence: for any concept name A ∈ Σ
and (T1, T2) ∈ S , A ∈ t iff A ∈ t′ for all t, t′ ∈ T1 ∪ T2;

2. Existential saturation: for i = 1, 2, if (T1, T2) ∈ S and
∃r.C ∈ t ∈ Ti, then there exists (T ′1, T

′
2) ∈ S such that

(1) there exists t′ ∈ T ′i with C ∈ t′ and t r,Oi
t′ and (2)

if Oi |= r v s with s ∈ Σ, then (T1, T2) s (T ′1, T
′
2).

If inverse roles or the universal role are present then we
strengthen Condition 2 to Condition 2I and add Condition
3u, respectively:

2I. Condition 2 with ‘s ∈ Σ’ replaced by ‘s a role over Σ’
and ‘(T1, T2)  s (T ′1, T

′
2)’ replaced by ‘(T1, T2) !s

(T ′1, T
′
2)’.

3u. if (T1, T2) ∈ S , then Ti 6= ∅, for i = 1, 2.

Thus, S is ALCHIO(Σ)-good if the conditions above
hold with Condition 2 replaced by Condition 2I and S
is ALCHOu(Σ)-good and, respectively, ALCHIOu(Σ)-
good if also Condition 3u holds.

Lemma 9 Let L ∈ DLnr. Assume O1,O2 are L-ontologies,
C1, C2 are L-concepts, and let Σ ⊆ sig(Ξ) be a signature.
The following conditions are equivalent:

1. O1, C1 and O2, C2 are jointly consistent modulo L(Σ)-
bisimulations.

2. there exists an L(Σ)-good set S and Ξ-types t1, t2 with
C1 ∈ t1 and C2 ∈ t2 such that t1 ∈ T1 and t2 ∈ T2 for
some (T1, T2) ∈ S .

Proof. (sketch) “1 ⇒ 2”. Let I1, d1 ∼L,Σ I2, d2 for
models I1 of O1 and I2 of O2 such that d1, d2 realize Ξ-
types t1, t2 and C1 ∈ t1, C2 ∈ t2. Define S by setting
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(T1, T2) ∈ S if there is d ∈ ∆Ii for some i ∈ {1, 2} such
that

Tj = {tpΞ(Ij , e) | e ∈ ∆Ij , Ii, d ∼L,Σ Ij , e},

for j = 1, 2. One can show that S is L(Σ)-good and satisfies
Condition 2.

“2 ⇒ 1”. Assume S is L(Σ)-good and we have Ξ-types
s1, s2 with C1 ∈ s1 and C2 ∈ s2 such that s1 ∈ S1 and
s2 ∈ S2 for some (S1, S2) ∈ S . If L does not admit inverse
roles, then interpretations I1 and I2 witnessing Condition 1
are defined by setting

∆Ii := {(t, (T1, T2)) | t ∈ Ti and (T1, T2) ∈ S}
rIi := {((t, p), (t′, p′)) ∈ ∆Ii ×∆Ii | t r,Oi

t′,

∀s ∈ Σ ((Oi |= r v s)⇒ p s p
′)}

AIi := {(t, p) ∈ ∆Ii | A ∈ t}
aIi := (t, (T1, T2)) ∈ ∆Ii , {a} ∈ t ∈ Ti

If L admits inverse roles then replace ‘s ∈ Σ’ by ‘s a role
over Σ’ and ‘p  s p

′’ by ‘p !s p
′’ in the definition of

rIi . o

The following lemma can now be established using a stan-
dard recursive bad mosaic elimination procedure.
Lemma 10 Let L ∈ DLnr. Then it is decidable in double ex-
ponential time whether forL-ontologiesO1,O2,L-concepts
C1, C2, and a signature Σ ⊆ sig(Ξ) there exists an S and
t1, t2 satisfying Condition 2 of Lemma 9.

Theorem 8 is a direct consequence of Lemmas 9 and 10.

2ExpTime Lower Bounds
We show that for any L in DLnr, projective L-definition
existence is 2EXPTIME-hard and that, if L supports nomi-
nals, even (non-projective) L-referring expression existence
is 2EXPTIME-hard.

DLs with Nominals We start with DLs with nominals. By
Theorems 5 and 6, it suffices to prove the following result.
Lemma 11 Let L ∈ DLnr admit nominals. It is 2EXPTIME-
hard to decide for an L-ontology O, individual name b, and
signature Σ ⊆ sig(O)\{b} whetherO, {b} andO,¬{b} are
jointly consistent modulo L(Σ)-bisimulations. This is true
even if b is the only individual in O and Σ = sig(O) \ {b}.

We reduce the word problem for 2n-space bounded alter-
nating Turing machines, which is known to be 2EXPTIME-
hard (Chandra, Kozen, and Stockmeyer 1981). An alternat-
ing Turing machine (ATM) is a tuple M = (Q,Θ,Γ, q0,∆)
where Q is the set of states consisting of existential and uni-
versal states, Θ and Γ are input and tape alphabet, q0 ∈ Q
is the initial state, and the transition relation ∆ makes sure
that existential and universal states alternate. We assume bi-
nary branching. The acceptance condition of our ATMs is
defined in a slightly unusual way, without using accepting
states: The ATM accepts if it runs forever on all branches and
rejects otherwise. This is without loss of generality, since
starting from the standard ATM model, this can be achieved

by assuming that the ATM terminates on every input and
then modifying it to enter an infinite loop from the accepting
state. For a precise definition of ATMs and their acceptance
condition, we refer the reader to the appendix.

The idea of the reduction is as follows. Given input word
w of length n, we construct an ontology O such that M ac-
ceptsw iffO, {b} andO,¬{b} are jointly consistent modulo
L(Σ)-bisimulations, where

Σ = {r, s, Z,B∀, B1
∃, B

2
∃} ∪ {Aσ | σ ∈ Γ ∪ (Q× Γ)}.

We provide the reduction here for L = ALCO; the modi-
fications required for Σ = sig(O) \ {b}, inverse roles, and
the universal role are given in the appendix. The ontologyO
enforces that r(b, b) holds using the CI {b} v ∃r.{b}. More-
over, any node distinct from b with an r-successor lies on an
infinite r-path ρ, enforced by the CIs:

¬{b} u ∃r.> v Is Is v ∃r.> u ∀r.Is
Thus, if there exist models I and J of O such that
I, bI ∼ALC,Σ J , d for some d 6= bJ it follows that in J all
nodes on some r-path ρ through d are ALCO(Σ)-bisimilar.
The situation is illustrated in Figure 2 where dashed egdes
represent the enforced bisimulation. In each point of ρ starts
an infinite tree along role s that is supposed to mimick the
computation of M : a configuration of M is represented by
2n consecutive elements of this infinite tree and is encoded
by the concept names Aσ ∈ Σ. Moreover, each configu-
ration is labeled by B∀ (if it is universal) and Bi∃ (if it is
existential; i ∈ {1, 2} refers to the existential choice that is
taken). All these trees, called T∗ and Ti in Figure 2, have
identical Σ-decorations due to the enforced bisimulation.

To coordinate successor configurations, we proceed as
follows. Along ρ, a counter counts modulo 2n using con-
cept names not in Σ. Along the trees Ti, two counters are
maintained:
• one counter starting at 0 and counting modulo 2n to divide

the tree in configurations of length 2n;
• another counter starting at the value of the counter on ρ

and also counting modulo 2n.
As on the ith s-tree Ti the second counter starts at all nodes
at distances k × 2n − i, for all k ≥ 1, we are in the position
to coordinate all positions at all successive configurations,
using concept names not in Σ.

DLs with Role Inclusions By Theorems 5 and 6, it suf-
fices to prove the following.
Lemma 12 Let L ∈ DLnr admit role inclusions. It is
2EXPTIME-hard to decide for an L-ontologyO, concept C,
and signature Σ ⊆ sig(O) whether O, C and O,¬C are
jointly consistent modulo L(Σ)-bisimulations.
As in the proof of Lemma 11, we reduce the word prob-
lem for exponentially space bounded ATMs, using the same
ATM model as above. In fact the only difference to the
proof of Lemma 11 is the way in which we enforce that
exponentially many elements are L(Σ)-bisimilar. We show
how to achieve this for L = ALCH using signature Σ′ =
(Σ\{r})∪{r1, r2}. The symbols in Σ′∩Σ play exactly the
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Figure 2: Enforced bisimulation in lower bound

same role as above. The modifications for the inclusion of
inverse roles and the universal role are discussed in the ap-
pendix. The idea is to construct an ontologyO′ such that M
accepts w iff O′, C and O′,¬C are jointly consistent mod-
ulo L(Σ′)-bisimulations, for C = ∃rn.>.

We replace the nominal b by an r-chain of length n as
follows (recall r /∈ Σ′). The ontology O′ contains the RIs
r v r1, r v r2 and the CI ¬∃rn.> u ∃rn1 .> v R. The con-
cept name R induces a binary tree TR of depth n in which
each inner node has an r1- and an r2-successor, and whose
leaves carry counter values from 0 to 2n − 1, encoded via
non-Σ concept names. To achieve the bisimilar elements, we
use that if there exist models I and J of O′ and d ∈ ∆I ,
e ∈ ∆J such that
• d ∈ (∃rn.>)I , e ∈ (¬∃rn.>)J ;
• I, d ∼ALC,Σ′ J , e;
then it follows that in J there exists a binary tree TR with
root e and of depth n such that all leaves of TR areALC(Σ′)-
bisimilar: Due to I, d ∼ALC,Σ′ J , e and d ∈ (∃rn1 .>)I , we
have e ∈ (∃rn1 .>)J and thus e ∈ RI which starts TR. More-
over, as r v ri for i = 1, 2, we have for the r-path starting
at d in I for any r1/r2 sequence of length n a corresponding
path of length n starting at e in J . Thus, all leaves of TR are
ALC(Σ′)-bisimilar.

The rest of the proof is as above: O′ enforces that ev-
ery leaf of TR is the start of an infinite tree along role s
along which the same two counters are maintained; the sec-
ond counter starts at the value of the counter on the leaf.
The computation tree of M on input w is encoded as above
and the coordination between consecutive configuration is
achieved by the availability of the second counter and using
non-Σ-symbols.

Non-Projective Definition Existence
We show that for L in DLnr, non-projective L-definition ex-
istence is in EXPTIME. Note that by Theorem 3 (2), ALCO
andALCHO are the only DLs in DLnr that do not enjoy the
BDP. Thus it suffices to consider these two languages.

To motivate our approach, observe that the addition of in-
verse roles or the universal role to ALCO or ALCHO re-
stores the BDP. The following example from (ten Cate et al.

2006) illustrates what is happening: let O be the ontology
containing A v {a}, {b} u B v ∃r.({a} u A), and {b} u
¬B v ∃r.({a} u ¬A). Then A is explicitly definable under
O by both {a}u∃r−.(Bu{b}) and by {a}u∃u.(Bu{b}),
but A is not explicitly ALCO({r,B, b, a})-definable under
O. This example motivates the following characterization,
proved using Theorem 6 and bisimulation products. Let I, d
be a pointed model and Σ a signature. Denote by ∆I↓d,Σ
the smallest subset of ∆I such that d ∈ ∆I↓d,Σ and for all
(e, e′) ∈ rI with r a role name in Σ, if e ∈ ∆I↓d,Σ, then
e′ ∈ ∆I↓d,Σ. The restriction of I to ∆I↓d,Σ is denoted I↓d,Σ
and called the interpretation generated by d w.r.t. Σ in I.

Lemma 13 Let O be an ALCHO-ontology, A a concept
name, and Σ = sig(O) \ {A}. Then A is not explicitly de-
finable inALCHO(Σ) underO iff there are pointed models
I1, d and I2, d such that
• Ii is a model of O, for i = 1, 2;
• the Σ-reducts of I1↓d,Σ and I2↓d,Σ are identical;
• d ∈ AI1 and d 6∈ AI2 .

Interpretations I1 and I2 witnessing that A is not
ALCO({r,B, b, a})-definable under the ontology O de-
fined above are obtained by taking ∆Ii = {a, b} with a, b
interpreting themselves and rIi = {(b, a)}, for i = 1, 2, and
setting AI1 = {a}, BI1 = {b}, AI2 = BI2 = ∅. By re-
formulating the condition given in Lemma 13 as a concept
satisfiability problem w.r.t. anALCHO-ontology, we obtain
that non-projective ALCHO-definition existence is in EX-
PTIME, as required. The EXPTIME upper bound for ALCO
follows from the EXPTIME upper bound for ALCHO as
both languages have the same concept expressions.

Discussion
We have shown that deciding the existence of interpolants
and explicit definitions is 2EXPTIME-complete for DLs
ranging from ALCO and ALCH to ALCHIOu. Our al-
gorithms are not directly applicable in practice to decide the
existence of interpolants or explicit definitions nor to com-
pute them if they exist. We are optimistic, however, that the
insights from the upper bound proof can be used to design
complete tableau-like procedures that extend those in (ten
Cate, Franconi, and Seylan 2013). From a theoretical view-
point, also many interesting questions remain to be explored.
For example, what is the size of interpolants and explicit def-
initions? The techniques introduced in this paper should be
a good starting point. Also, while for ALCHIO and logics
with the universal role, the 2EXPTIME lower bound holds al-
ready under empty ontologies, this remains open forALCO
andALCH. Finally, there are many more DLs which do not
enjoy the CIP and PBDP and for which the complexity of
interpolant and explicit definition existence are open. Ex-
amples include expressive languages such as SHOIQ and
Horn DLs with nominals where recent semantic characteri-
zations (Jung et al. 2019) might be helpful.
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