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Abstract

Classical game-theoretic approaches for multi-agent systems
in both the forward policy design problem and the inverse
reward learning problem often make strong rationality as-
sumptions: agents perfectly maximize expected utilities under
uncertainties. Such assumptions, however, substantially mis-
match with observed human behaviors such as satisficing with
sub-optimal, risk-seeking, and loss-aversion decisions. Draw-
ing on iterative reasoning models and cumulative prospect
theory, we propose a new game-theoretic framework, bounded
risk-sensitive Markov Game (BRSMG), that captures two as-
pects of realistic human behaviors: bounded intelligence and
risk-sensitivity. General solutions to both the forward policy
design problem and the inverse reward learning problem are
provided with theoretical analysis and simulation verification.
We validate the proposed forward policy design algorithm and
the inverse reward learning algorithm in a two-player nav-
igation scenario. The results show that agents demonstrate
bounded-intelligence, risk-averse and risk-seeking behaviors
in our framework. Moreover, in the inverse reward learning
task, the proposed bounded risk-sensitive inverse learning al-
gorithm outperforms a baseline risk-neutral inverse learning al-
gorithm by effectively learning not only more accurate reward
values but also the intelligence levels and the risk-measure
parameters of agents from demonstrations.

1 Introduction
Markov Game (MG), as an approach to modeling interactions
and decision-making processes in multi-agent systems, has
been employed in many domains such as economics (Amir
2003), games (Silver et al. 2017), and human-robot/machine
interaction (Bu et al. 2008). In classical MGs, agents are
commonly assumed to be perfectly rational when computing
their policies. For instance, in a two-player MG, agent 1 is
assumed to make decisions based on his/her belief in agent
2’s behavioral model in which agent 2 is also assumed to
behave according to his/her belief in agent 1’s model . . . and
both agents are maximizing their expected rewards based on
such infinite levels of mutual beliefs. If the beliefs match
the actual models, perfect Markov strategies of all agents
may be found by solving the Markov-perfect equilibrium
of the game where a Nash equilibrium is reached. Under
∗First two authors contributed equally to this work.
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such assumptions, we can either solve for humans’ optimal
policies with handcrafted rewards (forward policy design) or
learn humans’ rewards from demonstrations (inverse reward
learning).

However, in real life, humans often significantly deviate
from such “perfectly rational” assumptions from two major
aspects (Goeree and Holt 2001). First, mounting evidence has
shown that rather than spending a great amount of effort hunt-
ing for the best response, humans often choose actions that
are satisfying (i.e., actions that are above their pre-defined
thresholds according to certain criteria) and relatively quick
and easy to find. Simon (Simon 1976) formulated such a cog-
nitive characteristic as bounded rationality. Among the many
developed behavioral models that capture bounded rational-
ity, iterative reasoning models from behavioral game theory
(Camerer 2011) are some of the most prominent paradigms.
These models do not assume humans perform infinite layers
of strategic thinking during interactions but model humans as
agents with finite levels of intelligence (bounded rationality).
Second, instead of optimizing risk-neutral rewards, humans
demonstrate a strong tendency towards risk-sensitive mea-
sures when evaluating the outcomes of their actions. They
are risk-seeking in terms of gains and risk-averse for losses.
Such deviations make it difficult to model realistic human
behaviors using classical MGs.

In this work, we aim to establish a new game-theoretic
framework (BRSMG) that captures the two aspects of real-
istic human behaviors discussed above. The incorporation
of bounded rationality and risk-sensitivity in classical MGs
requires revisiting fundamental concepts in both the forward
policy design and the inverse reward learning problem. Stan-
dard value iteration and inverse learning algorithms for tradi-
tional MGs do not hold any more, and new algorithms should
be established to reflect the impact of bounded intelligence
and risk sensitivity.

More specifically, in the forward policy design problem,
we model humans’ bounded intelligence via an instantiation
of iterative reasoning models and model the influence of hu-
mans’ risk sensitivity via cumulative prospect theory (CPT)
(Tversky and Kahneman 1992). In the inverse reward learning
problem, we develop a bounded risk-sensitive inverse learn-
ing algorithm that can recover not only the nominal rewards
of agents but also their intelligence levels and risk-measure
parameters from demonstrations. To our best knowledge, our
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work is the first to incorporate both bounded rationality and
risk-sensitivity in both the forward problem and the inverse
problem of general-sum MGs.
Contributions. In summary, our contributions are threefold:

1. We propose a novel game-theoretic framework (BRSMG)
that captures bounded rationality and risk-sensitivity in
humans’ reasoning processes.

2. The proposed framework makes the first attempt to estab-
lish a bridge between inverse reward learning and risk-
sensitive iterative reasoning models.

3. In contrast to previous risk-neutral reward learning algo-
rithms that learn humans’ rewards under equilibrium so-
lution concepts, we exploit an alternative paradigm based
on non-equilibrium solution concepts and offer a solution
that simultaneously learns humans’ rewards, intelligence
levels, and risk-sensitive measure parameters. Therefore,
our solution provides an interpretable and heterogeneous
human behavioral model, which is of critical importance
for the development of human-centered robots such as
autonomous vehicles.

2 Related Work
Bounded rationality. The influence of bounded rationality
in forward policy design problems has been studied in both
single-agent and multi-agent settings. One group of studies
formulates such influence by introducing additional com-
putational costs to agents’ actions (Ben-Sasson, Kalai, and
Kalai 2007; Halpern 2008; Halpern and Pass 2015). An-
other group focuses on models that can explicitly capture
the bounded reasoning processes of humans. Examples in-
clude the Boltzmann rationality model (Von Neumann and
Morgenstern 2007), the quantal response equilibrium solu-
tion (QRE) (McKelvey and Palfrey 1995), and various itera-
tive reasoning models (Costa-Gomes, Crawford, and Broseta
2001; Camerer, Ho, and Chong 2004; Stahl II and Wilson
1994). The Boltzmann model and the QRE model formulate
irrational behaviors of humans via sub-optimality, while it-
erative reasoning models emphasize more on the bounded
reasoning depth. Instead of assuming humans perform infi-
nite levels of strategic reasoning, iterative reasoning models
only allow for a finite number of strategic reasoning. Iter-
ative reasoning models have been exploited for modeling
human behaviors in many application domains, including
normal-form zero-sum games (Tian et al. 2020), aerospace
(Yildiz, Agogino, and Brat 2014; Kokolakis, Kanellopou-
los, and Vamvoudakis 2020), cyber-physical security (Kanel-
lopoulos and Vamvoudakis 2019), and human-robot interac-
tion (Li et al. 2018; Tian et al. 2020). It is shown in (Wright
and Leyton-Brown 2014) that compared to QRE, iterative rea-
soning models can achieve better performance in predicting
human behaviors in simultaneous move games. More specif-
ically, (Wright and Leyton-Brown 2017) suggests that the
quantal level-k model is the state-of-the-art among various
iterative reasoning models.
Risk measure. Many risk measures have been proposed
to evaluate humans’ decisions. Beyond expectation, value-
at-risk (VaR) and conditional value-at-Risk (CVaR) (Pflug
2000) are two well-adopted risk measures. In addition, the

cumulative prospect theory (CPT) (Tversky and Kahneman
1992) formulates a model that can well explain a substan-
tial amount of human risk-sensitive behaviors. In the light
of those risk measures, many risk-aware decision-making
and reward learning algorithms have been proposed in both
single-agent setting (Lin and Marcus 2013; Chow et al. 2015;
Mazumdar et al. 2017; Jie et al. 2018; Ratliff and Mazumdar
2019; Kwon et al. 2020) and multi-agents cases (Sun et al.
2019) with a Stackelberg Game assumption.
Inverse reward learning in games. The inverse reward
learning problem in games has attracted great attention from
researchers, starting from simplified open-loop game formu-
lations (Sadigh et al. 2016; Sun et al. 2018) to closed-loop
games (Yu, Song, and Ermon 2019; Gruver et al. 2020). The
concept of QRE was first adopted by (Yu, Song, and Ermon
2019) to extend the maximum-entropy inverse reinforcement
learning algorithm (Ziebart et al. 2008) in multi-agent set-
tings. (Gruver et al. 2020) further extended the idea for better
efficiency and scalability by introducing a latent space in the
reward network. Though (Wright and Leyton-Brown 2014)
suggested that iterative reasoning models can predict human
behaviors more accurately in simultaneous move games com-
pared with QRE, the multi-agent inverse reward learning
problem with iterative reasoning models and risk sensitive
measure has never been addressed. In this work, we propose
the BRSMG framework to fill the gap.

3 Preliminaries
3.1 Classical Markov Game
In this work, we consider two-player Markov Games. We
denote a two-player MG as G , 〈P ,S,A,R, T , γ̃〉, where
P={1, 2} is the set of agents in the game; S=S1 × S2 and
A=A1×A2 are, respectively, the joint state and action spaces
of the two agents;R=(R1, R2) is the set of agents’ one-step
reward functions with Ri : S × Ai × A−i → R (−i =
P \ {i} represents the opponent of agent i); T : S × A →
S represents the state transition of the game (we consider
deterministic state transitions in this paper); and γ̃ is the
reward discount factor.

We let πi : S → Ai denote a deterministic policy of
agent i. At step t, given the current state st, each agent tries
to maximize its expected total discounted reward under un-
certainties in its opponent’s responses. Namely, the optimal
policy π∗,i is given by π∗,i= arg maxπi V

i,πi(st), where
V i,π

i

(st) = Eπ−i
[∑∞

τ=0 γ̃
τRi(st+τ , a

i
t+τ , a

−i
t+τ )

]
represents

the value of st, i.e., the expected total reward collected by
i starting from st under policy πi. The notations a−it+τ and
st+τ , respectively, represent the predicted future action of−i
and state of the game at step t+ τ . In the MPE, both agents
achieve their optimal policies. Due to the mutual influence
between the value functions of both agents, finding the MPE
is normally NP-hard.

3.2 Quantal Level-k Model
The quantal level-k model is one of the most effective it-
erative reasoning models in predicting human behaviors in
simultaneous move games (Wright and Leyton-Brown 2017).
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It assumes that each human agent has an intelligence level
that defines his/her reasoning capability. More specifically,
the level-0 agents do not perform any strategic reasoning,
while quantal level-k (k ≥ 1) agents make strategic decisions
by treating other agents as quantal level-(k−1) agents. As
shown in Fig. 1, the orange agent is a level-1 agent who be-
lieves that the blue agent is a level-0 agent. Meanwhile, the
blue agent is actually a level-2 agent who treats the orange
agent as a level-1 agent when making decisions. The quantal
level-k model has therefore reduced the complex circular
strategic thinking in classical MGs to finite levels of iterative
optimizations. On the basis of an anchoring level-0 policy,
the quantal level-k policies of all agents can be defined for all
k = 1, . . . , kmax through a sequential and iterative process.

3.3 Cumulative Prospect Theory
The cumulative prospect theory (CPT) is a non-expected
utility measure that describes the risk-sensitivity of humans’
decision-making processes (Kahneman and Tversky 2013).
It can explain many systematic biases of human behav-
iors that deviate from risk-neutral decisions, such as risk-
avoiding/seeking and framing effects.

Definition 1 (CPT value). For a discrete random variable
X satisfying

∑n
i=−m P(X=xi)=1, xi≥x0 for i=0, · · ·, n,

and xi<x0 for i=−m, · · ·,−1, then the CPT value of X is
defined as

CPT(X)=
∑n

i=0
ρ̃+ (P(X=xi))u

+(X − x0)

−
∑−1

i=−m
ρ̃− (P(X=xi))u

−(X − x0), (1a)

ρ̃+ (P(X=xi)) =
[
w+
(∑n

j=i
P(X=xj)

)
−w+

(∑n

j=i+1
P(X=xj)

) ]
, (1b)

ρ̃− (P(X=xi)) =
[
w−

(∑i

j=−m
P(X=xj)

)
−w−

(∑i−1

j=−m
P(X=xj)

) ]
. (1c)

The functions w+ : [0, 1]→[0, 1] and w− : [0, 1]→[0, 1]
are two continuous non-decreasing functions and are referred
as the probability weighting functions. They describe humans’
desire to deflate high probabilities and inflate low probabil-
ities. The two functions u+ : R+→R+ and u− : R−→R+

are concave utility functions which are, respectively, mono-
tonically non-decreasing and non-increasing. The notation
x0 denotes a reference point that separates the value X into
gains (X≥x0) and losses (X<x0). Without loss of generality,
we set x0 = 0 and omit x0 in the rest of this paper.

Many experimental studies have shown that represen-
tative functional forms for u and w are: u+(x)=(x)α if
x≥0, and u+(x)=0 otherwise; u−(x)=λ(−x)β if x<0, and
u−(x)=0 otherwise; w+(p)= pγ

(pγ+(1−p)γ)1/γ and w−(p) =

pδ

(pδ+(1−p)δ)1/δ . The parameters α, β, γ, δ∈(0, 1] are model
parameters. We adopt these two representative functions in
this paper. Section A of the supplementary material illustrates
the probability weighting functions and the utility functions.

Figure 1: Modeling interactions between humans as a
bounded risk-sensitive Markov Game: two human agents
aim to exit the room through specified doors without colli-
sions with obstacles and each other. We aim to answer two
questions: 1) assuming both humans have bounded intelli-
gence levels and risk-sensitive performance measures, how
will their optimal policies differ from those in classical MGs?
and 2) how to recover the rewards, intelligence levels, and
risk-sensitivity parameters from their demonstrations?

4 Bounded Risk-Sensitive Markov Game
In this section, we investigate agents’ policies in a new
general-sum two-player MG, i.e., the bounded risk-sensitive
MG (BRSMG). In particular, agents in BRSMG are bounded-
rational with risk-sensitive performance measures.

4.1 Bounded Risk-Sensitive Policies
According to the quantal level-k model described in Sec-
tion 3.2, a quantal level-k agent (k∈N+) assumes its oppo-
nent agent is quantal level-(k − 1) agent, predicts its quantal
level-(k − 1) policy, and quantally best responds to the quan-
tal level-(k − 1) policy. Such an iterative reasoning process
traces back to the quantal level-0 policy, which is normally a
pure responsive policy. Therefore, on the basis of a selected
quantal level-0 policy1, we can sequentially and iteratively
solve for the closed-loop quantal level-k policies for every
agent and every k = 1, . . . , kmax.

If we strictly consider positive rewards and set x0=0, we
have the CPT value in (1) reduced to a form that includes
only u+ : R+→R+ and ρ̃+ : [0, 1]→[0, 1]. In (Lin 2013), it
is proved that under such condition, the CPT measure is a
reward transition mapping (Theorem 3.2). Thus, following
Section 2 in (Lin 2013), given current state st, the discounted
future cumulative prospects that a risk-sensitive quantal level-
k agent i tries to maximize can be expressed as:

max
πi,k

Jπi,k(st)= max
πi,k

CPTπ∗,−i,k−1

[
Ri(st, a

i
t, a
−i
t )+ · · ·

+γ̃τCPTπ∗,−i,k−1

[
Ri(st+τ , a

i
t+τ , a

−i
t+τ ) + . . .

]]
,

(2)

1Note that the selection of quantal level-0 policy can be different
according to applications. We use the notation π0 to represent a
generic quantal level-0 policy and describe the exemplary quantal
level-0 policy in Section 6.
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where π∗,−i,k−1:S×A−i→[0, 1] denotes the optimal risk-
sensitive quantal level-(k−1) policy of agent −i whose level
of intelligence is believed to be (k−1) from agent i’s perspec-
tive. The action a−it+τ denotes the predicted action of agent
−i sampled from π∗,−i,k−1 at time step t+τ .

We define V ∗,i,k(st),Jπ∗,i,k(st) as the optimal CPT
value that i could collect following π∗,i,k starting from
st. Then, the optimal CPT value at any s∈S satisfies
(Ruszczyński 2010; Lin and Marcus 2013):

V ∗,i,k(s) = max
ai∈Ai

CPTπ∗,−i,k−1

[
Ri(s, ai, a−i)+

γ̃V ∗,i,k(s′)
]
, s′ = Ta−i∼π∗,−i,k−1(s, ai, a−i).

(3)

We also define the optimal CPT Q-value of agent i as
Q∗,i,k(s, ai)=CPTπ∗,−i,k−1

[
Ri(s, ai, a−i)+γ̃V ∗,i,k(s′)

]
.

Based on the Boltzmann model (Von Neumann and
Morgenstern 2007), we re-construct π∗,i,k as

π∗,i,k(s, ai) =
exp

(
βQ∗,i,k(ai, s)

)∑
a′∈Ai exp

(
βQ∗,i,k(a′, s)

) , (4)

where β≥0 defines the level of the agents conforming
to the optimal strategy. Without loss of generality, we
set β=1. By iteratively solving (3), the optimal quantal
level-k risk-sensitive policy π∗,i,k for every i∈P and every
k=1, . . . , kmax can be obtained.

4.2 Policy Convergence
In classical MGs, V ∗,i,k(s) in (3) can be solved via standard
value iteration algorithm. Note that the CPT measure in (3)
is non-convex and nonlinear, thus the conditions for the con-
vergence of value iteration algorithm for solving (3) need to
be-established.
Theorem 1. Denote 〈s, ai, a−i〉:=ca−is,ai and normalize

ρ̃i(ca
−i

s,ai):=ρ̃
i(P(a−i|s, ai)) by

ρi(ca
−i

s,ai) = ρ̃i(ca
−i

s,ai)/
∑

a−i′
ρ̃i(ca

−i′

s,ai ), (5)

where ρ̃ refers to ρ̃+ defined in (1) since we consider only
positive rewards. For an arbitrary agent i∈P , if the one-
step reward Ri is lower-bounded by Rmin with Rmin ≥ 1,
then ∀s ∈ S and all intelligence levels with k=1, 2, · · · , the
dynamic programming problem in (3) can be solved by the
following value iteration algorithm (Algorithm 1):

V i,km+1(s) = max
ai∈Ai

∑
a−i∈A−i

ρi(ca
−i

s,ai)u
i
(
Ri(s, ai, a−i)+

γ̃V i,km (s′)
)
, s′ = T (s, ai, a−i), (6)

where ui refers to agent i’s instance of u+ in (1). Moreover,
as m → ∞, V i,km+1 converges to the optimal value function
V ∗,i,k(s).

Proof. Detailed proof is given in Section B of the supple-
mentary material. Here, we show only the skeleton. As
shown in Section 4.1, the iterative format of level-k policies

Algorithm 1: Risk-sensitive quanntal level-k policies

Input: Markov Game G, kmax, and the anchoring policy π0.
Output: {π∗,i,k}, i ∈ P and k = 1, . . . , kmax.
for k = 1 : kmax do

for i ∈ P do
Initialize V i,k(s), ∀s ∈ S;
while V i,k not converged do

for s ∈ S do
V i,k(s)← BV i,k(s);

end for
end while
for (s, ai) ∈ S ×Ai do

Compute π∗,i,k(s, ai) based on (4);
end for

end for
end for
Return {π∗,i,k}, i ∈ P and k ∈ K.

has reduced (3) to a single-agent policy optimization prob-
lem with known π∗,−i,k−1 from previous iterations. Hence,
we only need to show that the CPT operator defined by
BV i,km = V i,km+1 is a contraction when Rmin≥1 for any k≥1
(Lemma 2 in Section B of the supplementary material). �

5 The Inverse Reward Learning Problem
We now consider the inverse learning problem in BRSMGs.
Given demonstrated trajectories of two interacting agents
who are running the quantal level-k risk-sensitive policies,
our goal is to infer agents’ rewards, risk-sensitive parameters,
and levels of intelligence.

5.1 Formulation of the Inverse Learning Problem
We assume that the one-step rewards for both agents
can be linearly parameterized by a group of selected
features: ∀i∈P , Ri(s, ai, a−i)=(ωi)ᵀΦi(s, ai, a−i), where
Φi(s, ai, a−i):S×Ai×A−i→Rd is a known feature func-
tion that maps a game state s, an action of agent i, and
an action of agent −i to a d-dimensional feature vector,
and ωi∈Rd is a d-dimensional reward parameter vector.
We define ω̄=(γ̄, ω̄r, k̄), where γ̄=(γi, γ−i), ω̄r=(ωi, ω−i),
and k̄ = (ki, k−i), respectively, represent the parame-
ters in the weighting functions in (1b), the reward param-
eter vectors, and the levels of intelligence of both agents.
Thus, given a set of demonstrated trajectories from the
two players in a BRSMG denoted by D={ξ1, · · ·, ξM}
with ξ={(s0, ā0), . . . , (sN−1, āN−1)}, st∈S, and āt∈A
(t=0, . . ., N−1), the inverse problem aims to retrieve the
underlying reward parameters, the risk-sensitive parameters,
and the levels of intelligence of the agents from D. Based on
the principle of Maximum Entropy (Ziebart et al. 2008), the
problem is equivalent to solving the following optimization
problem:

max
ω̄

∑
ξ∈D

log P (ξ|ω̄) = max
ω̄

∑
ξ∈D

log
∏N−1

t=0
P(āt|st, ω̄), (7)
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where P(āt|st, ω̄) is the joint likelihood of agents’ actions
conditioned on states and parameters and can be expressed as

log P(āt|st, ω̄) = log π∗,i,k
i

(γ̄,ω̄r)(st, a
i
t)π
∗,−i,k−i
(γ̄,ω̄r) (st, a

−i
t ), (8)

where π∗,i,k
i

(γ̄,ω̄r) and π∗,−i,k
−i

(γ̄,ω̄r) , respectively, represent the risk-
sensitive quantal level-k policies of agent i and agent −i
induced by parameters (γ̄, ω̄r).
Problem approximation. The optimization (7) can be for-
mulated as a mixed-integer optimization which is infeasible
to solve. Therefore, we make the following approximation:
we remove k̄ from ω̄, and treat k̄ as representations of agents’
internal states which can be inferred based on agents’ demon-
strations and most recent estimates of their reward param-
eters and risk-measure parameters. With that, we evaluate
the expected likelihood of āt with respect to the inferred
distributions of k̄, and solve (7) via gradient ascent.

5.2 The Gradient Information
With the proposed approximation described above, we re-
define ω̄ as (γ̄, ω̄r), then (8) can be re-written as:

logEk̄|ξt−1,ω̄

[
P(āt|st, ω̄)

]
= log

∑
(ki,k−i)∈K2

π∗,i,k
i

ω̄ (st, a
i
t)

· π∗,−i,k
−i

ω̄ (st, a
−i
t )P(ki|ξt−1, ω̄)P(k−i|ξt−1, ω̄), (9)

where P(ki|ξt−1, ω̄), k ∈ K, is the posterior belief in an
agent’s intelligence level inferred based on the joint trajectory
history upon time t−1. Note that initially, we set P(ki|ξ−1, ω̄)
as an uniform distribution over K. Then, P(ki|ξt−1, ω̄) can
be updated recursively from t = 0 using Bayesian inference:

P(ki|ξt, ω̄) =
π∗,i,k

i

ω̄ (st, a
i
t)P(ki|ξt−1, ω̄)∑

k′∈K π
∗,i,k′
ω̄ (st, ait, )P(k′|ξt−1, ω̄)

. (10)

From (7), (9) and (10), we can see that the gradient
∂ logP(ξ|ω̄)/∂ω̄ depends on two items (details are in Sec-
tion C of the supplementary material): 1) the gradients of
both agents’ policies under arbitrary intelligence level k∈K
with respect to ω̄, i.e., ∂π∗,i,kω̄ /∂ω̄ and 2) the gradients of
posterior beliefs in agents’ intelligence levels with respect to
ω̄, i.e., ∂ logP(ki|ξt−1, ω̄)/∂ω̄.
Gradients of policies. Recall (4), ∂π∗,i,kω̄ /∂ω̄, ∀i∈P and
k∈K, requires the gradient of the corresponding optimal Q
function with respect to ω̄, i.e., ∂Q∗,i,kω̄ /∂ω̄ (detailed deriva-
tion is shown in Section C.1 of the supplementary material).
Due to the max operator in (3), direct differentiation is not
feasible. Hence, we use a smooth approximation for the max

function, that is, max(x1, · · ·, xnx)≈
(∑nx

i=1(xi)
κ
) 1
κ with

all xi>0. The parameter κ>0 controls the approximation
error, and when κ→∞, the approximation becomes exact.
Therefore, (3) can be re-written as

V ∗,i,kω̄ (s) = maxai∈AiQ
∗,i,k
ω̄ (s, ai)

≈

(∑
ai∈Ai

(
Q∗,i,kω̄ (s, ai)

)κ) 1
κ

. (11)

Taking derivative of both sides of (11) with respect to ω̄

yields (note that (·)
′

ω̄ := ∂(·)ω̄
∂ω̄ ):

V
′,∗,i,k
ω̄ (s)≈ 1

κ

(∑
ai∈Ai

(
Q∗,i,kω̄ (s, ai)

)κ) 1−κ
κ

(12a)

·
∑

ai∈Ai

[
κ
(
Q∗,i,kω̄ (s, ai)

)κ−1

·Q
′,∗,i,k
ω̄ (s, ai)

]
,

Q
′,∗,i,k
ω̄ (s, ai) =

∑
a−i∈A−i

(
∂ρiω̄
∂ω̄

(ca
−i

s,ai)u
i(Riω̄(s, ai, a−i)

+ γ̃V ∗,i,kω̄ (s′)
)

+ ρiω̄(ca
−i

s,ai)α
(
Riω̄(s, ai, a−i) (12b)

+ γ̃V ∗,i,kω̄ (s′)
)α−1(∂Riω̄

∂ω̄
(s, ai, a−i) + γ̃V

′,∗,i,k
ω̄ (s′)

))
.

Notice that in (12), V
′,∗,i,k
ω̄ is in a recursive format. Hence,

we propose below a dynamic programming algorithm to solve
for V

′,∗,i,k
ω̄ and Q

′,∗,i,k
ω̄ at all state and action pairs.

Theorem 2. If the one-step reward Ri, i ∈ P , is bounded
by Ri∈[Rmin, Rmax] satisfying Rmax

R2−α
min

αγ̃<1, then ∂V ∗,i,kω̄ /∂ω̄

can be found via the following value gradient iteration:

V
′,i,k
ω̄,m+1(s) ≈ 1

κ

(∑
ai∈Ai

(
Q∗,i,kω̄ (s, ai)

)κ) 1−κ
κ

(13a)

·
∑

ai∈Ai

[
κ
(
Q∗,i,kω̄ (s, ai)

)κ−1

·Q
′,i,k
ω̄,m(s, ai)

]
,

Q
′,i,k
ω̄,m(s, ai) =

∑
a−i∈A−i

(
∂ρiω̄
∂ω̄

(ca
−i

s,ai)u
i(Ri(s, ai, a−i)

+ γ̃V ∗,i,kω̄ (s′)
)

+ ρiω̄(ca
−i

s,ai)α
(
Riω̄(s, ai, a−i)

+ γ̃V ∗,i,kω̄ (s′)
)α−1(∂Riω̄

∂ω̄
(s, ai, a−i) + γ̃V

′,i,k
ω̄,m (s′)

))
. (13b)

Moreover, the algorithm converges to ∂V ∗,i,kω̄ /∂ω̄ as m→∞.

Proof. We first define ∇BV ′,i,km = V
′,i,k
m+1, and show that

the operator∇B is a contraction under the given conditions
(derivations of ∂ρiω̄/∂ω̄ are shown in Section C.2 of the
supplementary material). Then, the statement is proved by
induction similar to Theorem 1. More details are given in
Section D of the supplementary material. �

Gradient of the posterior belief. We summarize the
value iteration algorithm that computes the policy gradi-
ent in Algorithm 2. The second gradient that we need
to compute is the gradient of the posterior belief in
k with respect to ω̄, i.e., ∂ logP(ki|ξt−1, ω̄)/∂ω̄. Re-
call (10), we have ∂ logP(ki|ξt−1, ω̄)/∂ω̄ depending on
∂π∗,i,kω̄ /∂ω̄(st−1, a

i
t−1) and ∂ logP(k|ξt−2, ω̄)/∂ω̄ for all

k∈K. Substituting the gradients of policies obtained through
Algorithm 2 in ∂ logP(k|ξt−1, ω̄)/∂ω̄ yields a recursive for-
mat from time 0 to time t−1, which can be easily computed.
Generalization to other iterative reasoning models. Both
Theorem 1 and Theorem 2 naturally extend to other prob-
abilistic iterative reasoning models as long as the optimal
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Algorithm 2: Gradients of quantal level-k risk-
sensitive policies

Input: Markov Game model G, highest intelligence level
kmax, and π∗,i,k, i ∈ P and k = 1, . . . , kmax.

Output:{ ∂π
∗,i,k
ω̄
∂ω̄
}, i ∈ P and k ∈ K.

for k = 1, . . . , kmax do
for i ∈ P do

Initialize V
′,i,k
ω̄ (s), ∀s ∈ S;

while V
′,i,k not converged do

for s ∈ S do
V
′,i,k(s)← ∇BV

′,i,k(s);
end for

end while
for (s, ai) ∈ S ×Ai do

Compute ∂π
i,k
ω̄
∂ω̄

(s, ai) by differentiating
Eq. (4) with respect to ω;

end for
end for

end for

Return { ∂π
i,k
ω̄
∂ω̄
}, i ∈ P and k ∈ K.

policies are iterative and satisfy (3). For instance, the quan-
tal cognitive hierarchy model (Wright and Leyton-Brown
2014) that allows for mixed levels of intelligence can be well
applied. Detailed extension and comparison among these
models are left to future work.

5.3 The Inverse Learning Algorithm in BRSMG
With the gradient of (7) defined, the gradient ascent algo-
rithm is used to find local optimal parameters in ω̄ that max-
imize the log-likelihood of demonstrations in a BRSMG
Algorithm 3.

Algorithm 3: The inverse learning algorithm
Input: A demonstration set D and learning rate η
Output: Learned parameters ω̄.
Initialize ω̄.
while not converged do

Run Algorithm 1, Algorithm 2
Compute gradient of the log-likelihood of the

demonstration following:∇ω̄ =
∑
ξ∈D

∂ log
(
P(ξ|ω̄)

)
∂ω̄

;
Update the parameters following: ω̄ = ω̄ + η∇ω̄;

end while
Return: ω̄

6 Experiments
In this section, we utilize a grid-world navigation example
to verify the proposed algorithms in both the forward policy
design problem and the inverse reward learning problem in a
BRSMG. The simulation setup is shown in Fig. 1. Two human
agents must exit the room through two different doors while
avoiding the obstacles and potential collisions with each
other. We assume that the two agents move simultaneously,
and they can observe the actions and states of each other

Figure 2: The navigation reward maps satisfying R≥1 (left:
the orange agent; right: the blue agent).

in the previous time step. Moreover, we let kmax=2 in this
experiment since psychology studies found that most humans
perform at most two layers of strategic thinking (Stahl and
Wilson 1995).

6.1 Environment Setup
We define the state as s=(x1, y1, x2, y2), where xi

and yi denote the coordinates of the human agent
i, i∈P . The two agents share a same action set
A={move left,move right,move up,move down, stay}. In
each state, the reward of agent i includes two elements: a
navigation reward as shown in Fig. 2 and a safety reward that
reflects the penalty for collisions. We restrict all rewards to be
positive, satisfying Rmin=1 and Rmax

R2−α
min

αγ̃<1. If a collision
happens, an agent will collect a fixed reward of 1. If there is
no collision, agents receive rewards greater than 1 according
to the navigation reward map.
Selection of the quanntal level-0 policy. Recall that a quan-
tal level-0 policy is required to initiate the iterative reasoning
process in Algorithm 1. In this work, we use an uncertain-
following policy as an exemplary quantal level-0 policy: from
a quantal level-1 agent’s perspective, a quantal level-0 agent
is a follower who accommodates the quantal level-1 agent’s
planned immediate action. Namely, given state st and action
a−i from the opponent agent (i.e., the leader), the stochastic
policy of a level-0 agent i satisfies

π∗,i,0(st, a
i|a−i) =

exp
(
Ri(st, a

i, a−i)
)∑

a′∈Ai exp
(
Ri(st, a′, a−i)

) , ∀ai ∈ Ai.
(14)

6.2 Interactions in BRSMG
In this section, we investigate the influence of the risk-
sensitive performance measure on agents’ policies in a
Markov Game by comparing agents’ interactive behaviors
under risk-neutral and risk-sensitive policies. We set the pa-
rameters in the CPT model as γ1,2=0.5 and α1,2=0.7.

Three cases are considered: Case 1 - both agents are quan-
tal level-1 (L1-L1); Case 2 - both agents are quantal level-2
(L2-L2); and Case 3 - one agent is quantal level-1 and the
other is quantal level-2 (L1-L2). If both agents exit the en-
vironment without collisions and dead-locks, we call it a
success. We compare the rate of success (RS) of each case
under risk-neutral and risk-sensitive policies in 100 simula-
tions with agents starting from different locations.
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Impacts of bounded intelligence. First, let us see how a risk-
neutral agent behaves under different levels of intelligence.
Based on the selected anchoring policy in (14), a risk-neutral
quantal level-1 agent will behave quite aggressively since
it believes that the other agent is an uncertain-follower. On
the contrary, a risk-neutral quantal level-2 agent will perform
more conservatively because it believes that the other agent
is aggressively executing a quantal level-1 policy. Fig. 3(b)
shows an exemplary trajectory of Case 1. We can see that
with two level-1 agents, collision happened due to their ag-
gressiveness, i.e., they both assumed that the other would
yield. On the other hand, Fig. 3(d) and Fig. 3(f), respectively,
show exemplary trajectories of Case 2 and Case 3 with agents
starting from the same locations as in the exemplary trajec-
tory in Fig. 3(b). We can see that in both cases, the two agents
managed to avoid collisions. In Case 2, both agents behaved
more conservatively, and lead to low efficiency (Fig. 3(d)),
while in Case 3, both agents behaved as their opponents ex-
pected and generated the most efficient and safe trajectories
(Fig. 3(f)). To show the statistical results, we conducted 100
simulations for each case with randomized initial states, and
the RS is shown in Fig. 3(a) (green). It is shown that similar
to what we have observed in the exemplary trajectories, Case
1 lead to the lowest RS, and Case 3 achieved the highest RS.
The RS in Case 2 is in the middle because though both agents
behaved conservatively, the wrong belief over the other’s
model may still lead to lower RS compared to Case 3.
Impacts of risk sensitivity. In this experiment, we will see
how the risk-sensitive CPT model impacts risk-neutral be-
haviors. As shown in Fig. 3(a), in Case 1, the risk-sensitive
policies help significantly improve the RS of interactions
between two quantal level-1 agents. This is because the CPT
model makes the quantal level-1 agents underestimate the
possibilities of “yielding” from their opponents, leading to
more conservative behaviors with higher RS. Such a conclu-
sion can be verified by comparing the exemplary trajectories
shown in Fig. 3(b-e). We can see that compared to the risk-
neutral case in Fig. 3(b), under the risk-sensitive policy, the
blue agent decided to yield to the orange one at the fourth
step. At the same time, in Case 2 and Case 3, the CPT model
makes the quantal level-2 agents overestimate the possibil-
ities of “yielding” from quantal level-1 agents, leading to
more aggressive behaviors. An exemplary trajectory is shown
in Fig. 3(e). We can see that compared to the risk-neutral
quantal level-2 agents in Fig. 3(d), the risk-sensitive quantal
level-2 agents waited for less steps and collide with each
other. Hence, the RS for both Case 2 and Case 3 are reduced
compared to the risk-neutral scenarios, as shown in Fig. 3(a).

6.3 Reward Learning in BRSMG
In this section, we validate Algorithm 3. In the inverse
problem, we aim to learn the navigation rewards and the
CPT parameter γ of both agents, (i.e., ω̄=(γ, (ω1, ω2)) and
ω1,2 ∈ R25), without prior information on their intelligence
levels (we need to infer the intelligence levels simultaneously
during the learning).
Collecting synthetic expert demonstrations. We first col-
lect some expert demonstrations in the navigation environ-
ment via the policies derived in the forward problem in Sec-

(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Performance comparison between the bounded
risk-neutral policies and the bounded risk-sensitive policies.
(b-f) Examples of interactive trajectories ( circular arrow
denotes the action “stay”); (b) two risk-neutral quantal level-
1 agents; (c) two risk-sensitive quantal level-1 agents; (d)
two risk-neutral quantal level-2 agents; (e) two risk-sensitive
quantal level-2 agents; (f) orange: risk-neutral quantal level-1
agent; blue: risk-neutral quantal level-2 agent.

tion 4. Similarly, for generating the demonstrations, we set
the parameters of the CPT model as γ1,2=0.5 and α1,2=0.7,
and let agents with mixed intelligence levels interact with
each other using the risk-sensitive quantal level-k policies.
We randomized the initial conditions (initial positions and
intelligence levels) of the agents and collected M=100 ex-
pert demonstrations (i.e., paired navigation trajectories). The
approximation parameter κ in Q-value approximation (11) is
set to κ = 100 and the learning rate is set to η = 0.0015.
Metrics. We evaluate the learning performance via two
metrics: the parameter percentage error (PPE), and the
policy loss (PL). The PPE of learned parameters ω̄i is
defined as |ω̄i−ω̄∗,i|/|ω̄∗,i| with ω̄∗,i being the ground-
truth value. The PL denotes the error between the
ground truth quantal level-k policies and the policies ob-
tained using the learned reward functions. It is defined
as 1
|K×S×Ai|

∑
(k,s,ai)∈K×S×Ai |π

∗,i,k
ω̄ (s, a) − π∗,i,kω̄∗ (s, a)|

where π∗,i,kω̄ and π∗,i,kω̄∗ are, respectively, the quantal level-k
policy of agent i under the learned parameter vector ω̄ and
the true vector ω̄∗.
Results. Fig. 4(a) and Fig. 4(b) show, respectively, the his-
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tories of PPE and PL during learning. The solid lines repre-
sent the means from 25 trials, and the shaded areas are the
95% confidence intervals. The average errors of each learned
parameter are given in Fig. 4(c). We can see that the pro-
posed inverse learning algorithm can effectively recover both
agents’ rewards and risk-measure parameter γ. In addition,
in Fig. 5(a), we show the identification accuracy of the in-
telligence levels of agents in the data. More specifically, the
identified intelligence level of agent i, i ∈ P , in a demon-
stration ξ is given by k̂i= arg maxk∈K P(k|ξN−1). We can
see that accuracy ratios of 86% and 92% are achieved for the
two agents, respectively. Overall, the results show that the
proposed inverse reward learning algorithm can effectively
recover rewards, risk-parameters, and intelligence levels of
agents in a BRSMG.

(a)

(b)

(c)

Figure 4: (a-b) Averaged PL and PPE w.r.t. training epochs.
(c) Average errors of each learned parameter.

6.4 Performance Comparison with a Baseline
In this section, we compare the performance of the proposed
inverse reward learning algorithm (BRSMG-IRL) against a
baseline inverse reward learning algorithm.
The baseline IRL algorithm. The baseline IRL algorithm
is a risk-neutral Maximum Entropy IRL algorithm (ME-IRL)
without consideration to bounded intelligence, similar to
the approach in (Sadigh et al. 2016; Sun et al. 2018; Sun,
Zhan, and Tomizuka 2018). Rather than jointly learning both
agents’ rewards, the baseline runs Maximum Entropy IRL
from each agent’s perspective separately. In each ego agent’
IRL formulation, the interaction is formulated as an open-
loop leader-follower game in which the opponent’s ground
truth trajectory is assumed to be known, making the ego agent
a follower to its opponent during learning.
Metrics. In addition to PPE and PL, we also compare the
learned rewards with the ground truth rewards using two
types of statistical correlations: 1) Pearson’s correlation coef-

(a) (b)

Figure 5: (a): Intelligence level identification accuracy (or-
ange: orange agent; blue: blue agent. (b): Reward learning
comparison between our method and a baseline Maximum
entropy IRL algorithm.

Algorithm ME-IRL BRSMG-IRL
SCC A1 0.529 0.824
SCC A2 0.471 0.763

Average SCC 0.371 0.794
PCC A1 0.615 0.865
PCC A2 0.462 0.893

Average PCC 0.538 0.879

Table 1: Statistical correlations between the learned reward
functions and the ground-truth rewards

ficient (PCC) and 2) Spearman’s rank correlation coefficient
(SCC). PCC characterizes the linear correlation between the
ground truth rewards and the recovered rewards (higher PCC
represents higher linear correlations). SCC characterizes the
strength and direction of the monotonic relationship between
the ground truth rewards and the recovered rewards (higher
SCC represents stronger monotonic relationships).
Results. The performance comparison between the proposed
approach and the baseline is shown in the right plot of Fig. 5.
We can see that the proposed method can recover more accu-
rate reward values compared to the baseline. This is because
the baseline fails to capture the structural biases caused by
agents’ risk sensitivity and bounded intelligence. Moreover,
Table 1 indicates that the reward values recovered by the pro-
posed method have a higher linear correlation and stronger
monotonic relationship to the ground-truth reward values.

7 Conclusion
Drawing on iterative reasoning models and cumulative
prospect theory, we proposed a new game-theoretic frame-
work (BRSMG) that captures two aspects of realistic human
behaviors: bounded intelligence and risk-sensitivity. We pro-
vided general solutions to both the forward policy design
problem and the inverse reward learning problem with theo-
retical analysis and simulation verification. Our future work
will focus on using the proposed framework for practical
applications such as learning human driver reward functions
from naturalistic driving data.

Acknowledgements
We thank Ruichao Jiang for helpful discussion and feedback.

6018



References
Amir, R. 2003. Stochastic games in economics and related
fields: an overview. In Stochastic games and applications,
455–470. Springer.
Ben-Sasson, E.; Kalai, E.; and Kalai, A. 2007. An approach
to bounded rationality. In Advances in Neural Information
Processing Systems, 145–152.
Bu, L.; Babu, R.; De Schutter, B.; et al. 2008. A compre-
hensive survey of multiagent reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Ap-
plications and Reviews) 38(2): 156–172.
Camerer, C. F. 2011. Behavioral game theory: Experiments
in strategic interaction. Princeton University Press.
Camerer, C. F.; Ho, T.-H.; and Chong, J.-K. 2004. A cog-
nitive hierarchy model of games. The Quarterly Journal of
Economics 119(3): 861–898.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015. Risk-
sensitive and robust decision-making: a cvar optimization
approach. In Advances in Neural Information Processing
Systems, 1522–1530.
Costa-Gomes, M.; Crawford, V. P.; and Broseta, B. 2001.
Cognition and behavior in normal-form games: An experi-
mental study. Econometrica 69(5): 1193–1235.
Goeree, J. K.; and Holt, C. A. 2001. Ten little treasures
of game theory and ten intuitive contradictions. American
Economic Review 91(5): 1402–1422.
Gruver, N.; Song, J.; Kochenderfer, M. J.; and Ermon, S.
2020. Multi-agent Adversarial Inverse Reinforcement Learn-
ing with Latent Variables. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, 1855–1857.
Halpern, J. Y. 2008. Beyond nash equilibrium: Solution
concepts for the 21st century. In Proceedings of the twenty-
seventh ACM symposium on Principles of distributed com-
puting, 1–10.
Halpern, J. Y.; and Pass, R. 2015. Algorithmic rationality:
Game theory with costly computation. Journal of Economic
Theory 156: 246–268.
Jie, C.; Prashanth, L.; Fu, M.; Marcus, S.; and Szepesvári,
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Ruszczyński, A. 2010. Risk-averse dynamic programming
for Markov decision processes. Mathematical programming
125(2): 235–261.
Sadigh, D.; Sastry, S.; Seshia, S. A.; and Dragan, A. D. 2016.
Planning for autonomous cars that leverage effects on human
actions. In Robotics: Science and Systems, volume 2. Ann
Arbor, MI, USA.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676): 354–359.
Simon, H. A. 1976. From substantive to procedural rational-
ity. In 25 years of economic theory, 65–86. Springer.
Stahl, D. O.; and Wilson, P. W. 1995. On players’ models
of other players: Theory and experimental evidence. Games
and Economic Behavior 10(1): 218–254.
Stahl II, D. O.; and Wilson, P. W. 1994. Experimental evi-
dence on players’ models of other players. Journal of eco-
nomic behavior & organization 25(3): 309–327.
Sun, L.; Zhan, W.; Hu, Y.; and Tomizuka, M. 2019. Inter-
pretable modelling of driving behaviors in interactive driving
scenarios based on cumulative prospect theory. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), 4329–
4335. IEEE.
Sun, L.; Zhan, W.; and Tomizuka, M. 2018. Probabilistic
Prediction of Interactive Driving Behavior via Hierarchical

6019



Inverse Reinforcement Learning. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
2111–2117.
Sun, L.; Zhan, W.; Tomizuka, M.; and Dragan, A. D. 2018.
Courteous autonomous cars. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 663–
670. IEEE.
Tian, R.; Li, N.; Kolmanovsky, I.; and Girard, A. 2020. Beat-
ing humans in a penny-matching game by leveraging cogni-
tive hierarchy theory and Bayesian learning. In 2020 Ameri-
can Control Conference (ACC), 4652–4657.
Tian, R.; Li, N.; Kolmanovsky, I.; Yildiz, Y.; and Girard,
A. R. 2020. Game-theoretic modeling of traffic in unsignal-
ized intersection network for autonomous vehicle control
verification and validation. IEEE Transactions on Intelligent
Transportation Systems .
Tversky, A.; and Kahneman, D. 1992. Advances in prospect
theory: Cumulative representation of uncertainty. Journal of
Risk and uncertainty 5(4): 297–323.
Von Neumann, J.; and Morgenstern, O. 2007. Theory of
games and economic behavior (commemorative edition).
Princeton university press.
Wright, J. R.; and Leyton-Brown, K. 2014. Level-0 meta-
models for predicting human behavior in games. In Pro-
ceedings of the fifteenth ACM conference on Economics and
computation, 857–874.
Wright, J. R.; and Leyton-Brown, K. 2017. Predicting human
behavior in unrepeated, simultaneous-move games. Games
and Economic Behavior 106: 16 – 37. ISSN 0899-8256.
Yildiz, Y.; Agogino, A.; and Brat, G. 2014. Predicting pilot
behavior in medium-scale scenarios using game theory and
reinforcement learning. Journal of Guidance, Control, and
Dynamics 37(4): 1335–1343.
Yu, L.; Song, J.; and Ermon, S. 2019. Multi-agent adversarial
inverse reinforcement learning. In 2Proceedings of the 36th
International Conference on Machine Learning (ICML).
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, 1433–1438. Chicago, IL, USA.

6020


