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Abstract

In this work, we introduce a Denser Feature Network
(DenserNet) for visual localization. Our work provides three
principal contributions. First, we develop a convolutional
neural network (CNN) architecture which aggregates feature
maps at different semantic levels for image representations.
Using denser feature maps, our method can produce more
keypoint features and increase image retrieval accuracy. Sec-
ond, our model is trained end-to-end without pixel-level an-
notation other than positive and negative GPS-tagged image
pairs. We use a weakly supervised triplet ranking loss to
learn discriminative features and encourage keypoint feature
repeatability for image representation. Finally, our method
is computationally efficient as our architecture has shared
features and parameters during forwarding propagation. Our
method is flexible and can be crafted on a light-weighted
backbone architecture to achieve appealing efficiency with a
small penalty on accuracy. Extensive experiment results in-
dicate that our method sets a new state-of-the-art on four
challenging large-scale localization benchmarks and three
image retrieval benchmarks with the same level of supervi-
sion. The code is available at https://github.com/goodproj13/
DenserNet.

Introduction

The task of visual localization is to predict the geographic
location of a query image, based on its comparisons to GPS-
tagged images from a database (Salarian et al. 2018). Visual
localization has drawn considerable attention recently due
to its potential value to wide-ranging applications such as
robot navigation or autonomous driving (Liu et al. 2020b,a).
Under the region where GPS signal is partially or completely
shadowed, visual localization is an effective addition to GPS
to support the operation of these mobile agents.

In our work, we cast the visual localization problem
as an image retrieval task (Arandjelovic et al. 2016). Im-
age retrieval task relies on local features to search over a
GPS-tagged image database to estimate the current loca-
tion. The primary challenge is how to produce discriminative
image representation so that images from nearby locations
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Figure 1. DenserNet can correctly perform visual localiza-
tion under challenging conditions. Despite environmental
variations (such as pedestrian or vehicle occlusions, illumi-
nation changes, and seasonal changes), DenserNet can find
the location (a) from the database based on the query (b).

would have similar representations in feature spaces while
images from different locations would have dissimilar rep-
resentations. Typically, a large-scale database contains im-
ages of similar man-made structures or landmarks that may
cause severe ambiguities. [llumination variations or occlu-
sions may also change object appearances which compro-
mise the localization prediction (Tolias, Avrithis, and Jégou
2016). To address these problems, our method is designed to
be robust for a large-scale dataset with different challenging
conditions (Figure 1).

In the last decade, convolutional neural networks (CNNs)
have emerged as a powerful technique to explore image
representations including visual localization (Sandler et al.
2018; Simonyan and Zisserman 2014). CNN-based visual
localization networks have a similar architecture (Dusmanu
et al. 2019; Jin Kim, Dunn, and Frahm 2017). They gener-
ally have a convolutional backbone encoder to produce fea-
ture maps of the input image. Then, a detection-description
decoder organizes the obtained feature maps to depict the
image representation. The conventional approaches only use



the feature maps from a single semantic level and fail to
exploit multi-scale features from different semantic levels.
This limitation motivates our approach to exploit features
from multi-level semantics to improve localization behav-
ior.

So far, many state-of-the-art methods are trained using
pixel-level annotations to supervise the process of feature
learning (Luo et al. 2020; Dusmanu et al. 2019). However,
the ground truth correspondences between image pairs are
expensive to obtain at the scale required to train a CNN-
based method. Also, such supervised priors based on hu-
man annotations may not fully capture all relevant features
for image representation to train a network (Jin Kim, Dunn,
and Frahm 2017). Thus, training a CNN-based method with
strong supervision is not efficient and effective enough for
generalization. In contrast, an increasing number of stud-
ies (Liu, Li, and Dai 2019; Jin Kim, Dunn, and Frahm
2017) employ a weakly supervised manner for training using
image-level labels. They compute the feature distance be-
tween the query-positive and the query-negative image pairs
to discover imagery discriminativeness. These prior explo-
rations impact our work.

Building on the lessons learned from the concurrent ap-
proaches (Arandjelovic et al. 2016; DeTone, Malisiewicz,
and Rabinovich 2018), our work brings the following three
contributions. First, we introduce a Denser Feature Network
(DenserNet), a novel CNN-based method for visual local-
ization tasks. We find inspiration from DenseNet (Huang
et al. 2017) to aggregate feature maps at different semantic
levels for image representations, as shown in Figure 2. Our
method is an intuitive extension of NetVLAD (Arandjelovic
et al. 2016) by adding feature extraction branches to obtain
multi-scale features, in parallel with the existing backbone
network. The feature extraction branches aggregate features
from the lower-level, the mid-level, and the higher-level
layer of the backbone network. Compared to conventional
methods (Dusmanu et al. 2019; Jin Kim, Dunn, and Frahm
2017; DeTone, Malisiewicz, and Rabinovich 2018), our ap-
proach is able to produce denser keypoint features which
increase the number of inlier matches between image pairs
and, in turn, improve the matching accuracy under challeng-
ing conditions. Extensive experiment results indicate that
our method improves the visual localization performance on
several benchmarks by a large margin.

Second, we propose a weakly supervised approach for
training. We design a modified triplet ranking loss to ef-
fectively organize obtained features and predict image rep-
resentations. Our training requires no expensive pixel-wise
ground truths other than GPS-tagged images, which are
easy to obtain. In our design, task-relevant keypoint fea-
tures are discovered in an unsupervised fashion, as the pro-
posed method is able to learn in which context should be
suppressed or emphasized to achieve better location recogni-
tion. Inspired by (Dusmanu et al. 2019), our training method
performs a joint optimization for both detection and descrip-
tion tasks, which encourages the repeatability of discrimina-
tive detection and improves the description accuracy.

Finally, DenserNet is computationally efficient. Since the
three feature extraction branches are all based on the same
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CNN backbone, they have shared features and parame-
ters during computation. Theoretical and empirical evalua-
tions demonstrate that, although DenserNet uses extra sub-
network branches to aggregate more feature maps for the lo-
cation inference, it only requires a limited additional compu-
tation load. Thus, our method can achieve efficient inference
and remain within the computational constraints.

Related Work

Recent advances in CNNs have made it possible to use local
keypoint features of an image to predict location hypoth-
esis (Arandjelovic et al. 2016). Although the CNN-based
approaches are proved to be effective for visual localiza-
tion, they struggle to perform well when the feature homo-
geneousness occurs substantially (Liu, Li, and Dai 2019).
Modern man-made structures frequently have architectural
similarities so it is difficult for the conventional methods to
handle this challenging situation (Salarian et al. 2018). In
addition, the performance of conventional methods typically
degrades under extreme environmental changes, such as illu-
mination or landmark scale changes (Dusmanu et al. 2019).

A critical reason causing these problems for conventional
methods (Dusmanu et al. 2019) is that they only use fea-
tures from one semantic level for prediction. Thus, they fail
to exploit features from different levels of semantics to cap-
ture more multi-scale details. This semantic gap introduces
a critical problem in both feature learning and predicting
(Sarlin et al. 2019). To address the above challenges, our
method is designed to produce more keypoint features us-
ing feature extraction branches to organically extract fea-
tures from different semantic levels. Compared to the latest
similar work (Luo et al. 2020) that uses strong supervision
for training and has a heavy working pipeline for inference,
our method is simple yet effective. We can achieve compet-
itive performance using a weak supervision fashion without
any bells and whistles.

DenserNet
Overview

The architecture of DenserNet is shown in Figure 2. Denser-
Net includes a CNN backbone, three feature extraction
branches, and a one-stage feature decoder. Our design lever-
ages the intrinsic nature of modern CNN architecture which
can produce rich hierarchical features from different convo-
Iutional layers from a single forward pass. Thus we can ob-
tain multi-scale features with low additional costs to close
the semantic gap in feature learning. Each feature extraction
branch sticks out at different layers of the backbone network
to extract features from different semantic levels. We aggre-
gate the obtained features to capture strong image represen-
tation. Intuitively, our method is more robust to scale vari-
ances than methods learned from single-scale features and
thus improves the localization performance. We elaborate on
the detail of our method below.

Feature Extraction Branch

The design of DenserNet is flexible and allows various back-
bone options. For fast runtime, we use MobileNetV2 (San-
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Figure 2. The demonstration of DenserNet using MobileNet backbone (Sandler et al. 2018). The proposed method can aggregate
multi-level feature maps and thus produce significantly more local keypoint features than concurrent methods (Arandjelovic
et al. 2016; Dusmanu et al. 2019). For simplicity, 3 X 3 convolution layers after upsampling are not shown.

dler et al. 2018), a light-weighted network, as our back-
bone network. DenserNet has the lower-level, the mid-level,
and the higher-level branch based on different locations of
the backbone. Specifically, the lower-level and mid-level
branches stick out at the conv4 and conv11 respectively,
and the higher-level branch is attached to the conv18.

The input features for each feature extraction branch are
{C4,C11,C18}, having strides of {4, 16,32} pixels with
respect to the input image. Each feature extraction branch
employs a modified SuperPoint layer (DeTone, Malisiewicz,
and Rabinovich 2018). Instead of having the keypoints and
local descriptors from the original implementation, the mod-
ified SuperPoint only increases the channel dimensions and
upsamples the feature maps. The SuperPoint layer has a
shallow structure of a non-linear 1 x 1 convolutional layer
and a upsampling layer. The non-linear 1 x 1 convolutional
layer with ReLU6 activation is used to increase the chan-
nel dimensions of each branch. The upsampling layer in-
creases the spatial resolution of the feature maps in a non-
learned manner, which is much faster than using transposed
convolutions (Sarlin et al. 2019). After SuperPoint layer,
the output feature maps are {P4, P11, P18} correspond-
ing to {C4,C11,C18}. Compared to {C4,C11,C18}, the
channel dimensions for { P4, P11, P18} increase 3, 1.5, 1.1
times respectively, and their spatial resolutions is brought
back to half of the input resolution, which retains more
landmark details. Following the practice from (Lin et al.
2017), we also append a 3 x 3 convolution on each out-
put in order to reduce the aliasing effect from upsampling.
The obtained features from each feature extraction branch
are aggregated by channel-wise concatenation. The aggre-
gated features have channel dimensions of 520. Afterwards,
the dense features are fed into the one-stage feature decoder
to produce image representation, which is discussed in the
next section.

The core concept for our design is to leverage the dense
features to enhance image representations. Following the
simple rule, our approach can use many design choices.
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Figure 3. One-stage feature decoder. We use the attention
filter to produce attention features and couple descriptor and
detector together to delineate image representation.

Adding more feature extraction branches (more than three)
can improve the prediction performance but demand more
memory footprint. Empirically, our method has the best run-
time and accuracy tradeoff. Our design is flexible to any
CNN backbone. To achieve higher accuracy, we also imple-
ment a VGG16 (Simonyan and Zisserman 2014) version of
DenserNet.

One-stage Feature Decoder

The feature extraction branches and the backbone network
work together as the feature extraction encoder N..; that
processes the input image I and produces the dense feature
maps F' = Ny (I), F € RPXWX™ (hx w is the feature map
size and n is the number of channels). Similarly to (Dus-
manu et al. 2019), we employ a one-stage feature decoder
to delineate the image representation. Our one-stage feature
decoder includes the feature attention filter, the feature de-
scriptor, and the feature detector as shown in Figure 3.
Feature attention filter. Feature attention filter implicitly
encodes spatial concept into the parameters of the attention
features, which are flexible to represent the irregular land-
marks. The attention features are computed by matrix mul-
tiplication of dense features F' and attention filters 6:

A=R(F©0),A R, (1)



where A is the attention features and R is the ReLU activa-
tion. Based on CAM (Zhou et al. 2016), the attention filter &
screens out the spatial locations with pedestrians, vehicles,
and vegetation on the feature maps.

Feature descriptor. The attention feature maps A can be
expressed by a set of descriptor vectors f:

fij = Asji, fi; € RT, ()

where i € R" and j € R". These descriptor vectors can be
used to establish feature correspondences by calculating the
Euclidean distance between images. We use L2 normaliza-
tion to make the obtained descriptors in unit length. Then,
we properly adjust these descriptors in training so that the
same points for a scene produce similar descriptors, which
robustly describe discriminative appearance variations.
Feature detector. In the same vein, the attention feature
maps A can be expressed as a collection of detector D:

Dy = Ay, D,eRY™ )

where £k € R”™. In this expression, the feature extraction
network N.; produces n different detection response maps
Dy.. If pixel point (i, j) is detected, we denote a hard fea-
ture detector D ;;)x which is the most strong detection in all
channels. We then perform a channel-wise softmax around
its neighbours to obtain the local softmax score:

exp(D(ij)k)
i+l 1 :
doi—io1 Z;":jq eXp(D(i’j’)k)

Finally, we compute an image-level normalization for the
softmax score to obtain the detection score at a pixel (i, j):

&)

Sij =

“

Sij
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Time Complexity Analysis
Similar to the conventional methods (Arandjelovic et al.
2016; DeTone, Malisiewicz, and Rabinovich 2018), our
method has a backbone encoder for feature extraction and
feature decoder for image representation. However, our ap-
proach also includes three feature extraction branches stick
out from the lower, middle, higher level of the backbone net-
work to efficiently produce denser features. Unlike patch-
based networks MNV (Sarlin et al. 2018) and LF-Net (Ono
et al. 2018) who adopt a Siamese sub-network to produce
more features with a high computational cost, our approach
has shared features across the three branches, which effec-
tively avoids the computation overhead.

For runtime complexity, the ratio of our approach versus
the conventional methods is:

O(Nenn) + 3 x O(Npr) + O(Nge)
O(Nenn) + O(Nae) '

where O(Nenn), O(Nor), and O(N.) are the function
complexity for the backbone encoder, the feature extrac-
tion branch, and the feature decoder for image representa-
tion. Since O (Nye) < O(Neny ), the ratio can be approxi-

SXO(Nb,.)
O(Wenn)

Sij =

(6

T =

mated as: r ~ 1+ . Compared to the conventional
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Figure 4. Architectures of the proposed method.

methods, the increased computational cost of the proposed
method mainly comes from N3, branches. This increased
computational cost can be ignored because O(NbT.) <
@) (Ncm) Thus, our approach is appealing for its efficiency.
We report empirical results in the later runtime evaluation
section to resonate with our analysis here.

Model Architecture

In our experiments, we implement two models of vari-
ants which are based on MobileNetV2 (Sandler et al.
2018) and VGG-16 (Simonyan and Zisserman 2014).
The two architectures are displayed in Figure 4. The
MobileNet-based method is discussed in the section of Fea-
ture Extraction Branch. For VGG-based method, its fea-
ture extraction branches stick out at Con3_2, Con4_3, and
Con5_3 respectively, and their corresponding feature maps
are {P3.2, P4_3, P5_3}. In each feature extraction branch,
the channel dimensions for { P32, P43, P5_3} are multi-
plied 1, 0.25, 0.25 times respectively, and their spatial res-
olutions are brought back to one-fourth of the input reso-
Iution. The obtained features from each feature extraction
branch are aggregated by channel-wise concatenation.

Training Objective

We propose a modified triplet ranking loss to jointly opti-
mize our detectors and descriptors in a weakly supervised
manner, which only requires cheap image triplets for
training. In our setting, the location of a query image I,
is approximated by searching for the nearest neighbors in
feature space among the reference images {I,}. Thus, the
objective for training our method is to match the positive
references {I,7} which are closer to the query image and
vice-versa to the negative ones {1 }.

For a pair of images (I',I?) and potential correspond-
ing feature points P : p; <> po between them (where
pr € I',py € I?), we want to minimize the distance
Zpep | f;} - f;? |l of the corresponding descriptors
between the positive pairs while maximize the distance



between the negative ones. In order to increase the re-
peatability of detection (Dusmanu et al. 2019), we also
add a detection term to encourage repeatability of effective
detection between two images:

)= 5 ”M I £L -

pep ~—~p'EP Sp Spr

where P is the set of all corresponding feature points
between I and I2. fsvzl, and '5% are the detection scores in (4)
at each corresponding feature point of the paired images.
Accordingly, our training objective can be defined as:

R(I',1?) ol

Lr (It, A ) = max(M—l—R(It,Ij') —R(It,
where I, I, and I~ are the training query image, the posi-
tive reference, and the negative reference respectively. In or-
der to minimize the proposed loss, the distances of the dis-
criminative descriptors between the training query and the
positive reference are encouraged to be small and the asso-
ciated detection scores are enforced to be large. Using the
weakly supervised fashion for training, our method effec-
tively learns feature representation pertaining to which fea-
tures should be suppressed or emphasized.

Experiment and Results

In this section, we first describe the implementation details
and the evaluation datasets. We then use an ablation study to
investigate the improvements of our method from the base-
line method. Next, we test the proposed method on several
tasks in comparison with some of the state-of-the-art meth-
ods. Finally, we conclude with the runtime evaluation.

Implementation Details

Training data mining. We train the proposed method by us-
ing Pitts30k-training dataset (Arandjelovic et al. 2016). Fol-
lowing (Arandjelovic et al. 2016; Jin Kim, Dunn, and Frahm
2017), we group the positive {I;F'} and negative {I,”} im-
ages for each training query image I;. The positive images
are the closest neighbors to each query image in the feature
space at its nearby geo-locations, while the negative image
is far away. Our training data mining purposefully selects
positive images with fewer dynamic objects (i.e. pedestrians
or bicycles). We will demonstrate that the stationary train-
ing data is beneficial to improve the localization behavior
in the experiment. The 30K training query images generate
four image triplets. Thus, we obtain a total of 120K image
triplets with 112K for training and 8K for validation.
Training process. All experiments are performed on a
workstation with an Intel Core 17-7820X CPU and four
NVIDIA GeForce GTX 3080Ti GPU. Both VGG16 and Mo-
bileNetV2 based methods are pretrained on ImageNet (Deng
et al. 2009). In training, we exploit standard data augmen-
tation in training, such as motion blur, random Gaussian
noise, brightness changes to improve the robustness of our
methods to illumination variations and viewpoint changes.
Specifically, the margin M is set at 0.1, 30 epochs are per-
formed using batch size of 4 triplets, Adam (Kingma and Ba
2014) with the learning rates of 10~3 which is halved every

17),0).
(8
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6 epochs, momentum of 0.9, and weight decay of 1073, We
use the Precision-Recall curve to evaluate the training per-
formance (Arandjelovic et al. 2016). A query is considered
to be correct if at least one result from the top N retrieved
database images is within d = 25 meters from the ground
truth position of the query image. We use the best method
(the highest recall@b5) on the validation for testing.

Evaluation Datasets and Metrics

We assess our method on three different tasks with a number
of publicly available benchmarks.

Feature matching task. HPatches dataset (Balntas et al.
2017) is adopted to evaluate the effectiveness of feature
extraction and matching. Following (DeTone, Malisiewicz,
and Rabinovich 2018), we use the detection repeatability
and mean localization error (MLE) of the keypoint features
to evaluate the detector; and we use the mean average pre-
cision (mAP) and the matching score (MS) to evaluate the
descriptor. The mAP assesses a method’s ability to suppress
spurious matches. MS reflects the overall performance of
both the detector and the descriptor.

Large-scale visual localization task. Pitts250k-test
(Torii et al. 2013), Tokyo 24/7 (Torii et al. 2015), TokyoTM-
val (Arandjelovic et al. 2016), and and Sf-O (Chen et al.
2011) are used to investigate the performance of visual local-
ization. For the first three benchmarks, a query is considered
to be correct if at least one result from the top IV retrieved
database images is within d = 25 meters from the ground
truth position of the query image. For Sf-0, the query result
is considered to be correct if at least one result from the top
N retrieved database images has the same building ID.

Image retrieval task. Since we cast the visual localiza-
tion problem as an image retrieval task, we also evaluate our
method on image retrieval benchmarks. Oxford 5k (Philbin
et al. 2007), Paris 6k (Philbin et al. 2008), and Holidays (Je-
gou, Douze, and Schmid 2008) is used to test the general-
ization of our method for image representations on image
retrieval. We use mAP for evaluation.

Ablation Study

We conduct an ablation study to validate the improvements
of DenserNet from a strong baseline and its variants. Method
(a) is the baseline which only has the higher-level branch
for feature extraction. It is identical to SuperPoint (DeTone,
Malisiewicz, and Rabinovich 2018). Method (b) and (c)
are two variants of the baseline method with the additional
lower-level or mid-level branch respectively. Method (d) is
the proposed method. The ablation study is conducted on
feature matching and visual localization tasks.

The results for feature matching are demonstrated in Ta-
ble 1. As expected, VGG-based methods outperform their
MobileNet-based counterparts because VGG16 has a bet-
ter feature extraction capacity. From method (a) to method
(d), adding the feature branch can give a boost in the perfor-
mance of both detector and descriptor. The repeatability of
keypoint features increases with the increase of the feature
extraction branch while errors only increase with a small
scale. Meanwhile, mAP and matching scores also increase
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Figure 5. Qualitative examples on the HPatches dataset. The green lines indicate all correct correspondences which are repeat-
able. DenserNet can produce denser and more correct matches compared to the baseline method. Red dots are mis-matched
points and blue dots are not visible to the shared viewpoint region of the image pairs. Best viewed in the digital format with

Z0oom.
Meth. | HB | LB | MB Det. Metric Des. Metric
Rep. | MLE | mAP MS
a (M) Vv 0.556 | 0.99 | 0.782 | 0.448
b (M) N4 V4 0.568 | 1.02 | 0.799 | 0.456
c (M) Vv v 1 0573 | 1.03 | 0.808 | 0.461
d (M) N4 Vv v | 0592 | 1.04 | 0.827 | 0473
a(Vv) Vv 0.578 | 1.12 | 0.822 | 0.462
b (V) Vv Vv 0.588 | 1.14 | 0.847 | 0.471
c (V) Vv v 1059 | 1.15 | 0.859 | 0475
d (V) Vv Vv v | 0628 | 1.17 | 0.886 | 0.481

Table 1. Evaluation results from HPatches dataset. We use
HPatches to examine the ability for feature extraction and
matching. Method a is the baseline while method b and c are
its variants. Method d is the proposed DenserNet. The results
indicate the improvements of DenserNet from baseline in the
all metrics. M and V in methods stand for MobileNet and
VGG-based backbones respectively. HB, LB, MB stand for
higher-level, lower-level, and mid-level branch respectively.

accordingly by adding the feature extraction branch. Fig-
ure 5 demonstrates the qualitative results of the VGG-based
method. Our method can produce more keypoint features for
effective matching than the baseline method.

The results for all VGG-based methods on large-scale vi-
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sual localization tasks are demonstrated in Figure 6. Method
(d) outperforms the baseline method and its variants on all
benchmarks. We observe a steady increase of recallQN
from method (a) to method (d). Based on the Precision-
Recall curve, using an extra feature extraction branch is
proved to be effective to improve the performance of local-
ization as methods having more feature extraction branches
achieve better results on all benchmarks. The results for all
MobileNet-based methods on large-scale visual localization
tasks are demonstrated in Figure 7.

Comparison with State-of-the-Art Methods

To demonstrate the advancement of the proposed method,
we compare our method with state-of-the-art methods on
large-scale localization benchmarks and image retrieval
tasks. We choose three leading methods NetVLAD, CRN,
and SuperPoint for comparison. In order to have a fair
comparison, we retrain all the methods with the same setup.

Large-scale localization benchmark results. We report
the recall QN results for different methods in Table 2. Both
our VGG16 and MobileNet-based methods consistently
outperform state-of-the-art methods by a significant margin
on all benchmarks. For instance, on the Pitts250k dataset,
our improvements over the next best method NetVLAD at
r@1 is 3.45% for the VGG-based architecture and 1.87%
for the MobileNet-based architecture. On the Sf-O dataset,
our VGG16 and MobileNet-based methods achieve r@1 of



Method Pitts 250k-test TokyoTM-val Tokyo 24/7 St-0
rel | res5 |r@lo | rel | res |relo | rel | r@5 | relo | rel | re@s | r@lo
Ours (VGG) | 89.40 | 9590 | 96.99 | 94.80 | 97.69 | 98.20 | 81.20 | 88.67 | 91.10 | 80.80 | 86.99 | 89.68
Ours (MobileNet) | 87.82 | 94.89 | 96.26 | 94.62 | 97.37 | 98.12 | 79.17 | 87.99 | 90.17 | 79.12 | 85.68 | 88.56
CRN 85.50 | 93.49 | 9550 | 93.07 | 95.97 | 97.61 | 7539 | 83.81 | 8731 | 77.62 | 84.31 | 86.80
NetVLAD 85.95 | 9321 | 95.13 | 92.85 | 95.77 | 97.59 | 7333 | 82.86 | 86.03 | 76.57 | 83.27 | 85.80
SuperPoint | 85.78 | 93.36 | 95.26 | 92.81 | 96.04 | 97.53 | 75.37 | 83.44 | 86.73 | 75.52 | 84.01 | 86.60

Table 2. Comparison of Recalls at N top retrievals of different methods on the four large-scale visual localization benchmarks.
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Figure 6. Ablation results of Recalls at IV top retrievals with
all VGG-based methods.

Method Oxford 5k Paris 6k Holidays
full ‘ crop | full | crop | orig rot
Ours (V) | 67.66| 69.40| 75.03| 78.21| 84.71| 88.30
Ours M) | 66.88| 68.26| 75.00| 78.30| 84.01| 88.28
CRN 63.95| 65.52| 72.88 | 75.85| 83.19| 87.30
NetVLAD | 63.09| 65.33| 72.53| 75.67| 82.67| 86.83
SuperPoint | 63.14| 65.50| 72.83| 75.10| 82.92| 86.90

Table 3. Comparison with state-of-the-art methods for com-
pact image representations (256-D) on image retrieval tasks.

80.08% and 79.12% respectively compared to the next best
method CRN by a margin of 3.18% and 1.5% respectively.
Our methods also obtain similar improvements on Tokyo
24/7 and Tokyo TM. The results from all benchmarks
confirm our assumption for this proposed work: leveraging
denser features from multiple semantic levels and using
the right supervision for training, the proposed method
can effectively learn discriminative yet compact image
representations for visual localization. More detailed com-
parisons are displayed in Figure 8.

For qualitative analysis, we visualize the regions of the in-
put image which are emphasized for localization prediction
(as shown in Figure 9). Particularly, we use the heatmaps
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Figure 7. Ablation results of recalls at N top retrievals with
all MobileNet-based methods.

(Griin et al. 2016) to highlight the feature emphasis of
different regions on the input image. Based on the results,
we observe that our method is superior to its counterparts
in identifying more useful features for localization, despite
the significant environmental variations in viewpoint or
illumination. Our method focuses on the distinctive details
of buildings that are identifiable for visual localization while
avoiding confusing visual clues. In contrast, other methods
generally focus on local features independently which are
inherently limited. Many features are laid on confusing
scenes such as pedestrians, vegetation, or vehicles which are
hard for feature repeatability. We argue that our multi-scale
feature aggregation, feature attention filter, training data
mining, and training supervision technique collaboratively
contribute to the improved localization behavior.

Image retrieval task results. To assess the generaliz-
ability of our approach, we evaluate our methods trained
only on Pitts30k (Arandjelovic et al. 2016) without any
fine-tuning on the standard image retrieval datasets. For
Oxford 5k (Philbin et al. 2007) and Paris 6k (Philbin
et al. 2008), we use both the full and cropped images;
for Holidays (Jegou, Douze, and Schmid 2008), we use
original and rotated images. The results are displayed in
Table 3. Our results set the state-of-the-art for compact
image representations (256-D) on all three datasets. On all
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Figure 8. Comparison of recalls at N top retrievals with
state-of-the-art methods. Ours (V) has VGG backbone and
ours (M) has MobileNet backbone.

NetVIAD  Inputs

CRN

Ours(M)  SuperPoint

Ours(V)

Figure 9. Comparison of feature emphasis. With the feature
attention filter and training data mining, our methods focus
on the distinctive details of buildings, while avoiding con-
fusing visual clues such as pedestrians, vegetation, or vehi-
cles which are hard for feature repeatability.

metrics, our margin consistently over the mAP of other
methods is 1-4%. For example, there are a 3.71% (our
VGG-based method) and 2.93% (our MobileNet-based
method) improvements on Oxford 5k (full) than the next
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Dataset Method Runtime(ms) r@l
BE | FEB | FD | Total

Ous (V) | 92| 6 2 | 100 | 89.40

. OursM) | 15| 6 2 | 23 | 87.82

P20k | RN |92 | - | 6 | 98 | 8550

s NetVLAD | 92 | - 5 | 97 | 8595

SuperPoint | 43 - 7 50 | 85.78

Ours (V) | 96 | 7 3 | 106 | 81.20

OursM) | 18 | 7 3 | 28 | 79.17

Tokyo 24/7 CRN 9% | - 8 | 104 | 75.39

NetVLAD | 96 | - 7 | 103 | 73.33

SuperPoint | 49 9 58 | 75.37

Table 4. Runtime report. BE, FEB, and FD means backbone
encoder, feature extraction branch, and feature decoder re-
spectively.

best method; there are a 3.88% (our VGG-based method)
and 2.74% (our MobileNet-based method) improvements
on Oxford 5k (crop) than the next best method. Since our
methods only see building-oriented images, our results
can be further improved by fine-tuning using the natural
landmark images from the three image retrieval datasets.

Runtime Evaluation

In this work, we provide two versions of our method. VGG-
based model is designed to achieve high performance in ac-
curacy while our MobileNet-based model has a better effi-
ciency with a small penalty on accuracy. We analyze its run-
time and compare it with other state-of-the-art methods. All
the measurements are conducted on the same workstation.
As shown in Table 4, the increase of our computation cost
stems from the feature extraction branch (FEB). One advan-
tage of our method is that our FEB shares features and avoids
runtime overhead. The increased computational cost is af-
fordable as it is much smaller than that of the backbone en-
coder and has little impact on the total runtime cost. Specif-
ically, our MobileNet-based models are around 4x faster
than CRN and NetVLAD which have the VGG-based ar-
chitecture. For our VGG-based model, our speed is compa-
rable to CRN and NetVLAD which have the same backbone
network. Although our VGG-based models are slower than
SuperPoint which uses a smaller backbone architecture, our
methods outperform counterparts in localization @1 by a
large margin.

Conclusion

In this work, we propose DenserNet, a novel CNN-based
architecture that aggregates denser features from multiple
semantics to achieve strong image representation. Results
from extensive experiments indicate that our method is com-
petitive with the current state-of-the-art methods on large-
scale localization tasks with the same level of supervision.
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