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Abstract

Behavior Trees (BTs) have attracted much attention in the
robotics field in recent years, which generalize existing con-
trol architectures and bring unique advantages for building
robot systems. Automated synthesis of BTs can reduce hu-
man workload and build behavior models for complex tasks
beyond the ability of human design, but theoretical studies are
almost missing in existing methods because it is difficult to
conduct formal analysis with the classic BT representations.
As a result, they may fail in tasks that are actually solvable.
This paper proposes BT expansion, an automated planning
approach to building intelligent robot behaviors with BTs,
and proves the soundness and completeness through the state-
space formulation of BTs. The advantages of blended reactive
planning and acting are formally discussed through the region
of attraction of BTs, by which robots with BT expansion are
robust to any resolvable external disturbances. Experiments
with a mobile manipulator and test sets are simulated to val-
idate the effectiveness and efficiency, where the proposed al-
gorithm surpasses the baseline by virtue of its soundness and
completeness. To the best of our knowledge, it is the first time
to leverage the state-space formulation to synthesize BTs with
a complete theoretical basis.

Introduction
Behavior Trees (BTs) originate from the computer games in-
dustry to control non-player characters (NPCs) (Millington
and Funge 2009), e.g. computer controlled opponents, and
become a popular control architecture for intelligent robots
in recent years due to their unique properties (Colledanchise
and Ögren 2018): (1) Generality. BTs are proven to gener-
alize many well-known control architectures including finite
state machines, the subsumption architecture (Brooks 1986),
teleo-reactive programs (Nilsson 1994) and so on. (2) Mod-
ularity. Each subtree of a BT is also a BT that can run in-
dependently as a modular sub-behavior. (3) Reactivity. BTs
can react to unexpected environment changes by frequent
ticks to activate behaviors in runtime. BTs have been used
in a wide range of the robotic field, including robot manip-
ulation (Rovida et al. 2018), unmanned aerial vehicles (Lan
et al. 2018), mobile robots (Banerjee 2018) and so on.
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Figure 1: An example of blended reactive planning and act-
ing of a BT-based robot which aims to grasp the blue cargo.
If a red obstacle blocks the way, the BT can be expanded at
runtime to clear the way first. If someone reverses the action
by putting the obstacle back again, the robot will clear the
way again without replanning. If someone helps to clear the
way, the robot will skip the clear action without replanning.

Although BTs were originally created to facilitate the
manual design of agent behaviors, its properties are bene-
ficial for both manual and automated synthesis (Iovino et al.
2020). Besides the intrinsic advantages of automated synthe-
sis, e.g. reducing human workload and exploiting behaviors
beyond the ability of human design in complex tasks (Neu-
pane and Goodrich 2019), BTs also bring the advantage of
blended reactive planning and acting for intelligent robots
(Colledanchise, Almeida, and Ögren 2019), which are ro-
bust to external disturbances, as illustrated in Fig. 1. How-
ever, due to the gap between the BT representation and for-
mal analysis, existing methods either massively modify the
definition of BTs with the loss of BT’s advantages and com-
patability, or do empirical demonstrations without theoreti-
cal guarantees, which may fail in actually solvable tasks.

In this paper, we propose BT expansion, a sound and com-
plete algorithm for behavior planning of intelligent robots
with BTs. The behavior planning is theoretically studied
based on the STRIPS-style planning (Fikes and Nilsson
1971) and the state-space formulation of BTs (Colledanchise
and Ögren 2017). The algorithm starts with a primary BT
and expands this initial BT to find a solution, which termi-
nates in finite time and a solution is guaranteed as long as
the problem is solvable. The advantages of blended reac-
tive planning and acting are formally discussed though BT’s
region of attraction, by which robots are robust to external
disturbances. With the aid of completeness, BT expansion
yields a stronger property that robots are guaranteed to suc-
cessfully perform tasks under any resolvable disturbances.
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Experiments simulated with a mobile manipulator and test
sets are conducted to verify the effectiveness and efficiency
of the algorithm and its superiority to the baseline.

The contribution of this paper is summarized as follows.
1. We propose a behavior planning algorithm of intelligent

robots with BTs and prove the soundness as well as the
completeness of the algorithm. We believe it is the first
time to introduce the state-space formulation of BTs to
synthesize BTs with a complete theoretical basis.

2. We formally analyze the advantages of behavior planning
with BTs from the perspective of region of attraction, by
which robots with BT expansion are robust to any resolv-
able external disturbances.

3. We conduct experiments with a simulated mobile manip-
ulator and test sets, where our algorithm surpasses the lat-
est approach to BT planning. The empirical study demon-
strates the effectiveness and efficiency of our approach.

Background
Behavior tree is a directed rooted tree consisting of control
flow nodes, execution nodes and a root (Colledanchise and
Ögren 2017). The control flow nodes are internal nodes with
triggering logic of their children. The execution nodes are
leaf nodes which check task conditions or perform actions.

The execution of a BT starts from the root, which ticks
its children and gets returned status. The child nodes return
success, running or failure to the parents. The return value
of a control flow node is determined by the return value of its
children. And for execution (leaf) nodes, the return value is
defined according to the task states and actions. We describe
the two mostly used control flow nodes as follows:

Sequence: The sequence node ticks its children from left
to right, as illustrated in Fig. 2a. Only if one child returns
success does it ticks the next child. If a child returns fail-
ure, the sequence node stops ticking and immediately returns
failure. It returns success only when all children return suc-
cess. For other cases it returns running. The sequence node
is usually represented by a→ in a box.

Fallback: The fallback node (also known as selector) ticks
its children from left to right, as illustrated in Fig. 2b. If a
child returns running or success, it also returns the same sta-
tus. Only if a child returns failure does it ticks the next child.
If all children fail, the fallback node returns failure. The fall-
back node is usually represented by a ? in a box.

Besides the internal control flow nodes, the leaves of BTs
are composed of two types of execution nodes:

(a) (b)

Figure 2: (a) The sequence node for passing a door executes
its children from left to right and returns success only when
both children succeed. (b) The fallback node for entering a
room succeeds when any one of its children returns success.

Figure 3: An example of a BT for entering a room. The root
is always the parent of the top node and is usually omitted.

Condition: The condition node checks whether a condi-
tion is satisfied, and returns success or failure accordingly.

Action: The action node perform an action of the agent,
and returns success, running or failure accordingly.

Fig. 3 illustrates a BT for reactive robots entering a room.
Behavior trees intrinsically bring modularity and reactivity
to agent behavior modeling. Each subtree is also a BT that
can execute independently. The reactivity is mainly brought
by the fallback node and the frequent tick of condition nodes
during acting. The BT in Fig. 3 can react and adapt to differ-
ent run-time situations, e.g. when the robot fails to open the
door it tries to break the door, and when an external agent
opens the door, then the next tick of the BT will directly
make the robot go in, skipping the action Break the door.

Related Work
The planning community has developed solid methods for
robotics, e.g. searching in state or plan space (Ghallab, Nau,
and Traverso 2016), and planning for temporal logic tasks
(Guo, Tumova, and Dimarogonas 2016). However, the in-
tegration of planning and BT synthesis has not been stud-
ied until recently(Colledanchise, Almeida, and Ögren 2019).
Existing approaches to synthesizing BTs in the literature in-
clude evolutionary methods, learning methods and classic
analytic methods (Iovino et al. 2020).

The evolutionary methods initialize a group of simple BTs
and evolve them to produce better BTs with genetic-like al-
gorithms (Neupane and Goodrich 2019; Lim, Baumgarten,
and Colton 2010). However these methods are inefficient be-
cause simulations are needed to evaluate each BT, and they
have no guarantee of feasible results in limited time.

Learning methods are mostly based on reinforcement
leaning (RL) (de Pontes Pereira and Engel 2015) and imi-
tation learning (French et al. 2019). The RL approaches pa-
rameterize some learning nodes with learned policy. A learn-
ing node itself is a complex policy which breaks the concise
definition of BTs and interpretability. The imitation learning
methods learn BTs from human demonstration (French et al.
2019), which relies on human ability and the result may not
meet expectations (Iovino et al. 2020).

The classic analytic methods utilize classic algorithms to
synthesize BTs, like greedy algorithms (Colledanchise and
Ögren 2018), the hierarchical task network (Rovida, Groß-
mann, and Krüger 2017), automated planning (Colledan-
chise, Almeida, and Ögren 2019), etc. One major challenge
is that although BTs are quite readable for humans, their rep-
resentation is not suitable for formal analysis.

Our work is closely related to the recent work (Colledan-
chise, Almeida, and Ögren 2019) synthesizing BTs through
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automated planning, which exploits BT’s reactivity and
modularity in robot planing, highlighting advantages in
terms of blended reactive planning and acting with con-
tinually hierarchical monitoring. Apart from the pioneering
work, they focus on empirical studies with few theoretical
insights. As shown by our experiments, their method may
fail even if a solution actually exists. On the contrast, our
algorithm is proven to be sound and complete. We formally
discuss the advantages and verifies our approach with inten-
sive theoretical and empirical studies.

Reactive Behavior Planning through BT
Expansion

In this section, we propose BT expansion, an algorithm ex-
panding a BT from scratch to solve the behavior planning
problem. We first formulate the problem with STRIPS-style
planning and the state-space formulation of BTs as the basis
of theoretical study, then propose the one-step expansion of
a BT for condition satisfaction. Finally we propose the entire
algorithm and prove its soundness and completeness.

Problem Formulation
To conduct formal analysis, we begin with the state-space
formulation of BTs (Colledanchise and Ögren 2017). With-
out loss of generality, an environment state at a point in time
is represented by a set of positive literals, and those that are
not included are assumed to be False, as is in STRIPS-style
planning (Fikes and Nilsson 1971). In the literature there are
different methods for checking whether a condition c holds
in a state s, e.g. checking whether s ∪ ¬c is contradictory.
This paper utilizes c ⊆ s for clarity, i.e. all literals of the
condition c is included in s.
Definition 1 (Behavior Tree). A BT is a three tuple Ti =
〈fi, ri,∆t〉. i is the label of the referring BT, fi : 2n → 2n

is its effect in the system states, ∆t is the time step, ri : 2n →
{S,R,F} is the return status, where S stands for success,
R stands for running and F stands for failure. ri defines a
partition of the system states S into three sets, the success
region, the running region and the failure region.

The environment transition is defined by the following
equations with a time step to count the frequent tick of BTs:

sk+1 = fi(sk), tk+1 = tk + ∆t (1)

where s is the state of the environment and t denotes the
time. To evaluate a BT, the property finite time successful is
utilized (Colledanchise and Ögren 2017).
Definition 2 (Finite Time Successful). A BT is finite time
successful with region of attraction R′, if for any starting
states s0 ∈ R′, there is a finite time τ such that for any
t < τ , ri(st) = R and for any t ≥ τ , ri(st) = S .

We further define the actions of the BT:
Definition 3 (Action). An action a is a three tuple
〈pre(a), add(a), del(a)〉, consisting of the precondition,
add effects and delete effects of the action.

The precondition is a set of literals that must be satisfied
to perform an action. An action a is applicable in state st if

pre(a) ⊆ st. After successfully taking the action, literals in
add(a) are added and literals in del(a) are removed from the
state. The following property holds for a well defined action:

add(a) ∩ del(a) = ∅ (2)

add(a) ∩ pre(a) = ∅ (3)

According to the effects of the action a, for a BT Ta that
executes a from st, we have:

st+k = fa(st) = st ∪ add(a)\del(a) (4)

where k denotes the execution time of the action. This pa-
per does not consider the details during the execution of an
action and assumes that the action is indivisible. For states
where the action a is running, we assume that pre(a) always
holds to keep execution, and only when the action succeeds
do its effects take place. We also assume that an action al-
ways finishes in finite time. Given these preliminary, the be-
havior planning problem can be formally defined:

Problem 1 (Behavior Planning). The problem is a tuple
〈S,A, T , s0, g〉, where S is the finite set of environment
states, A is the finite set of actions, T = 〈f, r,∆t〉 is the
behavior tree of the robot, s0 is the initial state, g is the goal
condition. The problem is to build a BT Ts with actions from
A as a solution, such that Ts is finite time successful with re-
gion of attraction R′ 3 s0, and any ss in its success region
satisfies the goal condition g ⊆ ss.

One-Step BT Expansion for Condition Satisfaction
To return success in some condition c, a primary BT can be
built which only contains a corresponding condition node. If
c is satisfied in the current state, the BT immediately returns
success. Otherwise the BT returns failure. For such a BT, the
success region is exactly the state set satisfying the condition
Sc = {s ∈ S|c ⊆ s}, and S\Sc is its failure region.

Although the states in the failure region do not satisfy the
condition, an active robot may run actions from these states
and finally reach the success region. Therefore we can ex-
pand the condition node with a behavior tree containing ac-
tions to expand more states that can result in success.

The algorithm of the one-step expansion of a BT T on
a condition node c is given in Algorithm 1 and graphically
shown in Fig. 4. First, the expansion preserves the condi-
tion node c (line 2). Then all the actions which can produce
literals in c and do not delete literals in c are selected (line
4). Next the sequence structures for the selected actions are
built (lines 5-6), which links each action a with a condi-
tion node caattr = pre(a) ∪ c\add(a). Finally the sequence
structures are linked to the top fallback node of the subtree
Tsub in line 7 (Note that constructing fallback nodes mul-
tiple times is equivalent to linking more nodes to one fall-
back node, i.e. FallbackNode(a, FallbackNode(b, c)) =
FallbackNode(a, b, c)). The one-step expansion of the BT
holds the following properties.

Proposition 1. Given a success region defined by condi-
tion c, the sequence structure Ta expanded from action a for
condition c is finite time successful with region of attraction
saattr = {s ∈ S|caattr ⊆ s} (cf. lines 5-6 in Algorithm 1).
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Figure 4: One-Step BT expansion of one condition node.

Algorithm 1: One-step expansion from a condition
1 Function Expand(T , c):
2 Tsub ← c
3 foreach a ∈ A do
4 if c ∩ (pre(a) ∪ add(a)\del(a)) 6= ∅ and

c\del(a) = c then
5 caattr ← pre(a) ∪ c\add(a)
6 Ta ← SequenceNode(caattr, a)
7 Tsub ← FallbackNode(Tsub, Ta)
8 end
9 end

10 Replace c with Tsub in T
11 return T

Proof. Starting from any st ∈ saattr, st ⊇ caattr = pre(a) ∪
c\add(a), the sequence structure Ta starts running action a
in this state since pre(a) ⊆ pre(a) ∪ c\add(a) ⊆ st (cf.
eqn. 3). According to eqn. 4, there exists a finite k such that
the action returns success and st+k = st ∪ add(a)\del(a).
With st ⊇ pre(a) ∪ c\add(a), we can further deduce that:

st+k = st ∪ add(a)\del(a)

⊇ (pre(a) ∪ c\add(a)) ∪ add(a)\del(a)

⊇ pre(a) ∪ c\del(a)

(5)

The action selection (line 4 in Algorithm 1) ensures that
c\del(a) = ∅, then from eqn. 5 we have st+k ⊇ c, indi-
cating st+k satisfies the condition c. Therefore the sequence
structure Ta is finite time successful with region of attraction
saattr for the success region of condition c.

Proposition 2. After the expansion of condition c, the sub-
tree Tsub whose fallback node links all sequence structure
of selected actions (cf. line 7 in Algorithm 1 and Fig. 4) is
finite time successful for the success region of condition c,
and the union

⋃
saattr for all selected actions is its region of

attraction.

Proof. For any states in
⋃
saattr, the corresponding sequence

structure is finite time successful of condition c according
to Proposition 1. The fallback node of Tsub returns success
as long as any child (the sequence structure of an action)
returns success and the number of children is finite because
the total number of actions are finite. Therefore Tsub is also
finite time successful of condition c.

Proposition 3. Algorithm 1 terminates in finite time.

Proof. This is because the total number of actions is finite,
so the for-iteration iterates for finite times and each iteration
performs constant operations.

Proposition 2 indicates that the one-step expansion of a
condition node c is to generate a subtree that is finite time
successful to reach that condition. Before the expansion, the
condition node only returns success in states sc satisfying
c and failure otherwise. After the expansion, the subtree re-
turns success immediately in sc or in finite time from the
expanded region of attraction

⋃
saattr. An interesting point

is that each added condition caattr may further be expanded.

The BT Expansion Algorithm
The one-step BT expansion provides an intuitive idea to it-
eratively expand the region of attraction until the initial state
s0 is included, so that the BT can execute from s0 and suc-
ceeds. The expansion starts with a primary BT which only
contains a condition node for the goal as in Fig. 5. Ticking
the BT from the initial state s0, the goal condition of the
BT can be expanded by a subtree. If the added condition of
one sequence structure is satisfied in the initial state, the BT
can reach the goal after execution, and if not, the unsatisfied
conditions of sequence structures are further expanded.

The pseudo code of the BT expansion algorithm is shown
in Algorithm 2. The expansion of the tree performs itera-
tively until some expanded subtree can run in the initial state
(the while-loop in Algorithm 2). Line 5 in Algorithm 2 se-
lects the next condition node to expand with any tree traver-
sal method, e.g. breadth first search, where the conditions
already expanded are skipped. Besides, to avoid dead loop,
after each expansion those sequence structures whose condi-
tion is already expanded are pruned (line 9-10 in Algorithm
2), since it makes no sense to expand a condition with an
action sequence that starts from that condition.
Proposition 4. Algorithm 2 terminates in finite time.

Proof. The total number of states/conditions is finite, there-
fore the condition nodes of the BT is also finite with the
prune of redundant conditions (line 10). So the while-loop
runs for finite times where the algorithm either breaks the
loop earlier or returns failure after all conditions are tra-
versed. Inside the loop, the one-step expansion finishes in fi-
nite time with Proposition 3. The traversal and the prune fin-
ish in finite time due to finite condition nodes of the BT.
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Figure 5: BT Expansion by iteratively expanding unsatisfied condition nodes.

Algorithm 2: BT expansion for behavior planning
1 T ← Sg

2 Expanded← ∅
3 r ← Tick(T )
4 while r = F do
5 c← TraverseToNextCondition(T , Expanded)
6 if c = Failure then
7 return Failure
8 end
9 T ← Expand(T , c)

10 T ← Prune(T , Expanded)
11 Expanded← Expanded ∪ {c}
12 r ← Tick(T )
13 end
14 return T

We analyze the soundness and completeness of Algorithm
2 as follows.

Lemma 1. In the expansion loop of Algorithm 2, any added
condition node in finite steps is in the region of attraction of
the BT with the goal condition as success region.

Proof. This lemma can be proved by strong induction. In
the basis step (the first expansion), the only condition node
to expand in the primary BT is the goal condition. According
to Proposition 2, Lemma 1 holds for the basis step.

For the inductive step, consider an expansion of an exist-
ing condition node c for which Lemma 1 holds as the induc-
tive premise. We need to prove that it also holds in the added
condition nodes of this expansion. According to Proposition
2, the BT will reach states under c in finite time if executing
from the newly added sequence structure. With the inductive
premise that c is in the region of attraction of the goal con-
dition, the agent can then reach the goal condition in finite
time. According to the above induction, any added condi-
tion node in finite steps is in the region of attraction of the
BT with the goal condition as success region.

Proposition 5. Algorithm 2 is sound, i.e. if it returns a result
T other than Failure, T is a solution to Problem 1.

Proof. If a BT T is returned, the algorithm breaks the while-
loop in finite steps with a BT tick resulting other than fail-
ure. It indicates that some condition node holds in the initial
state. According to Lemma 1, the initial state is in the region

of attraction of the BT with the goal condition as its success
region. Therefore the returned BT solves Problem 1.

Proposition 6. Algorithm 2 is complete, i.e. if Problem 1 is
solvable, the algorithm returns a BT T which is a solution.

Proof. This proposition can be proved by contradiction. We
assume that there exists a BT that is the solution of Prob-
lem 1 but our algorithm fails, i.e. it cannot break the while-
loop after expanding all condition nodes in the building BT.
The solution is finite time successful so we can utilize a fi-
nite sequence to represent the state transition of the solution
BT: (s0, a1, s1, a2, ..., sn−1, an, sn) where the goal condi-
tion g ⊆ sn. We first prove that any state in this sequence
must satisfy some condition node traversed in the expansion
while-loop by mathmatical induction from the right to the
left of this sequence.

For the basis step, we consider the state sn−k with k = 0,
i.e. sn ⊇ g. Obviously g is a condition node of the BT from
the beginning primary BT.

For the inductive step, we consider a transition (sn−k−1,
an−k, sn−k) and there exists a condition node c ⊆ sn−k
in the BT as the inductive premise. We need to prove that
there also exists a condition node satisfied by sn−k−1. The
inductive premise and the transition gives:

sn−k−1 ∪ add(an−k)\del(an−k) = sn−k ⊇ c (6)

which can be deduced to:

sn−k−1 ⊇ c\add(an−k) (7)

Without loss of generality, we analyze in two cases,
whether c ∩ (pre(an−k) ∪ add(an−k)\del(an−k)) = ∅.

(1) c ∩ (pre(an−k) ∪ add(an−k)\del(an−k)) = ∅: From
the case premise, c ∩ add(an−k) = ∅ holds because the add
effects and delete effects has no common member (cf. eqn.
2). Therefore eqn. 7 can further be deduced to:

sn−k−1 ⊇ c (8)

Therefore sn−k−1 satisfies the condition node c of the BT.
(2) c ∩ (pre(an−k) ∪ add(an−k)\del(an−k)) 6= ∅: The

transition shown by eqn. 6 indicates sn−k\del(an−k) =
sn−k. Therefore when expanding c, action an−k will be
selected because the selective condition holds (cf. line 4
in Algorithm 1), which creates a condition node can−k

attr =
pre(an−k)∪c\add(an−k). The state transition also provides
that sn−k−1 ⊇ pre(an−k), then with eqn. 7 we can deduce:

sn−k−1 ⊇ pre(a) ∪ c\add(an−k) (9)
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Therefore sn−k−1 satisfies the condition node cattr added
to the BT. The last step is to consider whether the con-
dition node cattr will be pruned. If it is not pruned, cattr
is exactly the required condition node. If it is pruned, the
prune indicates that there already exists some condition node
cexist ⊆ cattr ⊆ sn−k−1 in the BT, cexist is the condition
node satisfied by sn−k−1.

The two cases complete the proof of the inductive step.
The mathmatical induction proves that any state in the se-
quence must satisfy some condition node generated in the
expansion while-loop. Therefore s0 will satisfy some con-
dition node during the BT expansion loop, then the tick will
returnR to break the while-loop and return a BT, which con-
tradicts the initial assumption that a solution BT exists but
our algorithm fails. With the soundness of the algorithm, the
returned BT is a solution. Therefore if Problem 1 is solvable,
the algorithm returns a BT T which is a solution.

Evaluation
Formal Discussion of Behavior Planning with BTs
Despite the advantages of automated planning like assisting
human design and ensuring correctness, the behavior plan-
ning with BTs has more advantages in terms of blended
planning and acting. The pioneering work (Colledanchise,
Almeida, and Ögren 2019) states the advantages in four
points, which we can formally discuss in our formulation.

(1) if the action executed by the robot is reversed, the
robot takes the action again without the need to replan. (2)
If an external agent accomplishes an action the robot plans
to do, the robot skips the action without the need to replan.

Consider a solution BT whose action sequence is (s0, a1,
s1, a2, ..., sn). Reversing any action means a back step to a
previous state and external help of any action means a for-
ward step to a subsequent state. Since all states are in the
success region of the BT, there is no need to replan and the
BT is finite time successful from the disturbed states.

(3) If there are several actions reaching the same post
condition, the BT should include them so that if one fails
the others can be tried.

As in Fig. 4, when expanding some condition, our algo-
rithm utilizes multiple actions to build sequence structures
linking to the top fallback node. Intuitively any one fails the
others can be tried. From the view of region of attraction,
this is because the region expanded through different actions
may have intersecting states, in which if one action fails, the
other actions can be tried.

(4) The BT should be able to be expanded during runtime.
Our method comes to an even stronger property. Assum-

ing that the environment suddenly changes from sa to sb for
any reason, as long as sb is in the region of attraction of the
BT, there is no need to expand. If sb is outside the region of
attraction, the BT can continue the BT expansion algorithm
to further expand its region of attraction until sb is included.
The soundness and completeness guarantees that if a solu-
tion exists, the BT will always expands to a valid one.

Robustness. The BT is more robust to external distur-
bances with larger region of attraction. Algorithm 2 can be
modified to tradeoff between the robustness and efficiency.

Actions Pre Add Del

Move(b,ab) Free(ab), At(b,ab) Free(ab),
WayClear At(b,pb)

Move(s,ab) Free(ab) At(s,ab), Free(ab),
WayClear At(s,ps)

Move(s,as) Free(as) At(s,as), Free(as),
WayClear At(s,ps)

Table 1: Actions in the mobile manipulator simulation.

Figure 6: The simulation scenario.

In the most robust case, the algorithm breaks the loop af-
ter all condition nodes are expanded, regardless of the sat-
isfaction in s0. The resulting BT’s region of attraction can
be pretty large, as well as the size of the tree. It includes
all solvable states according to the completeness of the al-
gorithm. In the most efficient case, the algorithm prunes all
nodes that are redundant and degenerates into classical plan-
ning sequence (s0, a1, s1, a2, ..., sn). The BT’s region of
attraction is small but valid, as well as the size of the tree.

Complexity. The time complexity of BT expansion is
polynomial to the system size (|A| + |S|) for state space
traversal. It may vary from O(b|S|) to O(|A||S|log|S|) with
problem and implementation settings, where b is the max-
branching factor. Details are in the supplementary material1.

Experiments
We first demonstrate the superior of our method to the base-
line (Colledanchise, Almeida, and Ögren 2019) in a case
study simulated with a mobile manipulator. Then we eval-
uate our method with numerical computation tests.

Simulation The simulation is in the CoppeliaSim simula-
tor (cf. Fig. 6) where there are a Youbot mobile manipulator
r, a big cargo b, a small cargo s, and two free appointed ar-
eas ab and as. The big cargo is only allowed to place in the
big area ab and the small cargo can be placed in both areas.

The goal for the robot is to move the cargo b from the ini-
tial position pb to the appointed area ab. However the cargo
s at ps stands in its way, so the robot has to first move s to
somewhere and then moves b. The actions are listed in Table.
1, where we define three actions for the case study.

The solution BT of our algorithm is shown in Fig. 7a, by
which the robot first moves the blocking cargo s to the area
as, then moves the target cargo b to the area ab and accom-
plishes the goal. The advantages discussed in the previous

1https://github.com/HPCL-micros/bt-expansion
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Case Test Set Generation Problem Tree Size (BT expansion) Tree Size (baseline)
Literals Distance Iterations States Actions Avg. Std. Avg. Std.

0 10 10 10 20.6 20 35.3 29.7 85.7 19.3
1 10 10 100 103.9 110 80.6 64.6 457.7 95.1
2 10 10 1000 607.5 1010 395.6 265.4 4135.0 908.7
3 100 10 10 21 20 41.0 0.1 605.2 21.5
4 100 10 1000 1011 1010 41.5 1.5 30840.8 192.8
5 10 50 10 58.8 60 62.7 54.6 247.1 59.3
6 10 50 100 138.1 150 99.7 79.0 616.9 146.6
7 10 50 1000 621.0 1050 430.0 290.8 4248.7 977.4
8 100 50 10 61 60 201.2 0.9 1829.8 36.2
9 100 50 1000 1051 1050 203.9 7.1 32074.7 184.4

Table 2: Evaluation of efficiency in terms of tree size with different test sets.

(a) Right Solution (b) Wrong Solution

Figure 7: Results of (a) our approach and (b) the baseline.

subsection hold, e.g if someone else moves back the block-
ing cargo after the robot clears its way, the robot will move
it again to clear the way, and if someone moves away the
blocking cargo, the robot directly moves the target cargo,
without the need to replan.

Although the solution is obvious in such a simple case,
the baseline approach (Colledanchise, Almeida, and Ögren
2019) may fail and expand a wrong BT in Fig. 7b. The BT
moves s to ab to clear the way, but also occupies the only
area for cargo b, breaking the precondition Free(ab) to move
b. Although the authors intuitively proposed a conflict reso-
lution method, this error cannot be corrected since an action
selection/deletion mechanism is missed in their method, but
the wrong action in this case should never be selected.

The case study illustrates the baseline’s defects in a sim-
ple way for clarity, and other problems such as an infinite
loop may also make the baseline fail. Basically this is be-
cause the algorithm is not sound and complete, it may return
a BT that is not a solution and fails even if a solution exists.
On the contrast, our algorithm is proven to be sound and
complete, so it is superior due to its complete theoretical ba-
sis. Besides, our method tends to achieve better efficiency, in
terms of the size of the generated BT. In the case study, even
if the baseline’s conflicting subtree is pruned, its number of
nodes is still more than ours.

Computation This section we empirically evaluate the ef-
ficiency through computation. A vast number of tasks with
different number of literals, states, actions, and solution dis-

tance are randomly generated, each case for 1000 tests, as
listed in Table. 2. Test sets are generated by firstly generat-
ing a path from the start to the goal with given distance and
then randomly expanding states by iterations to produce a
mission graph. More details of the test set can also be found
in the aforementioned supplementary materials.

We mainly compare the generated BT size as the indica-
tor of efficiency, where less tree size means not only effi-
ciency for the expansion of BT generation, but also the tick
of BT execution, i.e. the execution overhead. Since our al-
gorithm utilizes compact condition nodes, i.e. one condition
node may check multiple literals, the BT size does not neces-
sarily increase with the number of literals, while the baseline
(Colledanchise, Almeida, and Ögren 2019) generates signif-
icantly large BTs with more literals (cases 0/2 vs 3/4, 5/7 vs
8/9). The tree size increases with the distance from the start
to the goal (cases 0/1/2/3/4 vs 5/6/7/8/9). It may not increase
much with the total states number in the test set, but with the
actions per state. If one state contains exactly one action (ex-
cept the end), the solution BT is rather small (cases 3/4/8/9).

Summing up all the experimental results, BT expansion is
superior in effectiveness and efficiency. With the solid the-
oretical basis, it always generates a solution BT as long as
a solution exists, providing reliability in robot applications.
And the empirical results show that it tends to generate BTs
that are much more efficient in terms of the tree size.

Conclusion
This paper proposes BT expansion, a sound and complete
algorithm for behavior planning of intelligent robots. BTs
are automatically synthesized with a complete theoretical
basis through the combination of the STRIPS-style plan-
ning and the state-space formulation of BTs. Robots with
BT expansion are guaranteed to work under any resolvable
disturbances. Experiments are conducted with a simulated
manipulator and a test set. The results demonstrate the effec-
tiveness and efficiency of BT expansion, and its superiority
to the baseline approach. Future work is to further improve
the generated BT size and study planning under uncertainty.
Another research direction is to improve the mathematical
evaluation of BTs other than finite time successful property,
such as temporal logic, so as to facilitate periodic tasks.
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