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Abstract

Computational game theory has many applications in the mod-
ern world in both adversarial situations and the optimization
of social good. While there exist many algorithms for com-
puting solutions in two-player interactions, finding optimal
strategies in multiplayer interactions efficiently remains an
open challenge. This paper focuses on computing the mul-
tiplayer Team-Maxmin Equilibrium with Coordination de-
vice (TMECor) in zero-sum extensive-form games. TMECor
models scenarios when a team of players coordinates ex ante
against an adversary. Such situations can be found in card
games (e.g., in Bridge and Poker), when a team works to-
gether to beat a target player but communication is prohibited;
and also in real world, e.g., in forest-protection operations,
when coordinated groups have limited contact during interdict-
ing illegal loggers. The existing algorithms struggle to find a
TMECor efficiently because of their high computational costs.
To compute a TMECor in larger games, we make the follow-
ing key contributions: (1) we propose a hybrid-form strategy
representation for the team, which preserves the set of equi-
libria; (2) we introduce a column-generation algorithm with
a guaranteed finite-time convergence in the infinite strategy
space based on a novel best-response oracle; (3) we develop
an associated-representation technique for the exact represen-
tation of the multilinear terms in the best-response oracle; and
(4) we experimentally show that our algorithm is several or-
ders of magnitude faster than prior state-of-the-art algorithms
in large games.

1 Introduction
One of the most important problems in artificial intelligence
is to design algorithms for agents who make complex deci-
sions in interactive environments (Russell and Norvig 2016).
So far, researchers made significant progress mostly in non-
cooperative two-player games, focusing on finding a Nash
Equilibrium (NE) (Nash 1951; von Stengel 1996; Zinke-
vich et al. 2008) or a Stackelberg equilibrium (Conitzer and
Sandholm 2006). These results paved the way for many ap-
plications, such as in security games that have high social
impact (Sinha et al. 2018) or poker algorithms that defeated
top human professionals (Moravčı́k et al. 2017; Brown and
Sandholm 2018). However, the research in multiplayer games
remains limited. Theoretical results were achieved only for
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games with specific structures (e.g., polymatrix games (Cai
and Daskalakis 2011)), or there are no theoretical guarantees
at all (e.g., the algorithm in Brown and Sandholm (2019)).
Finding and playing NEs in multiplayer games is difficult
due to the following two reasons. First, computing NEs is
PPAD-complete even for three-player zero-sum games (Chen
and Deng 2005). And second, NEs are neither unique nor
exchangeable in multiplayer games, which makes it almost
impossible for the players who choose their strategies inde-
pendently to form an NE together. The research on multi-
player games hence focuses on alternative solution concepts
with more favorable properties.

Team-Maxmin Equilibrium with Coordination device
(TMECor, TMEsCor as a plural) (Celli and Gatti 2018; Fa-
rina et al. 2018) is a solution concept that models a situation
when a team of players shares the same utility function and
coordinates ex ante against an adversary. That is, the team
members are allowed to discuss and agree on tactics before
the game starts, but they cannot communicate during the
game. Celli and Gatti (2018) show that ex ante coordination
can be modelled using a coordination device, assuming that
the adversary does not observe any signal from the device.
The team members agree on a planned strategy (e.g., a mixed
strategy) in the planning phase, and then, just before the game
starts, the coordination device randomly picks a pure joint
strategy (from the planned strategy) for the team members to
act upon. A TMECor is an NE between the team (i.e., each
team member has no incentive to deviate) and the adversary
in a zero-sum multiplayer extensive-form game, and it has
the properties of NEs in zero-sum two-player games (e.g.,
exchangeability). The study of TMECor is motivated by its
ability to capture many real-world scenarios. For example,
in multiplayer poker games, a team may play against an ad-
versary player, but they cannot communicate and discuss
their strategy during the game due to the rules. In Bridge,
when the game reaches the phase of the play of the hand, two
defenders who form a team play against the declarer. Or in
security games in which several different groups (e.g., NGOs,
the Madagascar National Parks, local police, and community
volunteers) aim to protect forests from illegal logging (Mc-
Carthy et al. 2016), TMECor models the groups’ inability to
communicate while they try to interdict the escaping loggers.

TMECor has better properties than NE in multiplayer
games; however, computing it is still difficult—it was shown
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to be FNP-hard (Celli and Gatti 2018). The problem can be
formulated as a linear program (Celli and Gatti 2018), where
the team plays joint normal-form strategies for all team mem-
bers, but each member’s normal-form strategy space is expo-
nential in the size of the game tree. A Column Generation
(CG) algorithm was hence proposed to compute a solution
more efficiently (Celli and Gatti 2018). The most important
component of the algorithm is a Best Response Oracle (BRO)
that computes an optimal strategy of the team against the
adversary’s strategy, but it is in itself an NP-hard problem
(Celli and Gatti 2018). A BRO can be formulated as a Mixed-
Integer Linear Program (MILP) that involves a large number
of integer variables (Celli and Gatti 2018; Farina et al. 2018).
As a consequence, the existing approaches fail to scale up to
larger scenarios (see Section 3 for details).

Main Contributions. The most significant outcome of our
work is a new algorithm for computing a TMECor, which
runs several orders of magnitude faster than the state-of-the-
art algorithms and scales to much larger games. To design
this algorithm, we make several key contributions. The first
contribution is a new hybrid-form strategy representation for
the team’s strategy in a TMECor. Based on this representa-
tion, we develop a CG method that guarantees convergence
to a TMECor in a finite number of iterations, despite the fact
that the space of our hybrid-form strategies is infinite. The
core component of the CG method is a novel BRO. Our BRO
is formulated as a multilinear program in which the multilin-
ear terms represent reaching probabilities for terminal nodes
to reduce the number of involved integer variables. We show
that the BRO can be transformed into an MILP exactly using
another contribution: a novel global optimization technique
called Associated Representation Technique (ART). Another
essential property of ART is that it efficiently generates as-
sociated constraints for the equivalence relations between
multilinear terms, which significantly speeds up the compu-
tation of the BRO’s MILP formulation by reducing its space
of feasible solutions. All together, our approach shows that
formulating the problem as a multilinear program with global
optimization techniques can be significantly faster than the
direct formulation as a linear program.

2 Preliminaries
An imperfect-information extensive-form game (EFG) is de-
fined by a tuple (N,A,H,L, χ, ρ, u, I) (Shoham and Leyton-
Brown 2008). N = {1, . . . , n} denotes a finite set of players
andA is a finite set of actions.H is a finite set of nonterminal
decision nodes (sequences of actions (histories)) in the game,
with L being a set of leaf (terminal) nodes. To each nontermi-
nal decision node the function χ : H → 2A assigns a subset
of possible actions to play, while function ρ : H → N ∪ {c}
identifies an acting player (c denotes chance). Moreover, we
denote Hi = {h | ρ(h) = i, h ∈ H}, ∀i ∈ N . To de-
terminate the outcomes, we use u = (u1, . . . , un), where
ui : L → R is player i’s utility function assigning a
finite utility to each terminal node. The imperfect obser-
vations are modelled through the set of information sets
I = (I1, . . . , In). Ii is the set of player i’s information sets (a
partition ofHi), such that ρ(h1) = ρ(h2) and χ(h1) = χ(h2)
for any Ii,j ∈ Ii with h1, h2 ∈ Ii,j . We assume that actions

are unique to information sets, i.e., there exists only one
information set Ii,j such that a ∈ χ(Ii,j) for any a ∈ A.

A sequence σi ∈ Σi is an ordered list of actions taken
by a single player i leading to some node h. ∅ stands for
the empty sequence (i.e., a sequence with no actions). We
use seqi(Ii,j) to denote the player i’s sequence leading to
Ii,j ∈ Ii, and seqi(h) for the player i’s sequence leading to
h ∈ H ∪ L. We assume perfect recall, i.e., for each player
i and nodes h1, h2 ∈ Ii,j ∈ Ii, seqi(h1) = seqi(h2). A
realization plan (sequence-form strategy, also representing
a behavioral strategy) of player i is a function ri : Σ→ [0, 1]
satisfying the network-flow constraints:

ri(∅) = 1 (1a)∑
a∈χ(Ii,j)

ri(σia) = ri(σi) ∀Ii,j ∈Ii, σi=seqi(Ii,j) (1b)

ri(σi) ≥ 0 ∀σi ∈ Σi. (1c)

Let Ri be the set of all (mixed) sequence-form strategies.
We call ri a pure sequence-form strategy if ri(σi) ∈ {0, 1}
for all σi ∈ Σi. The set of pure sequence-form strategies is
denoted asRi and naturally, we haveRi ⊆ Ri.

A pure normal-form strategy of player i is a tuple
πi ∈ Πi = ×Ii,j∈Iiχ(Ii,j) specifying one action to play
in each information set of player i. In EFGs, the size of Πi is
exponential in the size of the game tree. A reduced normal-
form strategy specifies actions only in reachable information
sets due to earlier actions. Henceforth, we focus on reduced
normal-form strategies (despite their size being still expo-
nential in the size of the game tree) and refer to them as
normal-form strategies. A mixed normal-form strategy xi is
a probability distribution over Πi, denoted as xi ∈ ∆(Πi).
For any pure (mixed) normal-form strategy there exists an
equivalent pure (mixed) sequence-form strategy (von Sten-
gel 1996), as shown in Example 1. We call two strategies
of player i realization-equivalent (using notation ∼) if they
induce the same probabilities for reaching nodes for all strate-
gies of other players. Indeed, two strategies are realization-
equivalent if and only if they correspond to the same realiza-
tion plan (von Stengel 1996).

Team-Maxmin Equilibrium with Coordination Device
(Celli and Gatti 2018; Farina et al. 2018) is a solution
concept that models a scenario when a single team T =
{1, . . . , n − 1} with ex ante coordination plays against an
adversary n. We assume the team shares the same utility
ui(l) = uj(l), ∀i, j ∈ T, l ∈ L and the utility of the ad-
versary is un(l) = −uT (l) = −

∑
i∈T ui(l), ∀l ∈ L, i.e.,

it is a zero-sum EFG. The ex ante coordination means that
the team players can communicate only before the game
starts, through a coordination device. A pure strategy of the
team in TMECor is represented by a joint normal-form strat-
egy πT ∈ ΠT = ×i∈TΠi. A mixed strategy xT is then a
probability distribution over ΠT , i.e., xT ∈ ∆(ΠT ). We use
LπT ,σn ⊆ L to identify a set of terminal nodes reachable
by strategy profile (πT , σn), as shown in Example 1. Then,
the extended utility function of the team’s pure strategy πT
specifies the utility of profile (πT , σn) due to chance nodes as
UT (πT , σn) =

∑
l∈LπT ,σn

uT (l)c(l), where c(l) denotes the
chance probability of reaching l. For the team’s mixed strat-
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Figure 1: An example of an EFG with 3 players. Player 1 acts in information set A, player 2 acts in information sets B and C,
and player 3, assuming the role of the adversary, acts in information sets D–G. Actions in the information sets are denoted a–q,
and they may also represent sequences in this case. Nodes 1–8 are terminal nodes. Each side shows a different team’s strategy.

egy xT , we formulate the extended expected utility function
as:

UT (xT , σn) =
∑
πT∈ΠT

UT (πT , σn)xT (πT ). (2)

Using a realization plan of the adversary, we write LπT ,rn
to denote a set of terminal nodes reachable by strategy pro-
file (πT , rn), as shown in Example 1, and UT (πT , rn) =∑
l∈LπT ,rn

rn(seqn(l))uT (l)c(l). For a mixed strategy,

UT (xT , rn) =
∑
πT∈ΠT

UT (πT , rn)xT (πT ). (3)

Example 1. On the left side of Figure 1 we show an example
of a strategy of a team consisting of players 1 and 2. π1 = a
is a normal-form strategy of player 1, in which player 1 takes
action a in his unique information set. π2 = de is then a
normal-form strategy of player 2, such that player 2 takes
actions d and e in his two information sets. π1 is equivalent
to a pure sequence-form strategy r1 with r1(a) = 1, and
π2 is equivalent to a pure sequence-form strategy r2 with
r2(d) = r2(e) = 1. Together, strategies π1 and π2 form a
pure joint normal-form strategy of the team πT = (π1, π2).
Given the adversary’s sequence σ3 = j, the set of terminal
nodes reachable by (πT , σ3) is LπT ,σ3

= {3}. In case that
σ3 = m, we have LπT ,σ3 = ∅. Given any sequence-form
strategy r3 of the adversary, we have LπT ,r3 = {3, 4}.

A TMECor (xT , rn) is a Nash Equilibrium
(NE) (i.e., xT ∈ arg maxxT UT (xT , rn) and
rn ∈ arg maxrn −UT (xT , rn)) in which the team
is treated as a single player. Therefore, we have
xT ∈ arg maxxT minrn UT (xT , rn) due to the zero-
sum assumption. Because the team members share the same
utility, none of them has an incentive to deviate. A strategy
profile is an ε-TMECor if neither the team nor the adversary
is to gain more than ε if one of them deviates.

3 Related Work
The Team-Maxmin Equilibrium (TME) (von Stengel and
Koller 1997; Celli and Gatti 2018; Zhang and An 2020b) is
a solution concept closely related to TMECor, in which a
team of players with the same utility function plays against
an adversary independently, without coordination. Contrary
to TMECor, the team members in TME are assumed to use
behavioral strategies. Previous literature identified two main

issues associated with TME. First, computing a TME, i.e.,
finding the optimal joint behavioral strategies of team mem-
bers, is a non-convex FNP-hard optimization problem (Celli
and Gatti 2018). Second, the equilibrium strategies of TME
might be significantly suboptimal compared to TMECor be-
cause of the lack of coordination (Celli and Gatti 2018; Farina
et al. 2018). Another complication arises if we attempt to
coordinate the players using behavioral strategies. Due to
the lack of communication between team members during
the game, the team experiences imperfect recall. Because of
imperfect recall, the behavioral strategies are not realization-
equivalent to normal-form strategies induced by the coordina-
tion device, and thus can not capture the correlation between
the team members’ normal-form strategies. This was also
shown to potentially result in considerable losses of utility
to the team (Farina et al. 2018). Moreover, with imperfect
recall, there is even no guarantee for the existence of an NE in
behavioral strategies (Wichardt 2008). Using normal-formal
strategies is hence crucial to TMECor.

Because the number of normal-form strategies is exponen-
tial in the size of the game, Celli and Gatti (2018) proposed a
hybrid representation of players’ strategies to speed up the
computation of TMEsCor. In their representation, only the
adversary uses sequence-form strategies. Their CG algorithm
for TMEsCor formulates a BRO using an MILP with |L|
integer variables. However, the algorithm does not scale well
as |L| can be extremely large for games of moderate size (see
Table 2). In an attempt to overcome this issue, Farina et al.
(2018) developed a realization-form strategy representation
that focuses on the probability distribution on terminal nodes
of the game tree. Their representation is then used to derive an
auxiliary game that represents the original game in the form
of a set of subtrees. In each subtree, the adversary faces one
team member, while they both use realization-form strategies.
Rather than to derive a TMECor-specific strategy representa-
tion, their approach is to create a hybrid-form tree structure
for the team. An essential drawback of this approach is that
the auxiliary game is based on the realization-form strategy
that is not executable from the game tree’s root. It requires a
cumbersome reconstruction algorithm to apply it (Celli et al.
2019). On the other hand, the auxiliary game enables to for-
mulate a faster BRO with a number of integer variables equal
to

∑
i∈T\{1} |Σi|. Despite being a clear improvement over
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the approach of Celli and Gatti (2018), the BRO of Farina
et al. (2018) is still inefficient in larger games with a higher
number of sequences. Moreover, this BRO is not compatible
with associated constraints (Zhang and An 2020a) that were
shown to significantly improve the scalability by reducing the
feasible solution space of an MILP. In this paper, we develop
a hybrid-form strategy representation inspired by the previ-
ous literature, but which does not depend on the inexecutable
realization-form strategies. Simultaneously, the representa-
tion gives rise to a novel BRO that considerably reduces the
number of integer variables and is compatible with associated
constraints. Moreover, we design a new global optimization
technique called ART that does not depend on the recursive
generation of associated constraints proposed by Zhang and
An (2020a). ART also works for games with four or more
players and significantly improves the scalability in exper-
iments. Note that the concurrent work (Farina et al. 2020)
solves games with only three players. We give more details
on the related work in Appendix A.1

4 Hybrid-Form Column Generation with
Efficiently Solvable Multilinear Oracle

Now we describe our novel approach for computing TMECor
efficiently. First, we introduce a new strategy representation
for the team, and we show how to use this representation
to compute an exact TMECor. Then we propose a column-
generation algorithm based on our representation, which iter-
atively calls a multilinear BRO. Finally, we develop a novel
global optimization technique to solve our BRO efficiently.

4.1 Hybrid-Form Strategies for the Team
In our hybrid-form team strategy representation, one team
member acts according to a (mixed) sequence-form strategy,
while the other members use pure normal-form strategies.2
Any team player can play the sequence-form strategy, and
without loss of generality, we opt for player 1. A pure hybrid-
form strategy of the team is defined by a tuple3:

fT = (r1, πT\{1}),

where r1 ∈ R1, and πT\{1} ∈ ΠT\{1} = ×i∈T\{1}Πi, as
shown in Example 2. We denote FT the set of pure hybrid-
form strategies and refer to xT ∈ ∆(FT ) as a mixed hybrid-
form strategy—a probability distribution over FT . Note that
the number of pure hybrid-form strategies (|FT |) is infinite
because each strategy inR1 corresponds to at least one pure
hybrid-form strategy, and the size ofR1 is infinite.

1Appendix of this paper can be found in the full version:
https://arxiv.org/abs/2009.12629

2Note that all team players are free to use pure normal-form
strategies–in that case, our algorithm still works, but it would sig-
nificantly slow down the computation when compared with the
hybrid-form strategies, as shown in the experiments. In contrast, if
two or more team players use sequence-form strategies, the reaching
probabilities for terminal nodes are no longer exactly representable
by linear constraints (see Eqs.(6a) and (6b)).

3To differentiate between fT and xT (a probability distribution
over the space of fT defined later), we call fT a “pure” hybrid-form
strategy and xT a “mixed” hybrid-form strategy.

Given a strategy profile (fT , σn), we define an ex-
tended utility function of the team’s pure strategy
similarly as UT (πT , σn) in Eq.(2): UT (fT , σn) =∑
l∈LfT ,σn

r1(seq1(l))uT (l)c(l), with LfT ,σn being the
leafs reachable by the profile, as shown in Example 2. The
expected utility of a mixed strategy is then:

UT (xT , σn) =
∑
fT∈FT UT (fT , σn)xT (fT ).

Using a sequence-form strategy rn of the adversary, an ex-
tended utility function of the team’s pure strategy is defined
(similarly to UT (πT , rn) as in Eq.(3)) as UT (fT , rn) =∑

l∈LfT ,rn
rn(seqn(l))r1(seq1(l))uT (l)c(l), with LfT ,rn

defined accordingly, as shown in Example 2. The correspond-
ing expected utility of a mixed strategy is:

UT (xT , rn) =
∑
fT∈FT UT (fT , rn)xT (fT ).

Example 2. On the right side of Figure 1 we depict a
sequence-form strategy of player 1 r1 with r1(a) = 0.2
and r1(b) = 0.8, and a normal-form strategy of player 2
π2 = de. The corresponding hybrid-form strategy is then
fT = (r1, π2) = ((0.2, 0.8), de). r1 is equivalent to a
mixed normal-form strategy x1 with x1(π1 = a) = 0.2
and x1(π′1 = b) = 0.8, where π1 = a and π′1 = b are
pure normal-form strategies. The strategy fT can be repre-
sented as a joint strategy (x1 = (0.2, 0.8), π2 = de), which
is equivalent to a mixed joint normal-form strategy xT with
xT (π1, π2) = 0.2 and xT (π′1, π2) = 0.8. In this case, the
mixed joint normal-form strategy xT corresponds to a mixed
hybrid-form strategy xT with xT (fT ) = 1. Given the adver-
sary’s sequence σ3 = j, the set of terminal nodes reachable
by (fT , σ3) is denoted as Lf,σ3 = {3}. If σ3 = m, the set
LfT ,σ3 = {5}. For an arbitrary sequence-form strategy r3

of the adversary, we have LfT ,r3 = {3, 4, 5, 6}.
We define the support sets in a mixed normal-form strategy

and a mixed hybrid-form strategy as:

SxT = {πT | xT (πT ) > 0, πT ∈ ΠT },
SxT = {fT | xT (fT ) > 0, fT ∈ FT }.

The first step in computing a TMECor using hybrid-form
strategies is to show that the set of TMEsCor is preserved un-
der this strategy representation. In other words, the utility of
any player (the team or the adversary) in each TMECor with
a hybrid-form strategy has to be the same as in a TMECor
with a normal-form strategy of the team. Because we con-
sider zero-sum games, it is enough to show that both strategy
representations guarantee the same utility of the team. To
prove this result, we only need to consider each sequence
of the adversary once because a sequence-form strategy of
the adversary is defined by the probability for taking each
sequence. We first prove a more general result: for any mixed
normal-form strategy of the team, there exists a mixed hybrid-
form strategy such that the team obtains the same expected
utility in both strategy representations with any strategy of
the adversary, and vice versa. Recall that two strategies of
the team are realization-equivalent if they both define the
same probabilities for reaching nodes given any strategy of
the adversary. Based on this definition, in the following two
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Ri set of player i’s mixed sequence-form strategies including ri FT set of pure hybrid-form strategies including fT
Ri set of player i’s pure sequence-form strategies ∆(ΠT ) set of mixed strategies including xT
ΠT set of the team’s joint pure normal-form strategies including πT ∆(FT ) set of mixed strategies including xT
T \ 1 set of the team members except player 1 ∼ realization equivalence
σT (i) the team player i’s sequence in the joint sequence σT Σi set of player i’s sequences including σi

seqi(∗) player i’s sequence reaching a node/information set ∗ ΣT set of the team’s joint sequences including σT

w(σT ) variable representing multilinear term
∏

i∈T ri(σT (i)) Sx support set of mixed strategy x with size |Sx|

Table 1: The notation used in Section 4, in addition to the standard EFG notation.

lemmas, we show the realization equivalence between the
hybrid-form and the normal-form strategies, as shown in
Example 2. We also show that two realization-equivalent
strategies could have the same size of support sets in Lemma
1. All proofs can be found in Appendix B.
Lemma 1. For every normal-form strategy xT ∈ ∆(ΠT )
there exists a realization-equivalent hybrid-form strategy
xT ∈ ∆(FT ) such that |SxT | = |SxT |.
Lemma 2. For every hybrid-form strategy xT ∈ ∆(FT )
there exists a realization-equivalent normal-form strategy
xT ∈ ∆(ΠT ).

Using the two lemmas, we can prove that our hybrid-form
strategies preserve the set of TMEsCor4.
Theorem 1. For every normal-form strategy xT ∈ ∆(ΠT )
there exists a hybrid-form strategy xT ∈ ∆(FT ) such that
UT (xT , σn) = UT (xT , σn), ∀σn ∈ Σn, and vice versa.

Because the set of TMEsCor will not change if hybrid-
form strategies are played, the following linear program (LP)
computes the equilibrium:

maxxT v(In(∅)) (4a)
v(In(σn))−

∑
In,j∈In:seqn(In,j)=σn

v(In,j)

≤ UT (xT , σn) ∀σn ∈ Σn (4b)∑
fT∈FT xT (fT ) = 1 (4c)

xT (fT ) ≥ 0 ∀fT ∈ FT . (4d)

In this LP, In(σn) denotes an information set in which player
n takes the last action of sequence σn, and v(In,j) is the
expected utility of the team in each information set In,j .
The adversary chooses the strategy minimizing the team’s
utility in each information set In(σn) (represented by Eq.(4b)
(Bosansky et al. 2014)), and v(In(∅)) is hence the team’s
utility given xT .

4.2 Column Generation with a Multilinear Oracle
Although we can formulate the problem of finding a TMECor
as LP (4), solving it requires enumerating all pure hybrid-
form strategies in an infinite strategy space as variables,
which is impractical. To address this problem, we introduce a
CG algorithm with a Multilinear BRO (CMB), depicted in Al-
gorithm 1. Our CMB starts from a restricted game (F ′T ,Σn)
(F ′T is a subset of FT ) and proceeds iteratively. It computes
a TMECor in a subgame and checks if there exists a better
strategy outside the restricted game. If the answer is positive,
it expands the restricted game, and terminates otherwise.

4Note that our proofs do not rely on the inexecutable realization-
form strategies of Farina et al. (2018).

Algorithm 1: CG Algorithm with a Multilinear BRO
1 Initialize F ′T ← {any strategy}, v ← 0, v ← 1;
2 repeat
3 (v, xT , rn)← CoreLP(F ′T ,Σn);
4 (v, fT )← BRO(rn);
5 F ′T ← F ′T ∪ {fT };
6 until v = v;
7 return (xT , rn).

Now we describe this dynamic in more detail. In Algo-
rithm 1, CoreLP(F ′T ,Σn) in Line 3 computes a TMECor
(xT , rn) with the team’s utility v in the restricted game
(F ′T ,Σn) by solving LP (4). On the next line, the output
fT of our BRO(rn) is a pure hybrid-form strategy maximiz-
ing the team’s utility v when the adversary plays rn, i.e.,
arg maxfT∈FT UT (fT , rn). We will show how to compute
it efficiently later. Thus, starting from the restricted F ′T (ini-
tialized at Line 1), CMB computes the equilibrium (xT , rn)
with the team’s utility v in the restricted game (F ′T ,Σn) by
calling CoreLP (Line 3), and finds the team’s best response
fT with the team’s utility v against the adversary’s strategy
rn in the equilibrium of (F ′T ,Σn) by calling BRO (Line 4).
Then CMB expands F ′T if a new strategy fT outside of F ′T
is found (Line 5), otherwise CMB terminates (Line 7).

We aim to show that once the algorithm terminates, the
equilibrium in the restricted game is an equilibrium in the
full game (FT ,Σn). Unfortunately, most column-generation
algorithms usually rely on the fact that the strategy space
is finite, and the number of iterations is hence bounded to
enforce a guarantee of convergence (Bosansky et al. 2014;
McMahan, Gordon, and Blum 2003). Since a strategy space
in our CMB is infinite, this argument can not hold. In the
following proposition, we show that despite the number of
pure hybrid-form strategies being infinite, the CMB will
always terminate in a finite number of steps. The intuition
behind our result is that if a best-response strategy fT is
added to the restricted game, instead of representing a single
strategy, it stands for a whole subset of hybrid-form strategies
in the BRO due to the mixed sequence-form strategy of the
first player, and the number of these subsets of hybrid-form
strategies is finite.

Proposition 1. CMB converges in at most 2|Π1| |ΠT |
|Π1| steps.

Even though this result implies that there always exists
a TMECor with a finite-sized support set for the team (i.e.,
at most 2|Π1| |ΠT |

|Π1| strategies in the support set), it is a rather
weak guarantee. We hence provide a tighter bound on the size
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of the team’s support set5. That is, there exists a TMECor
such that the size of the support set of the hybrid-form strat-
egy will not be larger than the number of adversary’s se-
quences, which is significantly smaller than 2|Π1| |ΠT |

|Π1| .

Proposition 2. There is a TMECor xT with |SxT | ≤ |Σn|.
Our experimental results show that the actual number of

iterations before CMB converges is significantly smaller than
the bound from Proposition 1. We attribute this to the fact
that at least one TMECor has a small support set, as shown
in Proposition 2. Finally, we prove that the output of CMB is
a TMECor in the full game because the team cannot find a
better strategy outside the restricted game. That is, the output
of CMB is a TMECor in the restricted game (F ′T ,Σn) and
also a TMECor in the full game (FT ,Σn).
Theorem 2. CMB converges to a TMECor in (FT ,Σn).

Moreover, we show that if the BRO checks for the exis-
tence of a best-response strategy with a gain at most ε outside
the restricted game, the CMB converges to an approximate
TMECor. This is achieved simply by changing the termina-
tion condition from v = v to v − v ≤ ε. In this case, the
output of CMB is a TMECor in the restricted game (F ′T ,Σn)
and also an approximate TMECor in the full game (FT ,Σn).
Proposition 3. If CMB terminates with v − v ≤ ε, then its
output (xT , rn) is an ε-TMECor in (FT ,Σn).

Now we introduce our BRO. Note that:

UT (fT , rn)=
∑
l∈LfT ,rn

rn(seqn(l))r1(seq1(l))uT (l)c(l)

=
∑
l∈LuT (l)c(l)rn(seqn(l))

∏
i∈T ri(seqi(l)).

Then the BRO can be formulated as the following
multilinear program that computes a best response fT
against a sequence-form strategy rn of the adversary, i.e.,
arg maxfT∈FT UT (fT , rn):

max
×i∈T ri

∑
l∈L uT (l)c(l)rn(seqn(l))

∏
i∈T ri(seqi(l)) (5a)

Eqs.(1a)− (1c) ∀i ∈ T (5b)
ri(σi) ∈ {0, 1} ∀σi ∈ Σi, i ∈ T \ {1} (5c)
r1(σ1) ∈ [0, 1] ∀σ1 ∈ Σ1, (5d)

where ri ∈ Ri is realization-equivalent to πi ∈ Πi for all i in
T \ {1} in a hybrid-form strategy fT . The idea of the BRO is
that it expresses the probability of all team players reaching
each terminal node using a multilinear term

∏
i∈T ri(seqi(l))

in UT (fT , rn) with only
∑
i∈T\{1} |Σi| integer variables.

4.3 Associated Representation Technique
Because problem (5) is multilinear and thus difficult to solve,
we develop a novel global optimization technique for find-
ing a solution efficiently. We call the method the Associated
Representation Technique (ART). The ART represents the
multilinear terms exactly through linear constraints. More-
over, it reduces the feasible solution space by using associated

5A similar result was proven for normal-form strategies ear-
lier (Celli and Gatti 2018); however, Proposition 2 is not its direct
consequence as it relies on Lemma 1 that makes the connection
between normal-form and hybrid-form strategies.

constraints for the equivalence relations between the individ-
ual multilinear terms. From the computational perspective,
ART’s two essential properties are that (i) it does not require
recursive expansion to represent the multilinear terms exactly,
and (ii) it generates the associated constraints efficiently.

Multilinear Representation (MR) First, we show how
to transform problem (5) into an equivalent MILP exactly,
without introducing new integer variables. For this purpose,
for each multilinear term w(σT ) =

∏
i∈T ri(σT (i)), where

σT (i) is the sequence of player i in joint sequence σT ∈ ΣT
with ΣT = ×i∈TΣi, ri ∈ Ri for all i ∈ T \ {1}, and
r1 ∈ R1, we introduce the following MR constraints:

0 ≤ w(σT ) ≤ ri(σT (i)) ∀i ∈ T \ {1} (6a)

0 ≤ r1(σT (1))− w(σT ) ≤ n− 2−
∑

i∈T\{1}

ri(σT (i)). (6b)

Note that the multilinear term
∏
i∈T ri(σT (i)) is equal to

the continuous variable r1(σT (1)) if all binary variables are
set to 1, and it is 0 if there is a binary variable with value 0.
Now we show that variable w(σT ) in Eqs.(6a)–(6b) exactly
represents the multilinear term

∏
i∈T ri(σT (i)).

Proposition 4.
∏
i∈T ri(σT (i)) with ri ∈ Ri for all i ∈

T \ {1} and r1 ∈ R1 is exactly represented by w(σT ) in
Eqs.(6a) and (6b).

Efficient Generation of Associated Constraints By us-
ing the MR constraints, problem (5) becomes an MILP, which
can be solved using a standard branch-and-bound approach
with an LP relaxation (Morrison et al. 2016). However, relax-
ing the MR constraints may result in a much larger feasible
solution space. To be more specific, as a consequence of mak-
ing the variable ri(σT (i)) real-valued, the variable w(σT )
may no longer exactly represent

∏
i∈T ri(σT (i)) in Eqs.(6a)

and (6b), as intended. Therefore, we aim to reduce the feasi-
ble solution space ofw(σT ). For this purpose, we generate as-
sociated constraints enforcing equivalence relations between
multilinear terms, that are based on network-flow constraints
(1a)-(1c) for the sequence-form strategies. As an example,
suppose that we have the multilinear terms w,w1, w2 and
w′ with w = r1(σ1)w′, w1 = r1(σ1a)w′, w2 = r1(σ1b)w

′.
A constraint for the sequence-form strategy r1 requires that
r1(σ1) = r1(σ1a) + r1(σ1b). Therefore, we can introduce
an associated constraint w = w1 + w2. Adding associated
constraints immediately rules out some candidate solutions,
which effectively reduces the MILP’s solution space and
results in faster computation.

Because the associated constraints are closely related to
the network-flow constraints of sequence-form strategies,
they can be generated in a similar manner—through infor-
mation sets. And because the variable w(×i∈T seqi(l)) used
by MR constraints to represent the product

∏
i∈T ri(seqi(l))

involves all team members’ sequences, the associated con-
straints are generated for all information sets of all members.
For example, consider a four-player Kuhn poker game, in
which a terminal node is reached by the team’s joint se-
quence tuple (J:/cccr:c, Q:/cccrc:c, T:/cccrcc:c). The three
sequences are taken by three team players in information
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EFG |L| |Σi| CMB CMB/H CMB/A CMB/ART CMB/ART/H C18 F18
3K4 312 33 0.7s 0.7s 2.1s 4s 6s 6.8s 1.2s
3K6 1560 49 2s 2s 20s 191s 479s >5h 12s
3K8 4368 65 4s 4s 497s 7160s >5h 210s
3K10 9360 81 5s 6s 10530s >5h 3541s
3K12 17160 97 10s 10s >5h >5h
4L31 30600 219 68s 165s
4L32 638064 219 1264s 2155s
3L3 249480 457 4916s 6500s
4K9 99792 145 2.6h 3.8h
3L5∗ 10020 1001 4.4h >6h

Table 2: The runtimes of algorithms computing TMECor. The difficulty of finding a solution increases from top to bottom. We
use the notation ‘> nh’ to indicate that an algorithm did not terminate after n hours on the current and all larger instances. We
assume that the largest 3L5∗ instance has five cards, and team players do not take action “raising” in 4L31 (6 cards) and 4L32.

EFG 5K11 5K12 5K13 6K7 6K8 6K9 7K7
CMB 35s 58s 104s 17s 64s 216s 56s
CMBZ20 2802s 6319s >3h 2009s >3h >3h >15h

Table 3: The runtimes of the CMB algorithm and the
CMBZ20 algorithm for computing TMECor in larger games.
We use the same notation as in Table 2.

sets J:/cccr:, Q:/cccrc:, T:/cccrcc:, respectively. Assume that
the information set T:/cccrcc: of player 3 is reachable by
a sequence T:/cc:c. The information set contains a node
(J:/cccr:c, Q:/cccrc:c, T:/cc:c,K:/ccc:r), specified by one se-
quence per each player. There are two possible actions that
can be taken: action c and action f . The network-flow con-
straint associated with this information set is hence

r3(T:/cc:c) = r3(T:/cccrcc:c) + r3(T:/cccrcc:f).
The corresponding associated constraint is

w(J:/cccr:c, Q:/cccrc:c, T:/cc:c)

=w(J:/cccr:c, Q:/cccrc:c, T:/cccrcc:c)

+ w(J:/cccr:c, Q:/cccrc:c, T:/cccrcc:f).
Now assume that there is another node (J:/cccr:c, K:/cccrc:c,
T:/cc:c, Q:/ccc:r) in the same information set, and a ter-
minal node with the team’s joint sequence (J:/cccr:c,
K:/cccrc:c, T:/cccrcc:c) reachable by action c of player 3.
The following associated constraint is generated:

w(J:/cccr:c, K:/cccrc:c, T:/cc:c)

=w(J:/cccr:c, K:/cccrc:c, T:/cccrcc:c)

+ w(J:/cccr:c, K:/cccrc:c, T:/cccrcc:f).
Using the same approach, we can generate associated con-
straints in this Kuhn poker game in all team players’ infor-
mation sets. More details can be found in Appendix C.

Therefore, in a general EFG, in each information set Ii,j
of a team member i, the algorithm for generating associ-
ated constraints needs to enumerate all the team’s joint se-
quences leading to Ii,j , which correspond to different nodes
in Ii,j . We denote this set of sequences as ΣT (Ii,j) and use
seqi(Ii,j) = σT (i) for all σT = (σT (i), σT\{i}) ∈ ΣT (Ii,j).
The associated constraints for Ii,j are then

w(σT )=
∑
a∈χ(Ii,j)

w(σT (i)a, σT\{i})

∀σT ∈ ΣT (Ii,j), Ii,j ∈ Ii, i ∈ T.
(7)

EFG 3K4 3K6 3K8 3K10 3K12 3L3
Iterations 14 36 47 45 52 1022
Support size 3 5 8 6 10 63

Table 4: The number of iterations until CMB converges, and
the size of the support set of the team’s TMECor strategy.

Generating all the constraints can be thus done in time
O(

∑
i∈T

∑
Ii,j∈Ii |ΣT (Ii,j)|). The resulting MILP for rep-

resenting problem (5) using Eqs.(6a)-(6b) and (7) can be
formulated as follows:

max
×i∈T ri

∑
l∈L

uT (l)c(l)rn(seqn(l))w(×i∈T seqi(l)) (8a)

Eqs.(5b)− (5d), (7) (8b)
Eqs.(6a)− (6b) ∀w(×i∈T seqi(l)), l ∈ L. (8c)

Our final theorem proves that associated constraints preserve
the sequence-form strategy space, making the solution of
formulation (8) also a feasible solution of our BRO in CMB.
The intuition is that associated constraints are consistent with
the sequence-form constraints and hence do not alter the
space of feasible sequence-form solutions in Problem (5).
Theorem 3. The solution of Problem (5) solves Problem (8).

Proposition 4 guarantees that solutions of both problems
will share the same value. The result, however, is even
stronger: the optimal solution of Problem (8) is also opti-
mal for Problem (5). Thus, it is a best response against the
adversary’s strategy rn.
Corollary 1. For any strategy rn of the adversary, the opti-
mal solution of Problem (8) is a best response against rn.

5 Experimental Evaluation
Finally, we demonstrate the performance of our CMB al-
gorithm. We compare CMB to the previous state-of-the-art
algorithms: (i) the original CG algorithm in Celli and Gatti
(2018) (referred to as C18); (ii) the CG with the BRO pro-
posed by Farina et al. (2018) (referred to as F18), and (iii) the
CMB with the associated constraints generation algorithm
of Zhang and An (2020a) (referred to as CMBZ20). We use
two standard EFG domains for evaluating the algorithms: (i)
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ε 0.1 0.08 0.06 0.04 0.02 0.01 0.008
CMB 0.41s 0.41s 0.41s 0.50s 0.50s 0.58s 0.58s
FTP 0.55s 0.71s 0.82s 1.3s 3.8s 8.0s 11.0s
CMB 0.08s 0.08s 0.16s 0.16s 0.29s 0.50s 0.87s
FTP 4.0s 6.6s 8.1s 15.5s 72.3s 181s 243s
CMB 0.23s 0.23s 0.31s 0.31s 0.64s 1.1s 1.1s
FTP 34.6s 34.6s 67.7s 94.9s 171s 382s 458s
CMB 2s 3s 6s 13s 41s 87s 111s
FTP 228s 307s 458s 689s 1574s 4882s >5h
CMB 5s 7s 13s 28s 93s 745s 1533s
FTP 188s 251s 362s 619s >5h
CMB 23s 27s 37s 108s 490s 3357s 8221s
FTP 164s 215s 371s 920s >5h

Table 5: The runtimes of algorithms computing ε∆u-
TMEsCor. The games from the top to the bottom are 3K4,
3K8, 3K12, 3L3, 3L4, and 3L5. ∆u = 6 for 3Kr and
∆u = 21 for 3Lr. The sizes and notations are the same
as in Table 2. In addition, |L| ≈ 106 with |Σi| = 801 for
3L4, and |L| ≈ 3 · 106 with |Σi| = 1241 for 3L5.

EFG 3K8 3K9 3K10 3K11 3K12

t
TMECor 4s 4s 5s 10s 10s
TME 4s 5s 84s 437s 118s

u
TMECor -0.019 -0.018 -0.016 -0.015 -0.014
TME -0.066 -0.044 -0.068 -0.050 -0.055
Gap 71% 59% 77% 71% 74%

Table 6: The runtimes t and the team’s utilities u for com-
puted TMEs and TMEsCor solutions. We calculate the gap
as the relative distance between the team’s utility (uCor) in a
TMECor and the one (uTME) in a TME, i.e., |uTME−uCor||uTME | ×
100%. Greater gap indicates that the team will lose more if it
opts for the TME strategy.

the Kuhn poker, and (ii) the Leduc Hold’em poker. Formal
definitions of the domains can be found in Appendix D. All
players have the same number of sequences in these games,
and we use |Σi| to represent this number of sequences. We de-
note an n-player Kuhn instance with r ranks (i.e., r cards) as
nKr, and refer to an n-player Leduc Hold’em instance with
r ranks (i.e., 3r cards) as nLr. Without a loss of generality,
the last player assumes the role of the adversary. All (MI)LPs
are solved by CPLEX 12.9 on a machine with 6-core 3.6GHz
CPU and 32GB of memory.

Runtimes. We present the runtime results in Table 2. We
omit the runtimes of CMBZ20 because it performs similarly
to CMB, but evaluate their differences further in larger games
and report the results in Table 3. For assessing ablations, we
compare CMB to its four variant: (i) CMB without associ-
ated constraints (referred to as CMB/A); (ii) CMB that uses
continuous variables to represent reaching probabilities for
terminal nodes without using our ART and BRO (referred to
as CMB/ART); (iii) CMB with BRO generating joint pure
normal-form strategies instead of hybrid-form strategies (re-
ferred to as CMB/H), and (iv) CMB/ART/H—a combination
of (ii) and (iii). The results clearly show that CMB is sev-
eral orders of magnitude faster than the reference algorithms.

Moreover, CMB also outperforms all ablation algorithms,
which strongly suggests that each component of CMB signif-
icantly boosts its performance.

Convergence and Supports. In Table 4, we report the
number of iterations CMB needs to converge to an exact
TMECor, together with the team’s equilibrium strategy sup-
port size. The number of iterations is significantly smaller
than the theoretical upper bound 233 × 33 derived in Proposi-
tion 16. The support sets in TMECor also remain small.

Approximation. In the next experiment, we evaluate
CMB’s ability to compute an ε∆u-TMEsCor, where ∆u is the
difference between the maximum and minimum achievable
utility of the team. We compare CMB to Fictitious Team Play
(FTP) (Farina et al. 2018). We use the setting of FTP reported
in Farina et al. (2018), including their BRO’s time limit of
15s. Note that their BRO cannot run on large games other-
wise. The results in Table 5 show that CMB runs significantly
faster than FTP. For example, CMB is at least two orders of
magnitude faster than FTP on large games with small ε, e.g.,
ε = 0.01. Moreover, according to the results, it is almost
impossible for FTP to converge to an ε∆u-TMECor with an
even smaller ε (e.g., ε = 0.0001), let alone an exact TMECor.
For 3K4—the smallest game in our experiments—FTP is
unable to converge to an ε∆u-TMECor with ε = 0.0004 in
100 hours7. In contrast, CMB computes an exact TMECor
within 0.7s, as shown in Table 2.

Comparison to TME. The last experiment demonstrates
the difference between TMECor and TME discussed in Sec-
tion 3, both in runtime and the team’s utility. Previous liter-
ature has shown that the team suffers large losses in utility
when resorting to TME strategies instead of TMECor strate-
gies in 3K3–3K7 (Farina et al. 2018). In Table 6, we report
the results on larger 3K8–3K12. Because of the encountered
difficulty to compute an exact TME, we use the state-of-the-
art algorithm of Zhang and An (2020a) to approximate the
TME by computing an ε∆u-TME with ε = 0.01. The results
show that approximating a TME takes significantly longer
than computing a TMECor, while at the same time, the TME
strategies are inferior to the TMECor strategies.

6 Conclusion and Future Work
We propose a new algorithm (CMB) for finding a TMECor
in large zero-sum multiplayer EFGs. Our algorithm is based
on a novel hybrid-form strategy representation of the team,
which gives rise to a column-generation method with guar-
anteed convergence in finite time. The heart of the algorithm
is a multilinear best-response oracle that can be queried ef-
ficiently using our associated representation technique. We
show that our algorithm computes a TMECor significantly
faster than previous state-of-the-art baselines. In the future,
we can explore the tighter theoretical upper bound for the
number of iterations because CMB requires very few itera-
tions in experiments. Due to the difficulty of computing the
best-response oracle, we would like to explore the possibility
of improving our oracle by reinforcement learning (Timbers
et al. 2020) or regret minimization (Celli et al. 2019).

6|Σi| = 33 in 3K4, whereas |Πi| is significantly greater.
7ε reaches 0.0005 in 2674s but then it fluctuates around 0.001.
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Broader Impact
Game-theoretic solutions, including our algorithm, have both
descriptive and prescriptive applications in suitable compet-
itive environments, including businesses, politics, or even
gambling. Finding the equilibria helps to understand people’s
behavior when interacting in dynamic situations and makes
it easier to construct effective decisions to optimize multia-
gent systems. For example, the manufacturers in competitive
markets may find better pricing strategies if they consider
the decision-making of their competitors. While abusing the
theories, e.g., by gamblers in casinos, is also feasible, the
same approach also allows for identifying strategic violators
by predicting their behavior. A notable drawback of tradi-
tional solution concepts like TMECor is their dependence on
involved players’ rational behavior. In case we suspect them
to behave irrationally, we have to extend our models.
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