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Abstract

The paper develops a theory of power for delegable proxy
voting systems. We define a power index able to measure
the influence of both voters and delegators. Using this index,
which we characterize axiomatically, we extend an earlier
game-theoretic model by incorporating power-seeking behav-
ior by agents. We analytically study the existence of pure
strategy Nash equilibria in such a model. Finally, by means
of simulations, we study the effect of relevant parameters on
the emergence of power inequalities in the model.

Introduction
Liquid democracy (Blum and Zuber 2016) is a form of proxy
voting (Miller 1969; Tullock 1992; Alger 2006; Green-
Armytage 2015; Cohensius et al. 2017) where each proxy
is delegable, thereby giving rise to so-called transitive dele-
gations. In such a system each voter may choose to cast her
vote directly, or to delegate her vote to a proxy, who may in
turn decide whether to vote or delegate, and so pass the votes
she has accrued further to yet another proxy. The voters who
decide to retain their votes—the so-called gurus—cast their
ballots, which now carry the weight given by the number
of delegations they accrued. Liquid democracy has been an
influential proposal in recent public debates on democratic
reform across the world, thanks also to platforms for demo-
cratic decision support such as, in particular, LiquidFeed-
back (Behrens et al. 2014)1. In the last couple of years it
has enjoyed considerable attention from researchers in po-
litical science and eDemocracy, as well as artificial intelli-
gence (see, for an overview, Paulin (2020)).

Contribution The starting point of our paper is a contro-
versial feature of liquid democracy: transitive delegations
may in principle lead to disproportionate accrual of power,
thereby harming the democratic legitimacy of the resulting
vote. To the best of our knowledge, this issue has received
only limited attention. A notable exception is the work of
Kling et al. (2015), which provided an empirical analysis of
power and influence in liquid democracy based on data from
the German Pirate Party. However, a formal theory of power
in voting systems with delegable proxy is lacking. We aim
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1https://liquidfeedback.org/

at providing such a theory here, and use it to gain insights
into how power may happen to be distributed among agents
involved in decision-making with liquid democracy.

First, we provide a generalization of the power index
known as Banzhaf index to account for delegations in vot-
ing with quota rules. This novel index—called delegative
Banzhaf index—measures not only the influence of voters,
but also that of delegators. We characterize this index ax-
iomatically (Theorem 1) and highlight how the index re-
sponds intuitively to the way in which delegations may be
structured (Fact 1-3).

Second, we extend the strategic model of liquid democ-
racy developed by Bloembergen, Grossi, and Lackner
(2019) to account for power-seeking behavior by agents. In
our model, agents want to vote truthfully in order to relay
correct information to the mechanism, but they do so by also
considering how much power they retain in the system. We
carry out an equilibrium analysis (pure strategy Nash equi-
librium) of the model. We show equilibria may not exist if
delegations are constrained (Theorem 2), but they do when
everybody is allowed to delegate to anybody (Theorem 3).

Finally, we simulate our game theoretic model and study
how two key parameters of the model influence the distri-
bution of power both in equilibrium and after one-shot in-
teraction. Our experiments show that limiting the level of
connectivity of the underlying network has a beneficial ef-
fect in limiting the emergence of inequalities in the distribu-
tion of power (measured by Gini coefficient). Perhaps less
intuitively, the extent by which agents are motivated by the
accumulation of power has a similar effect: groups where
agents are more power-greedy appear to achieve more equal
distributions of power.

Proofs are sketched or omitted. All details about our
proofs and experiments can be found in the full version2.

Related Work The idea of voting with delegable proxy
can be traced back to Dodgson (1884) and has been object
of study in the political sciences (Green-Armytage 2015). In
the last couple of years, several papers in the artificial in-
telligence community (and in particular the computational
social choice one (Brandt et al. 2016)) have focused on liq-
uid democracy. Two lines of research have broadly been

2https://arxiv.org/pdf/2010.07070.pdf
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pursued. On the one hand papers have pointed to poten-
tial weakenesses of voting by liquid democracy, e.g.: del-
egation cycles and the failure of individual rationality in
multi-issue voting (Christoff and Grossi 2017; Brill and Tal-
mon 2018); poor accuracy of group decisions as compared
to those achievable via direct voting in non-strategic set-
tings (Kahng, Mackenzie, and Procaccia 2018; Caragiannis
and Micha 2019), as well as strategic ones (Bloembergen,
Grossi, and Lackner 2019). On the other hand a number of
papers have focused on the development of better behaved
delegation schemes, e.g.: delegations with preferences over
trustees (Brill and Talmon 2018) or over gurus (Escoffier,
Gilbert, and Pass-Lanneau 2019, 2020); multiple delegations
(Gölz et al. 2018); complex delegations like delegations to
a majority of trustees (Colley, Grandi, and Novaro 2020);
dampened delegations (Boldi et al. 2011); breadth-first del-
egations (Kotsialou and Riley 2020).

Our paper is a contribution to the first line of research. The
possibility of large power imbalances is recognized as a po-
tential problem for liquid democracy, although experimental
work has argued the issue may be limited in practice (Kling
et al. 2015). We aim at putting the discussion on power in
liquid democracy on a precise footing and gain insights into
how power imbalances may arise or be contained.

Preliminaries: A Model of Liquid Democracy
Our model is based on the binary voting setting for truth-
tracking (Condorcet 1785; Grofman, Owen, and Feld 1983;
Elkind and Slinko 2016). The setting has already been ap-
plied to the study of liquid democracy by Kahng, Macken-
zie, and Procaccia (2018); Bloembergen, Grossi, and Lack-
ner (2019); Caragiannis and Micha (2019).

Binary voting by truth-tracking agents A finite set of
agents N = {1, 2, . . . , n} has to vote on whether to accept
or reject an issue. The vote is supposed to track the correct
state of the world—that is whether it is ‘best’ to accept or
reject the issue. The agents’ ability to make the right choice
(i.e., the agents’ error model) is represented by the agent’s
accuracy qi ∈ ( 1

2 , 1], for i ∈ N .
We assume the result of such an election to be determined

by a quota rule with quota β ∈ (n2 , n]. That is, the issue is
accepted if and only if there are at least β agents supporting
it. We will also be working with the more general setting in
which each agent is endowed with a weight. Let ω : N →
R+ be a weight function assigning a positive weight to ev-
ery agent.3 Then the quota is β ∈

(∑
i∈N ω(i)

2 ,
∑
i∈N ω(i)

]
.

That is, an issue is accepted if and only if the weight it col-
lects from individual votes matches or exceeds the quota (cf.
Chalkiadakis, Elkind, and Wooldridge (2012)).

Liquid democracy elections When agent i ∈ N delegates
to agent j ∈ N we write di = j. We admit the possi-
bility for an agent to abstain by delegating to a nul agent
0. This feature will be of technical use for the characteri-
zation of the power index we are going to introduce. Then
d = (d1, d2, . . . , dn) is called a delegation profile (or simply

3In the ‘one-voter-one-vote’ setting, ω(i) = 1 for all i ∈ N .

profile) and is a vector describing each agent’s delegation.
Equivalently, delegation profiles can be usefully thought of
as maps d : N → N ∪ {0}, where d(i) = di. When di = i,
agent i votes on her own behalf. We call such an agent a
guru. On the other hand, any agent who is not a guru, is
called a delegator. For profile d, and C ⊆ N , let Cd denote
all gurus in C in profile d, i.e., Cd = {i ∈ C | di = i}. A
delegation profile in which all agents are gurus (i.e., for all
i ∈ N di = i) is said to be trivial.

We call a liquid democracy election (LDE) the tuple V =
〈N,ω,d, β〉, where N is the set of agents with weights ac-
cording to ω, d is a delegation profile, and β is the quota.
Let then V denote the set of all LDEs. Clearly, LDEs with
trivial profiles are instances of standard weighted voting.

Gurus, chains and cycles Any profile d can also be rep-
resented by a directed graph. An edge from agent i to j
(i → j) exists whenever di = j. Consider then a profile
d where a path exists from i to j, i.e., i → i1 → · · · →
ik → j. We call such paths delegation chains. When such a
chain from i to guru j exists, every agent on this delegation
chain (indirectly) delegates to j, and we denote i’s guru by
d∗i = d∗(i) = j. Additionally, the set of agents between
any pair of agents on the delegation chain are called the
intermediaries between the two agents. For example, sup-
pose the above delegation chain occurs in profile d. Then
the set of intermediaries between i and j is {i1, . . . , ik}, and
it is denoted by δd(i, j). The sum of the weights of the in-
termediaries between two agents i and j and the weight of
j, is called the delegation distance from i to j and is de-
noted by ∆d(i, j) =

∑
a∈(δd(i,j)∪{j}) ω(a). A delegation

cycle is a chain where the first and last agents coincide.
In such a case, no agent in the chain is linked to a guru.
Therefore no agent linked via a delegation chain to an agent
in a delegation cycle has a guru. For C ⊆ N , we write
D(C) = {j ∈ N | ∃k ∈ C, d∗j = k} to denote the set
of agents that directly or indirectly delegate to a guru in C.
If C = {i} we write D(i) for the set of agents whose guru
is i.

One last piece of notation: we will need to consider what
happens to delegation chains when we restrict to certain sub-
sets of agents. For instance, given the chain i→ i1 → i2 →
· · · → ik → j, if {i, i2, . . . , ik, j} ⊆ C ⊆ N but i1 /∈ C,
then i is not able to delegate to j within C as she has no
access to intermediary i1 in such subset. For C ⊆ N we
write d∗C(i2) = j to denote that j is the guru of i2 and the
chain from i2 to j contains only elements of C. Then we
write D̂(C) = {j ∈ N | ∃k ∈ C,d∗C(j) = k} for the set
of agents that directly or indirectly delegate to some agent
in C through intermediaries contained in C. Intuitively, this
captures the support accrued by gurus in C via agents in C.

A Power Index for Liquid Democracy
Once delegations are settled, liquid democracy results in
weighted voting where only gurus vote with the sum of
weights they accrued from direct or indirect delegations.
From a voting perspective, gurus are therefore the only
agents who retain voting power after the delegation phase.
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However, this neglects the power that delegators actually
have within liquid democracy by being able to control large
number of votes. By means of a simple example: a guru i
obtaining m direct delegations is intuitively more ‘power-
ful’ than a guru obtainingm delegations via an intermediary
j, who is in turn recipient of m− 1 direct delegations. Most
of i’s power depends then on j (see also Example 1 below).

So in this section we generalize the Banzhaf index (Pen-
rose 1946; Banzhaf 1965) to the delegable proxy voting set-
ting.4 The Banzhaf index has already been used to study the
power of gurus in liquid democracy by Kling et al. (2015).

Delegative Banzhaf Index: Definition
We briefly recall the definition of the Banzhaf index. A sim-
ple game is a tuple G = 〈N, ν〉, where N is the set of agents
(|N | = n) and ν is the characteristic function ν : 2N →
{0, 1}. For any C ⊆ N , if ν(C) = 1 then C is said to be
winning, otherwise it is said to be losing. An agent i is called
a swing agent for coalitionC if ν(C)−ν(C\{i}) = 1. Then
in a simple game G, the Banzhaf index Bi(G) of agent i ∈ N
is: Bi(G) = 1

2n−1

∑
C⊆N\{i}(ν(C ∪ {i}) − ν(C)), i.e., i’s

probability of being swing for a random coalition.
There is one obvious way in which an LDE V induces a

simple game: it is the simple game capturing the weighted
voting occurring among gurus once delegations have been
fixed, i.e., GV = 〈N, νV 〉 where, for any C ⊆ N :

νV (C) = 1 iff
∑

i∈D(C)

ω(i) ≥ β. (1)

That is, a coalition wins whenever all gurus in it together
accrue enough weight to meet the quota. In such a game only
gurus may have positive power: i ∈ Nd if Bi(GV ) > 0,
as GV is silent about the influence that delegators have in
determining the winning coalitions.

The influence of delegators can be captured by a different
simple game G′V = 〈N, ν′V 〉 where, for any C ⊆ N :

ν′V (C) = 1 iff
∑

i∈D̂(C)

ω(i) ≥ β. (2)

That is, a coalition C is winning whenever the sum of
weights accrued by the gurus in C from agents in C, meets
the quota. According to this way of constructing the sim-
ple game, an agent’s weight is accrued in a coalition C if
the agent, her guru, and all intermediaries between them
are contained in C. We refer to G′V as the delegative sim-
ple game of LDE V . Clearly, if d is trivial, all agents are
gurus and therefore GV = GV ′ .

So, given an LDE V = 〈N,ω,d, β〉, we define the del-
egative Banzhaf index of an agent i in LDE V simply as the
Banzhaf index of i in the delegative simple game of V :

DBi(V ) = Bi(G′V ). (3)

Observe that in LDEs V where the delegation profile is triv-
ial, and therefore games G(V ) and G′(V ) coincide, the two
indices coincide.

4Our approach can similarly be used to develop a generalization
of the Shapley-Shubik power index (Shapley and Shubik 1954).

1 2

3 4

(a) d1

41

2 3

(b) d2

Figure 1: Profiles in Example 1

Example 1. Consider two LDEs, V1 = 〈N,ω,d1, β〉 and
V2 = 〈N,ω,d2, β〉, where N = {1, 2, 3, 4}, ω(i) = 1 for
all i ∈ N , β = 3 and d1 and d2 are represented in Fig. 1a
and Fig. 1b, respectively.

We focus on the indices of agents 1 and 4. First
consider V1. Since no coalition C ⊆ N exists with
ν′V1

(C) = 1 and ν′V1
(C \ {1}) = 0, DB1(V1) = 0.

Then we compute DB4(V1). ν′V1
(C) = 1 and ν′V1

(C \
{4}) = 0 iff C ∈ {{2, 3, 4}, {1, 2, 3, 4}}. Thus
DB4(V1) =

∑
C⊆N (ν′V1

(C) − ν′V1
(C \ {4}))/23 =

1/4. Then consider V2. First for DB1(V2), ν′V2
(C) = 1

and ν′V2
(C \ {1}) = 0 iff C ∈ {{1, 2, 4}, {1, 3, 4}}.

Therefore, DB1(V2) =
∑
C⊆N (ν′V2

(C) − ν′V2
(C \

{1}))/23 = 1/4. For DB4(V2), we have that if C ⊆
{{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}, ν′V2

(C) = 1 and
ν′V2

(C \ {4}) = 0. Then DB4(V2) =
∑
C⊆N (ν′V2

(C) −
ν′V2

(C \ {4}))/23 = 1/2.

DB depends on the structure of the delegation profile. For
instance, in both V1 and V2, agent 1 is a delegator with no
incoming delegations, but DB1(V1) = 0 while DB1(V2) =
1/4. In V1, agent 1 is “far” from the guru and her vote does
not matter for meeting the quota. In V2, agent 1 delegates
directly to the guru. Similarly, in both LDEs agent 4 collects
4 votes. However, DB4(V1) = 1/4 but DB4(V2) = 1/2
since in V1, the delegation chain pointing to 4 is long, so
that agent 4 depends on 3 for almost all her weight.

Characterization of DB
To underpin (3) we present a characterization of the delega-
tive Banzhaf index. We want to axiomatically identify DB
among all functions f : V→ (N → R) for LDEs on N . To
do so we borrow ideas and techniques from existing axiom-
atizations of the Banzhaf index for weighted voting games
(Dubey and Shapley 1979; Nowak 1997; Lehrer 1988).

The strategy we follow consists in generalizing a known
characterization of the Banzhaf index for standard weighted
voting due to Barua, Chakravarty, and Roy (2005). We use
the same axioms of that characterization (Axioms 2-5 be-
low), with the addition of one axiom for so-called dummy
agents (Axiom 1). Crucially, however, we show how to adapt
the key definitions upon which the axioms are based from
the standard weighted voting setting to LDEs. This concerns
in particular the definitions of composition and bloc forma-
tion (Definitions 6 and 7) which play an important role in
the proof. As a result one can retrieve the known character-
ization of the standard Banzhaf index from ours, by simply
restricting to the class of LDEs where profiles are trivial, and
therefore delegations do not matter.
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Preliminary Definitions We start by introducing standard
definitions from the theory of simple games. Assume an
LDE V = 〈N,ω,d, β〉 be given.
Definition 1 (Dummy Agent). An agent i ∈ N is dummy if
for any C ⊆ N (i ∈ C), ν′V (C) = ν′V (C \ {i}), where ν′ is
the characteristic function of the delegative simple game of
V . Let Ndum denote all dummy agents.

That is, an agent is dummy whenever she cannot influence
ν′V (C) by quitting or joining any coalition C ⊆ N . It is
worth observing that, in LDEs there are three ways in which
an agent can be dummy: if the agent abstains (i.e., delegates
to 0); if the agent is linked by a chain to a delegation cycle;
if the agent—call it i—is such that ∆d(i, d∗i ) ≥ β, that is,
the delegation distance between i and her guru in d is larger
than β. We call such an agent distant (in d).
Definition 2 (Dictator). An agent i ∈ N is a dictator if
ν′V (C) = 1 if and only if i ∈ C, for any C ⊆ N .

That is, an agent i is a dictator of V whenever it belongs to
all and only the winning coalitions of the delegative simple
game of V . In an LDE this occurs if the dictator i is a guru
and β ≤ ω(i), that is, i meets the quota on her own.
Definition 3 (Symmetric Agents). Any two agents i, j ∈ N
are symmetric if for all C ⊆ N\{i, j}, ν′V (C ∪ {i}) =
ν′V (C ∪ {j}).

Symmetric agents are swing for exactly the same coali-
tions in the delegative simple game of V . Note that a pair of
symmetric agents do not necessarily have the same weight.
Example 2 (Example 1 continued). Consider V1 in Figure
1a. Since β = 3 and the delegation distance ∆d(1, 4) =
3, agent 1 is a distant (and therefore dummy) agent. Next
consider agents 1 and 2 (or any pair of {1, 2, 3}) in V2, each
of whom directly delegates to agent 4. For any coalitionC ⊆
N \ {1, 2}, ν′V2

(C ∪ {1}) = ν′V2
(C ∪ {2}), thus 1 and 2 are

symmetric. There is no dictator in Example 1.
The following definitions generalize the standard theory

of simple games to account for delegations.
Definition 4 (Minimally Winning Coalition). A coalition
C ⊆ N is a minimally winning coalition if for any i ∈
D̂(C), ν′V (C) = 1 and ν′V (C\{i}) = 0.

That is, a coalition C is minimally winning if it is win-
ning (in the delegative simple game of V ), but becomes los-
ing if any agent who is linked to a guru in C via agents in
C is removed. So a minimally winning coalition is a coali-
tion that contains just enough gurus with just enough sup-
port through intermediaries in the same coalition to meet the
quota. It follows that no distant agent may be included in a
minimally winning coalition. Notice, however, that such a
coalition may contain agents that are not linked to gurus in
C by intermediaries in C (i.e., that do not belong to D̂(C))
and therefore it may not be minimal w.r.t. set inclusion.
Definition 5 (Unanimity LDE (ULDE)). V is a unanimity
LDE if the quota β =

∑
i∈D(N) ω(i). We call such a quota

unanimity quota and denote it by βU .
That is, in a ULDE the quota equals the sum of weights

of all agents who directly or indirectly delegate to gurus.

The last two definitions concern operations on LDEs: how
to combine two LDEs into a new one; and how to build an
LDE from another one by merging two agents into a ‘bloc’.
Definition 6 (Composition). Let two LDEs V1 =
〈N1, ω1,d1, β1〉 and V2 = 〈N2, ω2,d2, β2〉 be given, such
that for any i ∈ N1 ∩ N2, if d1(i) = j and j ∈ N2 (resp.
d2(i) = j and j ∈ N1), d2(i) = j (resp. d1(i) = j), oth-
erwise d2(i) = 0 (resp. d1(i) = 0), and ω1(i) = ω2(i). We
define two new LDEs V1∧V2 = 〈N1∪N2, ω1∧2,d1∧2, β1∧
β2〉 and V1 ∨ V2 = 〈N1 ∪N2, ω1∨2,d1∨2, β1 ∨ β2〉, where:
• for any i ∈ N1 (resp. i ∈ N2), ω1∨2(i) = ω1∧2(i) =
ω1(i) (resp. ω1∨2(i) = ω1∧2(i) = ω2(i));

• for any i ∈ N1\N2 (resp.N2\N1), d1∨2(i) = d1∧2(i) =
d1(i) (resp. d1∨2(i) = d1∧2(i) = d2(i)), and for any
i ∈ N1 ∩N2, if d1(i) = d2(i) then d1∨2(i) = d1∧2(i) =
d1(i) = d2(i), otherwise d1∨2(i) = d1∧2(i) = dk(i)
where k ∈ {1, 2} and dk(i) 6= 0;

• β1 ∧ β2 (resp. β1 ∨ β2) is met by C ⊆ N1 ∪
N2 iff

∑
i∈D̂C∩N1

(C∩N1)
ω1(i) ≥ β1 and (resp. or)∑

i∈D̂C∩N2
(C∩N2)

ω2(i) ≥ β2.

Two LDEs can be composed provided the delegation
graphs at their intersection coincide or, if they do not, pro-
vided that this is because an agent in N1 ∩ N2 delegates
outside the intersection under one profile while she abstains
(i.e., delegates to 0) under the other profile. The condition
is required to guarantee the coherency of delegations in the
composition. Then quotas in the composition are so defined
as to guarantee that coalitions in the delegative simple game
of the composition are winning iff they are winning in both,
or at least one of, the delegative simple games of the LDEs
(cf. proof of Lemma 1).
Definition 7 (Bloc formation). Given V = 〈N,ω,d, β〉 and
for any i, j ∈ N such that di = j or i, j ∈ Nd, V ′ =
〈N ′, ω′,d′, β〉 is called the bloc LDE joining i and j into a
bloc ij, where
• N ′ = N\{i, j} ∪ {ij};
• For d′, if di = j, d′ij = dj , and for any a ∈ N , such that
da = i or da = j, d′a = ij, but if i, j ∈ Nd, for any
a ∈ N such that da = i or da = j, d′a = ij;

• ω′(ij) = ω(i) + ω(j).
A bloc LDE treats two agents i and j, who are either adja-

cent in the delegation graph or both gurus, as one new agent
ij. By applying the operation in Definition 7 repeatedly, it is
possible to coalesce all agents who share the same guru into
one bloc. Furthermore, any pair of delegation chains can also
be joined into one bloc by joining their gurus into one bloc.
Such operations play an important role in the proof of our
characterization result (cf. proof of Lemma 2).

Axioms We can now introduce the axioms of our charac-
terization. Assume again that an LDE V is given.

We assign minimum power to dummy agents, maximum
to dictators, and identical power to symmetric agents:
Axiom 1 (No Power (NP)). If i ∈ Ndum, fi(V ) = 0.
Axiom 2 (Maximum Power (MP)). The power index of a
dictator is 1.
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Axiom 3 (Equal Treatment (ET)). For any pair of symmet-
ric agents i, j ∈ N , fi(V ) = fj(V ).

The last two axioms concern how the index should behave
with respect to composition and bloc formation.

Axiom 4 (Bloc Principle (BP)). For any two agents i, j ∈ N
such that di = j, or i, j ∈ Nd, let V ′ be the bloc LDE by
joining i and j into bloc ij. Then fij(V ′) = fi(V ) + fj(V ).

Axiom 5 (Sum Principle (SP)). For any pair of LDEs
V1, V2 ∈ V, such that any i ∈ N1∩N2 satisfies the condition
in Definition 6, fi(V1∧V2)+fi(V1∨V2) = fi(V1)+fi(V2)
for any i ∈ N1 ∪N2.

Intuitively, Axiom 4 requires the power of the bloc, which
is formed by two gurus or two adjacent agents on a delega-
tion chain, to be the sum of their individual powers. Axiom 5
requires that the sum of any agent’s power in V1 ∧ V2 and
V1 ∨ V2 to be the sum of her power in V1 and V2.

Characterization The result is based on two lemmas.

Lemma 1. DB satisfies NP, MP, ET, BP, and SP.

Proof sketch. We prove the claim for SP as it provides a
nice illustration of the workings of our definitions. The other
cases are provided in the appendix. To show that DB satis-
fies the SP, one first has to show that by the way in which
weights β1 ∧ β2 and β1 ∨ β2 are set in Definition 6, we
have that for any coalition C ⊆ N1∪N2, ν′V1∧V2

(C) = 1 iff
ν′V1

(C∩N1) = 1 and ν′V2
(C∩N2) = 1, and ν′V1∨V2

(C) = 1
iff ν′V1

(C ∩ N1) = 1 or ν′V2
(C ∩ N2) = 1. The proof can

then proceed with a standard argument.
First consider any i ∈ N1 −N2, i.e., agent i is contained

in N1 but not in N2. Let mV
i denote the number of times

that agent i is swing in G′V i.e., mV
i = |{C ⊆ N \ {i} |

ν′V (C) = 0, ν′V (C ∪ {i}) = 1}|. Then, if i is swing in
C ⊆ N1 in LDE V1, she is also swing in (C ∪ C ′) ∩ N1,
for any C ′ ⊆ N2 − N1. Therefore, in LDE V1 ∨ V2,
mV1∨V2
i = mV1

i 2|N2−N1|, where mV1∨V2
i is the number of

times that i is swing in LDE V1 ∨ V2. Additionally, since
i ∈ N1−N2,mV2

i = 0, that is, i cannot be swing in LDE V2,
which impliesmV1∧V2

i = 0. Hence we have for i ∈ N1−N2,
mV1∨V2
i = mV1

i 2|N2−N1| + mV2
i 2|N1−N2| −mV1∧V2

i . Iden-
tical equations can be developed for agent i ∈ N2 − N1 or
i ∈ N1∩N2. Divide each side of the equation by 2|N1∪N2|−1

and obtain that, for any i ∈ N1∪N2, m
V1∨V2
i

2|N1∪N2|−1 =
m

V1
i

2|N1|−1 +
m

V2
i

2|N2|−1 −
m

V1∧V2
i

2|N1∪N2|−1 , which implies that DBi(V1 ∧ V2) +

DBi(V1 ∨ V2) = DBi(V1) + DBi(V2).

Lemma 2. A power index f for LDEs satisfies NP, MP, ET,
BP, and SP, only if it is DB.

Proof sketch. The proof consists of two claims: claim 1 if
f is DB for any ULDE, it is DB for any LDE; claim 2 f is
DB for any ULDE.

To prove claim 1 , observe that any LDE V can be rep-
resented as the disjunction of m ULDEs, i.e., V = V1 ∨
. . . ,∨Vm, given V has m minimally winning coalitions

{C1, . . . , Cm}, where Vi = 〈Ci, ω,dCi , β
U 〉. By induc-

tion over the number of disjunction ULDEs we show then
that if f is DB for the disjunction of any k (1 ≤ k < m)
ULDEs, it is also DB for the disjunction of any k + 1
ULDEs. The claim holds by SP, since fi(V1∨· · ·∨Vk+1) =
fi(V1 ∨ · · · ∨ Vk) + fi(Vk+1)− fi((V1 ∨ · · · ∨ Vk)∧ Vk+1),
where f is DB for V1 ∨ · · · ∨ Vk and Vk+1 by assump-
tion, as well as for (V1 ∨ · · · ∨ Vk) ∧ Vk+1 because it is
also disjunction of k ULDEs: (V1 ∨ · · · ∨ Vk) ∧ Vk+1 =
(V1 ∧ Vk+1) ∨ · · · ∨ (Vk ∧ Vk+1).

To prove claim 2 consider an ULDE V =

〈N,ω,d, βU 〉. We need to show that fi(V ) = 1/2n
′−1

for any non-dummy agent, and fi(V ) = 0 for any dummy
agent, where n′ is the number of non-dummy agents in the
ULDE, i.e., n′ = |N \ Ndum|. The proof is conducted by
induction on |N |. As the basis, fi(V ) = 1 if |N | = 1 by
MP since i is a dictator. Assume then that the claim holds
when |N | = k, we show it also holds if |N | = k + 1.
For any non-dummy agent, if only one non-dummy agent
exists, the claim is obvious by MP. If |N \ Ndum| ≥ 2,
we exploit BP to join two gurus, or a delegator with her
trustee, into a bloc, then obtain an LDE with k agents where
the hypothesis holds. Then the claim follows by ET. For
dummy agents the claim is proven by exploiting NP.

Theorem 1. A power index for liquid democracy satisfies
MP, NP, SP, ET, and BP, if and only if it is DB.

Proof. It follows from Lemma 1 and Lemma 2.

Further Properties of DB Besides the above axioms, it
is worth mentioning a few other properties of the index
that highlight its dependence on the delegation graph. Here
(d−i, d

′
i) is the profile obtained by changing d(i) to d′i in d.

Fact 1 (Delegation & Power Loss). For any pair of LDEs
V = 〈N,ω,d, β〉 and V ′ = 〈N,ω,d′, β〉, such that d′ =
(d−i, d

′
i), d(i) = i and d′i = j (i 6= j), we have that

DBi(V ) ≥ DBi(V
′).

That is, delegations never lead to an increase in power
for the delegator. In fact one can show that the inequality
DBi(V ) ≥ DBi(V

′) can be strict.
The last two facts show that agents closer to the guru have

more power and that, power-wise, delegating directly to a
guru is better than doing that indirectly.
Fact 2 (Power Monotonicity). For any pair of agents i, j ∈
N , such that di = j, DBi(V ) ≤ DBj(V ).
Fact 3 (Direct vs. Indirect Delegation). Let V be a LDE, in
which there exists three agents i, j, k ∈ N , such that d(i) =
j and d(k) = i. Let then V ′ = 〈N,ω,d′, β〉, such that
d′ = (d−k, d

′
k) where d′k = j. Then, DBk(V ′) ≥ DBk(V ).

A Game-theoretic Model
We will now use the DB index to extend the game-theoretic
model of liquid democracy by Bloembergen, Grossi, and
Lackner (2019), referred to as delegation game. Like in that
model, we will be assuming that delegations are constrained
by an underlying social network represented by a directed
graph 〈N,E〉, where each agent is a node in the network
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and for any i, j ∈ N (i 6= j), if there is an edge from i to j,
i.e. (i, j) ∈ E, j is called a neighbor of i. Let E(i) denote
all neighbors of agent i, i.e., E(i) = {j ∈ N | (i, j) ∈ E}.

Delegation Games In the delegation game by Bloember-
gen, Grossi, and Lackner (2019) agents’ payoffs in an LDE
depend solely on the accuracy of their gurus, and the effort
agents incur should they vote directly. Here we abstract from
the effort element of the model and focus instead on incor-
porating a power-seeking element in agents’ utilities. The
key intuition behind our extension is to model agents that
are not only interested in voting accurately, but also in their
own influence during the vote. So our agents choose their
delegations by aiming at maximizing the trade-off between
pursuing high accuracy and seeking more power.
Definition 8. A delegation game is a tuple D =
〈N,G, {qi}i∈N ,Σ, β, u〉, where: N is a finite set of agents;
G = 〈N,E〉 is a directed graph; qi is i’s accuracy; Σi =
E(i) ∪ {i} is i’s delegation strategy space; β ∈ (n2 , n] is a
quota; u is the utility function, defined as follows:

ui(d) = DBi(d) · qd∗i (4)

Observe that the strategy profiles of this game are del-
egation profiles. Each such profile d induces an LDE
〈N,ω,d, β〉 where we assume ω to be the standard weight
function assigning weight 1 to each agent. The utility of pro-
file d for i is the accuracy that i acquires in d, multiplied by
i’s power in d, measured by DBi(d).5 Notice that, there-
fore, the utility of a dummy agent is 0 and that the utility of
a dictator equals her accuracy.

For our experiments we will be using the more general
form of (4) given by DBi(d)α · qd∗i , with α ∈ [0, 1]. Intu-
itively, parameter α will be used to control how much agents
are influenced by power in the range going from no influence
to influence equal to that of accuracy.

Equilibrium Analysis In this section, we ask the natural
question of whether the games of Definition 8 have a Nash
equilibrium (NE) in pure strategies. In general, the answer
to this question is negative:
Theorem 2. There are delegation games that have no (pure
strategy) NE.

Sketch of proof. The proof consists in providing a delega-
tion game and then showing that it is possible to construct a
profitable deviation for some agent, for every possible del-
egation profile. The game is N = {1, 2, 3, 4, 5, 6}, q1 =
0.51, q2 = 0.7, q3 = 0.9, q4 = 0.6, q5 = 0.7, q6 = 0.9,
β = 4, and the underlying directed graph is G = 〈N,E =
{(1, 3), (2, 3), (4, 6), (5, 6)}〉.

However NE can be guaranteed to exist when the under-
lying network is complete.
Theorem 3. In any delegation game D =
〈N, {qi}i∈N , G,Σ, β, u〉, where G is a complete net-
work, there exists at least one (pure strategy) NE.

5Notice that we slightly abuse notation here by using d directly
as input for the index, instead of the corresponding LDE.

Sketch of proof. First of all observe that on a complete net-
work, if an equilibrium exists, it must be such that all dele-
gation chains are of length 1 by Fact 3. The theorem is then
proven by construction. We construct a profile by letting
each agent choose, in turn according to a given sequence,
whether to delegate to agent i∗ ∈ N , who has the highest
accuracy, or to be a guru. If an agent decides to delegate to
i∗, this delegation is assumed to be fixed. So the set of del-
egators (to i∗) monotonically increases. The process contin-
ues until no guru wants to delegate. We show that the profile
constructed in such a way is a NE by showing that: 1 i∗ has
no profitable deviation because were she deviating to a del-
egator, she would form a cycle (thereby obtaining utility 0),
and were she delegating to another guru she would inherit a
lower accuracy (by assumption) and have lower power (by
Fact 1). 2 No delegator has a profitable deviation, neither
by delegating to another delegator (by Fact 3), nor by dele-
gating to another guru (as she would inherit lower accuracy
and obtain lower power), nor by becoming herself a guru.
The latter claim requires some work and can be shown by
proving that as more agents delegate to i∗, the power of del-
egators does not decrease while that of gurus (except for i∗)
does. 3 Finally, no guru has a profitable deviation, neither
by delegating to i∗ (by construction), nor to another guru (as
she would then be better off delegating to i∗), nor by dele-
gating to a delegator (again, by Fact 3).

Experiments
We use the above model to study, by means of experiments,
how the distribution of power in profiles is affected by spe-
cific parameters. In particular, we are interested in gaining
insights into: whether higher connectivity of the underly-
ing network increases power imbalances; whether the more
agents are driven by power the less they tend to delegate.

Setup Starting from the trivial profile, we generate profiles
in two ways: by one-shot interaction (OSI), in which each
agent selects her neighbor (including herself) which max-
imises her utility; and by iterated better response dynamics
(IBRD), in which each agent iteratively selects one neigh-
bor at random and delegates to her only if this increases her
utility, until a stable state (equilibrium) is reached.

As one might expect, the bottleneck in our experiments
consists in the computation of DB in order to establish
agents’ utilities by Eq. (4). It is well-known that computing
the Banzhaf index in weighted voting games is intractable
(Matsui and Matsui 2001). We therefore implement the ap-
proximation method described by Bachrach et al. (2008).
Each time we need to estimate the DB of an agent, 15000
coalitions are randomly sampled (by uniform distribution),
and the ratio of the coalitions for which the agent is swing
is used as the estimator of the DB. By the analytical bounds
proven by Bachrach et al. (2008), with the above method
we know that the correct DB is in the confidence interval
[D̂B − 0.011, D̂B + 0.011] with probability of 0.95, where
D̂B is the estimator. So it should be clear that the statistics
presented in this section report on values that depend on the
estimator D̂B, and that with high probability are close to the
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Figure 2: Selected plots from experiments A and B

exact intended values.
We will be working with two parameters. To test the effect

of connectivity on power we assume that interaction happens
on a random network and vary the probability p (see range
in e.g., Fig. 2a) of any two agents being linked. To test the
effect of different attitudes towards the importance of power
for agents we work with the generalization DBi(d)α · qd∗i of
(4) with α ∈ {0, 0.25, 0.5, 0.75, 1} and assuming an under-
lying random network with p = 0.75.

We set |N | = 30, the quota β = 16, and for each pa-
rameter setting, we use an accuracy vector Q ∈ R30, where
each element in Q is drawn from a Gaussian distribution
N (0.75, 0.125). All statistics are the mean value over 50
instances for each parameter setting. Further details on the
setup of our experiments, including pseudo-code for the al-
gorithms of OSI and IRBD are provided in the appendix.

Connectivity: experiment A Fig. 2a shows that the higher
the connectivity (the larger p), the more agents tend to dele-
gate both in equilibrium (IBRD) and in one-shot interaction
(OSI). This is in line with expectations as agents have more
chance to interact with high-accuracy agents. It is worth ob-
serving, however, that the ratio of delegators is very low
(less than 0.06 on average). That is, very few agents dele-
gate on average. This is in contrast with the behavior of the
delegation game where utility is solely based on accuracy
(cf. Bloembergen, Grossi, and Lackner (2019)). We will see
with experiment B that the influence of power on agents’
utility seems to be an important factor in limiting vs. facili-
tating delegations. Despite the small number of delegations
we can still observe that increasing p lowers the mean value

of DB (Fig. 2c) and increases inequality in the distribution
of DB, measured by the Gini coefficient (Fig. 2e), although
it should be stressed the Gini coefficient remains very low
due to the small fraction of delegators. Intuitively, more del-
egations enhance some agents’ power, but reduce the power
of other agents, be they gurus or delegators.

Power: experiment B Fig. 2b shows that larger values of
α correspond to significantly fewer delegators for OSI. As
agents put more weight on power they are more reluctant
to delegate in the initial profile (recall Fact 1). For IRBD
this effect is observable only for α in the upper half of the
range of available values. We argue this may depend on the
fact that IRBD, at the initial profile, allows for delegations to
take place that only suboptimally improve utility, triggering
then further delegations at later iterations. As α grows, the
average power increases (Fig. 2d) and inequality in the dis-
tribution of power decreases (Fig. 2f). The decreasing ratio
of delegators (Fig. 2b) is another side of this trend: as α de-
creases the group turns from consisting mostly of delegators
(α ∈ {0, 0.25}) to low numbers of delegators comparable to
those observed in experiment A (α = 1).

Interestingly, the average length of chains also signifi-
cantly decreases from around 5.5 for α = 0 to 1.2 for
α = 0.25, and further mildly decreases to around 0.5 for
α = 1. This is in line with Fact 3: as power becomes more
important, agents prefer shorter chains to their gurus.

We also ran experiments to identify the effects of varying
quota β in the range {0.6|N |, 0.8|N |, |N |}. We identified
a similar trend showing that higher quota tend to limit the
amount of delegations, but our results were less robust than
those reported in experiments A and B. The refinement of
this experiment is left to future work.

Conclusions

The paper developed a power index for voting with del-
egable proxy. We showed that the index generalizes the
Banzhaf index for standard weighted voting and can be ax-
iomatized in a similar fashion. We used the index to model
a variant of delegation games for liquid democracy where
agents seek to find a tradeoff between increasing their accu-
racy and acquiring power in the system. We showed equilib-
ria for this sort of interaction exist under a full connectivity
condition, but do not exist in general. Finally, two parame-
ters of the model were shown, through simulations, to play
an important role in containing the emergence of large in-
equalities in the distribution of power: the level of connec-
tivity of an underlying (random) network, and the extent to
which agents are motivated by the acquisition of power.

The paper opens several directions for future research of
both theoretical and experimental kind. Here we mention
one: it would be interesting to understand how much agents’
attitude towards power could help in readdressing the dete-
rioration of decision-making quality highlighted by Kahng,
Mackenzie, and Procaccia (2018); Caragiannis and Micha
(2019), through its equalizing effect on power distribution.
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