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Abstract

We study test-based binary classification, where a principal
either accepts or rejects agents based on the outcomes they
get in a set of tests. The principal commits to a policy, which
consists of all sets of outcomes that lead to acceptance. Each
agent is modeled by a distribution over the space of possible
outcomes. When an agent takes a test, he pays a cost and re-
ceives an independent sample from his distribution as the out-
come. Agents can always choose between taking another test
and stopping. They maximize their expected utility, which is
the value of acceptance if the principal’s policy accepts the
set of outcomes they have and 0 otherwise, minus the total
cost of tests taken.
We focus on the case where agents can be either “good”
or “bad” (corresponding to their distribution over test out-
comes), and the principal’s goal is to accept good agents and
reject bad ones. We show, roughly speaking, that as long as
the good and bad agents have different distributions (which
can be arbitrarily close to each other), the principal can al-
ways achieve perfect accuracy, meaning good agents are ac-
cepted with probability 1, and bad ones are rejected with
probability 1. Moreover, there is a policy achieving perfect
accuracy under which the maximum number of tests any
agent needs to take is constant — in sharp contrast to the case
where the principal directly observes samples from agents’
distributions. The key technique is to choose the policy so
that agents self-select into taking tests.

1 Introduction
We often classify based on the outcomes of tests. In a nar-
row sense, tests can take the form of exams, with numer-
ical scores as outcomes. For example, a course often has
one or more midterm exams and one final exam, and the
intructor uses the outcomes of these exams to decide the fi-
nal grades of (i.e., to classify) students. More generally, a
test can be any activity that takes a certain amount of ef-
fort and produces a verifiable outcome. Examples include
job interviews, research paper submissions, etc. These out-
comes, presumably correlated with the true skills of the test
takers (henceforth the agents), are then used by a principal
to classify them — the collective feedback from different in-
terviewers determines whether the interviewee gets the job,
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and the list of papers one has published strongly affects one’s
future opportunities as a researcher.

An agent’s performance on tests is inevitably random —
on any given day, a capable student may not perform well
due to being tired or sick, due to bad luck in which questions
were selected, or for reasons that we cannot identify. For this
reason, a principal generally is willing to take into consider-
ation multiple test outcomes when making decisions. It then
matters how these tests are offered to agents. Oversimpli-
fying, there are two ways of offering tests: mandatory tests
and optional tests. With mandatory tests, the principal de-
cides which tests each agent should take and/or how many
times they should take them, as well as which (combinations
of) outcomes an agent needs to have in order to be classified
into a certain category. A straightforward example of manda-
tory tests is students taking exams in school, where typi-
cally all students are required to take all exams in a course,
whose outcomes together determine the final grade of the
student. On the other hand, with optional tests, the principal
decides the latter (i.e., which outcomes suffice for classifica-
tion into a certain category) but not the former (i.e., which
and/or how many tests each agent should take). One exam-
ple is (an oversimplified version of) the academic job mar-
ket, where agents’ publication records determine whether
they are invited for an onsite interview, but agents can de-
cide how often to put in the effort to prepare a new paper for
submission to a conference or journal (i.e., to “take” and op-
tional “test”). At first glance, it may appear that mandatory
tests allow the principal tighter control over the classification
process, and therefore would benefit the principal more than
optional tests. As a consequence, the principal should en-
force mandatory tests whenever possible (or economically
feasible). However, the above intuitive reasoning does not
appear to be fully backed by evidence from reality: optional
tests continue to be implemented in high-stakes classifica-
tion tasks such as US college admissions.1 This raises the
following question:

Are there any advantages of optional tests for classifi-
cation over mandatory ones?

On top of that, in many other scenarios mandatory tests
are simply unrealistic, and the principal has to rely on op-

1Applicants may take SAT and/or ACT tests, among others, as
many times as they want.
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tional tests for decision-making — for example, it is im-
possible for an academic hiring committee to require job
applicants to submit their work to certain conferences in a
prescribed way, e.g., one paper to NeurIPS’20 and one pa-
per to ICML’21. In such cases, the principal would still like
the classification process to be as accurate and efficient as
possible. This leads us to the following question:

How can one design a classification process with op-
tional tests in the most accurate and/or efficient way?

Our results. We give somewhat surprising answers to the
above two questions in the case of binary classification of
binary agents (elaborated below): we characterize the opti-
mal design of a classification process with optional tests, and
based on this show that classification with optional tests can
be arbitrarily more efficient than optimal classification with
mandatory tests for the same task.

To be more specific, we consider a setting where a prin-
cipal either accepts or rejects agents based on the set of test
outcomes that they get. Before tests are taken, the princi-
pal commits to a policy, which consists of all sets of out-
comes that lead to acceptance. Each agent is modeled by
a distribution over the space of possible outcomes, corre-
sponding to how the agent tends to perform in a test. When
an agent takes a test, he pays a cost and receives an indepen-
dent sample from his distribution as the outcome. Agents can
always choose between taking another test, and stopping.
They maximize their expected utility, which is the value of
acceptance if the principal’s policy accepts the set of out-
comes they have and 0 otherwise, minus the total cost of
tests taken.

We focus on the case where agents can be either “good”
or “bad” (corresponding to two different distributions over
test outcomes), and the principal’s goal is to accept good
agents and reject bad ones. We first characterize the opti-
mal strategy of an agent in response to the principal’s pol-
icy. Fixing the principal’s policy, each agent faces a Markov
Decision Process (MDP), where the state is the set of test
outcomes that he has collected. In general, at any state of
the MDP, the agent can always choose between taking an-
other test and stopping, and the optimal strategy could be
any function mapping each combination of outcomes to one
of the two actions. Our first key observation is that without
loss of generality, the agent’s optimal strategy is either to
keep taking tests until acceptance, or to leave immediately
without taking any test. This is because intuitively, after tak-
ing some tests, the agent must have received some outcomes,
which makes his situation at least as good as when he started
in terms of the expected number of future tests he needs to
take in order to be accepted; the cost of the tests already
taken is sunk. So, if an agent ever chooses to start taking
tests, he must be willing to keep taking tests until accep-
tance, since the cost of past tests should not affect his de-
cision. This is making two assumptions: (1) the agent can
choose not to submit some of the test outcomes, and (2) the
agent already knows his own type (good or bad) at the be-
ginning, and hence is not learning about himself from the
test outcomes.

With agents’ optimal strategy characterized, we consider
the principal’s problem, i.e., the design of her classification
policy. We first study the case where the principal controls
the cost of a test, by, for example, charging a registration
fee. We show that in this case, as long as the good and bad
agents have different distributions (which can be arbitrarily
close to each other), the principal can always achieve perfect
accuracy, meaning good agents are accepted with probabil-
ity 1, and bad ones are rejected with probability 1. The key
technique is to choose the policy so that agents self-select
into (not) taking tests. Moreover, among perfectly accurate
policies, we characterize the one with stochastically domi-
nant efficiency in terms of the number of tests a good agent
needs to take in order to be accepted. We show that quite sur-
prisingly, under this policy, no agent ever has to take more
than 2 tests. One may contrast this with the mandatory tests
case, where the principal directly observes as many samples
as she wants from agents’ distributions — there, in order to
classify correctly with probability 2/3, the number of tests
required can be arbitrarily large, as the distance between the
good and bad distributions diminishes.

We then proceed to the case where the cost per test is fixed
externally. With discrete outcomes, we show that perfect ac-
curacy in general is no longer possible. We then consider
the special case with continuous outcome distributions, or
equivalently, where outcomes are associated with rich noise
that is effectively continuous. We show that in a continuous
world, with different good and bad distributions, perfect ac-
curacy is again always possible. Moreover, we construct a
perfectly accurate policy under which the maximum num-
ber of tests a good agent needs to take is b1/cc + 1 where
c is the fixed cost per test, and show this is essentially best
possible for perfectly accurate policies. We also provide evi-
dence that the above bound cannot be significantly improved
even if we consider the expected number of tests.

Related work. Our results are along the line of work
on strategic machine learning (Dalvi et al. 2004; Perote
and Perote-Pena 2004; Dekel, Fischer, and Procaccia 2010;
Brückner, Kanzow, and Scheffer 2012; Meir, Procaccia,
and Rosenschein 2012; Cai, Daskalakis, and Papadimitriou
2015; Hardt et al. 2016; Roughgarden and Schrijvers 2017;
Chen et al. 2018; Dong et al. 2018; Feng, Parkes, and Xu
2019; Chen, Liu, and Podimata 2020; Freeman et al. 2020;
Krishnaswamy et al. 2021; Zhang, Cheng, and Conitzer
2021; Zhang and Conitzer 2021), as well as causality in-
terpretations thereof (Bechavod et al. 2020; Perdomo et al.
2020; Shavit, Edelman, and Axelrod 2020). Most research
on strategic machine learning, including ours, aims to tackle
the potential (mis)alignment of interests between the learner
(i.e., the principal) and entities about which information is
being learned (i.e., agents). One key difference between our
results and existing research is that previous work along this
line typically focuses on preventing strategic manipulation
of the classification process, while we exploit agents’ incen-
tives to make classification more accurate and efficient. Ex-
ceptions are the recent results by Kleinberg and Raghavan
(2019) and Haghtalab et al. (2020), who study the improve-
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ment in agents’ true features (e.g., skills) that is encouraged
by the classifier deployed by the principal. In contrast to
their work, we consider a model where agents’ features (i.e.,
the distributions associated with them) are fixed throughout
the classification process.

Closely related to our results is the series of work by
Zhang, Cheng, and Conitzer (2019b,a). There, too, agents
observe samples from distributions associated with them,
which they can then strategically transform and subse-
quently submit to the principal for classification. Our results
differ from these results in that we consider a novel model
where the number of samples generated is endogenous, de-
pending on utility-maximizing agents’ private information,
whereas they assume the number of samples is exogenous
(fixed externally).

There is a rich literature in economics on screening with
tests, and the effect of self-selection therein (Mirrlees 1976;
Spence 1978; Guasch and Weiss 1981; Nalebuff and Scharf-
stein 1987; Loh 1994). Most of those results consider one-
time tests with clearly defined outcomes (e.g., pass or fail),
and the principal (e.g., a hiring firm) often cares about maxi-
mizing revenue or social welfare, rather than achieving high
accuracy or efficiency. In contrast, we consider repeated
tests with an arbitrary outcome space, and the primary goal
is to achieve high accuracy and efficiency.

A conceptually related topic is that of efficient statistics,
where some basic and commonly studied problems are dis-
tinguishing, learning (Chan et al. 2014), and testing (Di-
akonikolas, Kane, and Nikishkin 2015; Valiant and Valiant
2017) distributions. Our results can be viewed as efficiently
distinguishing distributions in the presence of strategic be-
havior.

2 Preliminaries
In this section, we formally define the problem of test-based
classification.

Agents, tests, and outcomes. Each agent is modeled by
a distribution D over a space O of possible test outcomes
(e.g., integers between 0 and 100, corresponding to numeri-
cal scores). Agents can choose to take as many tests as they
want. When an agent with distribution D takes a test, he re-
ceives an outcome drawn from D independently of past test
outcomes, and can then choose to continue taking tests, or to
stop. The outcomes of all the tests taken (which form a mul-
tiset whose elements are from the outcome space O) will
then be used by the principal for classification.

The principal and the policy. The principal, before
agents decide whether or not to take tests, announces a pol-
icy P for classification. The policy in general is a collection
of multisets, each of which consists of certain test outcomes
from the outcome space O. For an agent with outcomes S,
the policy P accepts the agent iff there is a multiset T ∈ P
such that T ⊆ S (i.e., the multiplicity of any element in T is
no larger than that of the same element in S). In other words,
the policy P provides a collection of options to agents, each
of which is a multiset T of outcomes. An agent is accepted

iff his multiset of test outcomes contains any of these options
as a subset. A simple and natural example is when O is the
set of integers between 0 and 100, and P contains a number
of singleton multisets, each of which is an integer between
60 and 100, i.e.,

P = {{i} | 60 ≤ i ≤ 100}.
This corresponds to the case where agents can repeatedly
take exams, and are accepted (i.e., pass) iff they ever get a
score of at least 60. Another example would be

P = {{i} | 60 ≤ i ≤ 100} ∪ {{i, j} | 50 ≤ i, j < 60},
which is the same policy as before, except it now also suf-
fices to score at least 50 twice.

How rational agents act in response to a policy. Fixing
a policy P , each agent faces an MDP, where the goal is to
maximize his expected utility. Below we describe this MDP.
Without loss of generality, being accepted gives agents value
1, and each test has a cost of 0 ≤ c ≤ 1 (otherwise agents
would never want to take any test). The states of the MDP,
denoted S , are all multisets over the outcome space O, cor-
responding to the set of outcomes the agent has collected so
far. Initially, the state of the agent is the empty set ∅. At any
state S ∈ S , the agent can choose between two actions, tak-
ing another test (T) or leaving (L). If the agent chooses T,
he pays cost c (i.e., receives reward −c), and transitions to
a new state S ∪ {o} (note that this is a union of two mul-
tisets, where the multiplicity of any element in the union is
the sum of those of the same element in the two operands),
where o ∼ D is a random outcome drawn from D. If the
agent chooses L, he receives reward 1 if his current multiset
of outcomes S is accepted by the policy P , and 0 otherwise;
in either case, the MDP terminates immediately. Through-
out the paper, we assume agents are perfectly rational and
always play the utility-maximizing action. For simplicity,
we assume agents always break ties in favor of leaving, i.e.,
when the two actions result in equal expected utility, they
always play L. Our results still hold (with minor modifica-
tions) even if agents break ties adversarially.

The principal’s goals. We consider two goals of the prin-
cipal, accuracy and efficiency. We focus on the case where
agents are either good (with distribution G) or bad (with dis-
tribution B), and the principal aims to accept as many good
agents as possible, and reject as many bad ones as possible.
The specific definition of accuracy is immaterial — as we
will show, the principal can always achieve perfect accuracy
(i.e., good agents are always accepted, and bad ones always
rejected) as long as G and B are not identical. Given perfect
accuracy, the principal may further hope to implement the
classification in an efficient way, where agents take as few
tests as possible. We consider two types of efficiency mea-
sures, the expected number of tests and the worst-case num-
ber of tests. The goal is to design perfectly accurate poli-
cies which (approximately) minimize either/both of these
two measures (though in Section 4.3 we do consider how
to minimize expected cost in our model under the constraint
of perfect accuracy).
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Control over the costs. In some scenarios, the cost of a
test is controlled by the principal (e.g., when the dominant
part of the cost is a registration fee set by the principal),
while in others it is fixed externally (e.g., when the domi-
nant part of the cost is time invested in traveling to the test
site). We consider both cases in this paper. The flexible-cost
case allows the principal refined control of the classification
procedure, which, as we will show, implies more efficient
policies in general.

3 Agents’ Optimal Strategy: Self-Selection
We first characterize agents’ best response to a policy, which
effectively makes their decision space binary, and greatly
simplifies the principal’s problem.

Lemma 1. Fixing a policy P and a cost per test c, the opti-
mal expected reward of any agent is achieved by one of the
following two strategies:

• Take no test (i.e., play L immediately) and leave with re-
ward 0.

• Keep taking tests (i.e., playing T) until the set of outcomes
collected is accepted by P , and then play L.

Moreover, the optimal strategy is unique iff the above two
strategies result in strictly different expected rewards.

The proof of Lemma 1, as well as all other proofs, is de-
ferred to the appendix. Again, the intuition is that if an agent
ever wants to start taking tests, then after taking some tests,
he will be in at least as favorable a position as at the begin-
ning in terms of tests passed, and it was worth it to start then,
so it must certainly be worth it to continue now (the cost of
previous tests is sunk, and therefore irrelevant). One impor-
tant implication is that, depending on the policy, the cost per
test, and the agent’s distribution, each agent either does not
attempt to get accepted at all, or keeps trying and eventually
gets accepted with probability 1. This indicates that, when
provided the right incentives, self-selecting agents may per-
form the classification for the principal in a perfectly accu-
rate way.

More specifically, for any policy P and distribution D
over the outcome space O, let T (P, D) denote the (random)
number of tests an agent with distribution D needs to take in
order to be accepted by P , i.e.,

T (P, D) = min{t | P accepts {o1, . . . , ot}},

where {ot}t≥1 are iid draws from D. We have the following
claim.

Lemma 2. Fix a policy P and a cost per test c. An agent
with distribution D will always keep taking tests until ac-
ceptance if

c · E{ot}∼DZ+ [T (P, D)] < 1,

and leave immediately otherwise.

In the rest of the paper, we will heavily exploit Lemma 2.

4 The Flexible-Cost Case
We begin our investigation with the case where the cost of
a test is set by the principal, which turns out to be simpler.
For simplicity, we assume the outcome space O = [k] =
{1, . . . , k} for some integer k > 0. For any distribution D
over O (which can be either G or B), for any S ⊆ O, let
D(S) = Pro∼D[o ∈ S]. As a shorthand, for any o ∈ O, let
D(o) = D({o}). All the results in this section can be easily
generalized to arbitrary outcome spaces.2

4.1 Memoryless Policies Suffice for Accurate
Classification

We first consider the possibility of accurate classification. In
particular, for reasons that will be clear momentarily, we are
interested in policy-cost pairs that achieve perfect accuracy,
as defined below.
Definition 1 (Perfect Accuracy). A policy-cost pair (P, c)
is perfectly accurate for a good distribution G and a bad dis-
tribution B if the optimal strategies for good agents and bad
agents respectively are to keep taking tests until acceptance
and to leave immediately.

As a corollary of Lemma 2, a pair (P, c) is perfectly ac-
curate iff

c · E[T (P, G)] < 1 ≤ c · E[T (P, B)].

When the cost per test is controlled by the principal, we
are further interested in policies that are perfectly imple-
mentable.
Definition 2 (Perfect Implementability). A policy P is per-
fectly implementable for a good distribution G and a bad
distribution B if there exists a cost per test c, such that the
policy-cost pair (P, c) achieves perfect accuracy.

Given Lemma 2, we immediately have the following nec-
essary and sufficient condition for perfect implementability.
Lemma 3. Fix a good distribution G and a bad distribution
B. A policy P is perfectly implementable iff

E[T (P, G)] < E[T (P, B)].

Based on the above characterization, we show that as long
as the good agents’ distribution G is different from the bad
agents’ distribution B, there always exists a perfectly im-
plementable policy which consists of only singleton sets of
outcomes. In other words, the policy is memoryless, in that
a new test outcome either immediately makes the agent ac-
cepted, or will be entirely ignored.
Theorem 1. For any good distribution G and bad distribu-
tion B over the outcome space O = [k] where G 6= B, there
exists a set of outcomes P ⊆ O such that the policy

P = {{o} | o ∈ P}

is perfectly implementable.
2For example, when O is an infinite, possibly continuous space

(e.g., O = R), one can discretize O into a finite number (which
may depend on the desired precision) of regions such that the good
and bad distributions after discretization are arbitrarily close to the
respective original distributions.
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We remark that such memoryless policies are widely de-
ployed in practice, where the most common form is to set a
threshold and accept an agent iff the highest score he ever
gets passes that threshold. However, as we will show later,
this is not the most efficient form of perfectly accurate poli-
cies.

4.2 Policy with Stochastically Dominant
Efficiency

We now proceed to efficient policies. Below we character-
ize the perfectly implementable policy P with stochastically
dominant efficiency for any good distribution G and bad dis-
tribution B. The number of tests required for a good agent to
be accepted under this policy, T (P, G), stochastically dom-
inates the same number, T (P ′, G), of any other perfectly
implementable policy P ′. Furthermore, under this policy,
any good agent is guaranteed to be accepted after taking at
most 2 tests. As a result, this policy achieves the optimal
expected number of tests, the optimal worst-case number of
tests (which is 2), and optimality with respect to almost any
reasonable measure of efficiency.
Theorem 2. Let P ⊆ O = [k] be a set of outcomes such
that

P ∈ argmaxS⊆O:G(S)>B(S) G(S).

The policy

P = {{o} | o ∈ P} ∪ {{o1, o2} | o1, o2 ∈ O}
is perfectly implementable, and stochastically dominates
any other perfectly implementable policy P ′, in the sense
that for any t ∈ Z+,

Pr[T (P, G) ≤ t] ≥ Pr[T (P ′, G) ≤ t].

The policy P constructed in Theorem 2 accepts any set
of outcomes which either contains some outcome in P ⊆
O, or has cardinality at least 2. In other words, P accepts
an agent if the first outcome he receives is in P , or he ever
takes 2 tests. One may contrast Theorem 2 with the setting
where the principal, rather than the agent himself, chooses
the number of tests each agent needs to take. Suppose, rather
than deploying a policy and letting agents themselves choose
whether or not to take tests, we directly observe iid samples
from an unknown distribution D, which can be either G or
B — this corresponds to the case where we simply ask each
agent to take as many tests as we want. There, how many
samples one needs to observe in order to tell with confidence
whether D is G or B depends on the total variation distance
between G and B, defined below.
Definition 3 (Total Variation Distance). The total variation
distance dTV(D1, D2) between two distributions D1 and D2

over O is defined as

dTV(D1, D2) = sup
S⊆O

(D1(S)−D2(S)).

Observe that G 6= B iff dTV(G,B) > 0. It is folklore
that in order to identify D with probability at least 2/3, one
needs Ω(dTV(G,B)−2) iid samples from D. Moreover, it
is easy to see that as long as the supports of G and B over-
lap, one can never be completely sure with any finite number

of samples. Theorem 2, on the other hand, essentially says
that whenever dTV(G,B) > 0, the principal never needs to
observe more than 2 samples in order to distinguish G and
B, and good agents never need to take more than 2 tests.
In other words, by incentivizing self-selection, the principal
is able to reduce the number of tests required dramatically,
from Ω(dTV(G,B)−2) to 2, and at the same time improve
the accuracy to 1. Perhaps even more surprisingly, this is
done by giving agents more freedom to choose the number
of tests they take. Of course, this is feasible only because
agents themselves know their distribution at the outset; if no-
body knows the distribution, Ω(dTV(G,B)−2) tests would
still be required. This partially explains the practical success
of classification with optional tests: they can be arbitrarily
more efficient than mandatory tests enforced by the princi-
pal, especially when good and bad agents’ distributions are
closer to each other and therefore are harder to distinguish.

4.3 Cost Efficiency of Policies
While the policy in Theorem 2 is efficient in terms of
the number of tests, it could impose a total expected cost
on good agents that is quite close to the benefit of be-
ing accepted. Depending on the circumstances, cost effi-
ciency may be considered more important, and indeed, of-
ten the classification procedure can be implemented in much
less costly ways, intuitively for the following reasons. First,
when G and B are hard to distinguish, it is natural that good
agents need to spend significant effort in order to distinguish
themselves from bad ones. But, in many real-world sce-
narios, (most) good agents are considerably different from
(most) bad ones. In such cases, good agents pay much less
cost, since the principal only needs to make bad agents
marginally unwilling to take tests. Second, there can be a
tradeoff between efficiency (i.e., the number of tests taken)
and cost. If the principal is willing to make good agents take
more than 2 tests, then she can design a more selective policy
(i.e., making it hard to pass) that creates a sharper separation
between good and bad agents, and set a lower cost per test to
achieve perfect accuracy. Below we formalize this intuition,
and characterize the optimal cost efficiency possible, subject
to perfect accuracy, for memoryless policies.
Theorem 3. Fix any good distribution G and bad distribu-
tion B over the outcome space O = [k] where G 6= B. There
exists a memoryless policy

P = {{o} | o ∈ P}
for some P ⊆ O, and a cost per test c, such that (P, c) is
perfectly accurate, and the expected total cost paid by good
agents is

c · E[T (P, G)] = min
o∈O

B(o)/G(o).

Moreover, no policy-cost pair (P ′, c′) satisfies (1) P ′ is
memoryless, and (2) the expected total cost paid by good
agents is

c′ · E[T (P ′, G)] < min
o∈O

B(o)/G(o).

The above theorem says that the optimal cost efficiency
achievable by memoryless policies is determined by the
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minimum ratio between B and G over the test outcome
space. We also remark that cost efficiency directly implies
robustness against bad agents who value acceptance more
than good agents.3 Fixing any good distribution G and bad
distribution B, when good agents have value 1 and bad
agents have value v ≥ 1 for acceptance, there exists a per-
fectly implementable policy iff the optimal cost efficiency
achievable when all agents have value 1 is better than v−1,
i.e., there exists a policy-cost pair (P, c) such that

c · E[T (P, G)] < v−1 and c · E[T (P, B)] ≥ 1.

In fact, given such a cost efficient pair (P, c), (P, v · c) is
a perfectly accurate pair when bad agents have value v ≥ 1
for acceptance.

5 The Fixed-Cost Case
Now we proceed to the more challenging setting where the
cost per test c is fixed externally. We show that in such cases,
perfect accuracy in general requires stronger conditions on
the good and bad distributions. However, as we argue be-
low, these conditions are still rather reasonable for practical
purposes.

5.1 Accurate Classification Requires Continuous
Information

When the cost per test is set by the principal, Theorem 1
states that perfect accuracy can be achieved by some policy-
cost pair as long as the good and bad distributions are dif-
ferent. However, this is not true when the cost 0 < c < 1 is
fixed, as illustrated in the following example.
Example 1. Suppose the cost per test is fixed at c = 0.9. The
outcome space O = {1, 2}, the good distribution G assigns
probability G(1) = G(2) = 0.5, and the bad distribution B
assigns B(1) = 0 and B(2) = 1. Suppose there is a policy
P such that (P, c) is perfectly accurate. Then, in order for
good agents to take tests, by Lemma 2,

E[T (P, G)] < 10/9,

and since T (P, G) is distributed over Z+, elementary calcu-
lation gives

Pr[T (P, G) = 1] > 8/9.

As a result, it must be the case that {1} ∈ P and {2} ∈ P
simultaneously. However, this implies

Pr[T (P, B) = 1] = 1 =⇒ E[T (P, B)] < 10/9.

So bad agents will also take tests and get accepted under
(P, c), a contradiction. In other words, no policy P exists
such that (P, c) is perfectly accurate.

The above example shows that perfect accuracy cannot be
achieved with an infeasibly high cost per test, even if the out-
come space is extremely simple (i.e., binary) and the good
and bad distributions are clearly different. Nevertheless, the
impossibility of perfect accuracy comes almost solely from

3The case where good agents value acceptance more is no
harder than the case where all agents have the same value for ac-
ceptance.

the discreteness in the outcomes — intuitively, accepting
only one of the two outcomes does not provide enough mo-
tivation for good agents to take tests, while accepting both
provides too much motivation, so that every agent wants to
take tests regardless of his distribution.

Real-world tests, however, are often intrinsically (approx-
imately) continuous. In a narrow sense, test outcomes, in
the form of numerical scores, usually range from 0 to 100,
where presumably an agent can get any integer score in
between with positive probability. As argued above, in a
broader sense, a test could be any activity which takes a cer-
tain effort and produces a verifiable outcome. Besides nu-
merical test scores, such an outcome could take the form
of a course project, a research paper, or an oral presentation.
These outcomes are essentially continuous, in the sense that,
for example, no two oral presentations are exactly the same,
even if they are given by the same presenter using the same
slides. Even for relatively discrete outcome spaces, an out-
come is often accompanied by arbitrarily rich noise, which
makes outcomes effectively continuous.4 For example, in a
simplistic model, a paper submitted to a conference can be
either accepted or rejected, so one could argue the outcome
of such a submission is binary. However, it is extremely un-
likely that two different papers (as PDF files) share the same
hash value, which can effectively be viewed as continuous
noise that we can add to the outcome, thereby making the
outcome space continuous. This (hash value) part of the en-
riched outcome may not be correlated with the type of the
agent, but that will not matter for our purposes.

Based on the above observations, in the rest of this sec-
tion, we assume the outcome space O, as well as the good
distribution G and the bad distribution B, is continuous. This
could model continuity in the outcome distribution itself, or
noise, or the two aspects in combination. More specifically,
without loss of generality, we assume O = [0, k] for some
positive integer k ∈ Z+, and the good distribution G (resp.
the bad distribution B) is constant when restricted to the in-
terval [i − 1, i] for any i ∈ [k] = {1, . . . , k}. We call such
distributions piecewise constant.5 One way to interpret this
is that there are k possible outcomes. A good (resp. bad)
agent receives the i-th outcome with probability G([i−1, i])
(resp. B([i − 1, i])). Moreover, there is continuous noise x
independent of the outcome and the agent type, uniformly
distributed over [0, 1], so the final combination of the out-
come and the noise, i − x, has distribution G (resp. B). As
a shorthand, for any i ∈ [k], let G(i) = G([i − 1, i]), and
B(i) = B([i−1, i]). While for ease of presentation we focus
on this specific model, in fact, our results apply to general
distributions satisfying certain continuity conditions.6

4This has also been observed, e.g., in (Zhang, Cheng, and
Conitzer 2019b).

5While this appears to be a more restrictive definition than the
common notion of piecewise constant distributions, observe that
without loss of generality, one can always scale the pieces and the
distributions simultaneously, such that the pieces are of the same
length.

6For example, it is known that all Lebesgue measurable func-
tions (including all continuous ones) are approximated by step
functions (i.e., piecewise constant ones) up to any precision. This
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5.2 Accurate Classification with Continuous
Outcomes

Under the continuity assumption, we now show that per-
fect accuracy is possible with fixed cost per test, whenever
the good and bad distributions, G and B, are not identical.
Moreover, as in the variable cost case, perfect accuracy again
can be achieved using a memoryless policy.
Theorem 4. When the outcome space O = [0, k], for any
cost per test 0 < c < 1, and good and bad distributions
G and B (where G 6= B) that are constant on [i − 1, i]
for any i ∈ [k], there exists a policy P such that (P, c) is
perfectly accurate for G and B. Moreover,P consists of only
singleton sets of outcomes.

5.3 Nearly Optimal Policies
As illustrated by Theorem 2, memoryless policies do not
generally achieve optimal efficiency when the cost per test is
set by the principal. The same intuition applies to the fixed
cost case as well. Below, we construct a policy for any piece-
wise constant and distinct good and bad distributions which
requires at most b1/cc + 1 tests, where c is the cost per
test. We then show that the policy we construct has (1) op-
timal worst case efficiency, and (2) approximately optimal
expected efficiency when the good and bad distributions are
not trivially different.
Theorem 5. When the outcome space is O = [0, k], for any
cost per test 0 < c < 1, and good and bad distributions G
and B (where G 6= B) that are constant on [i− 1, i] for any
i ∈ [k], there exists a policy P such that (P, c) is perfectly
accurate for G and B. Moreover,

Pr[T (P, G) ≤ b1/cc+ 1] = 1.

Unlike Theorem 2, the above policy-cost pair is not guar-
anteed to dominate all other perfectly accurate pairs. How-
ever, it is in fact optimal in terms of the maximum number
of tests a good agent may have to take before getting ac-
cepted, as long as the good and bad distributions share the
same support.
Proposition 1. For any piecewise constant good and bad
distributions G and B where G and B share the same sup-
port, if a policy-cost pair (P, c) is perfectly accurate, then

Pr[T (P, G) < b1/cc+ 1] < 1.

In other words, the maximum number of tests a good agent
may have to take is at least b1/cc+ 1.

Proposition 1 states that the policy constructed in Theo-
rem 5 is in fact optimal in terms of the maximum number
of tests any good agent may have to take. However, it is un-
clear whether one can do significantly better7 in terms of the

gives a way of generalizing our results to all Lebesgue measurable
density functions.

7It is certainly possible to do somewhat better. For example,
when G([0, 1]) = B([1, 2]) = 0.9, G([1, 2]) = B([0, 1]) = 0.1,
and the cost per test c = 0.5, P = {{o} | o ∈ [0, 1]} accepts
a good agent after 10/9 < b1/cc + 1 = 3 tests in expectation.
(P, c) is perfectly accurate, because a bad agent will require 10
tests in expectation, so a bad agent will not attempt the test.

expected number of tests, especially when the good and bad
distributions are sufficiently different. We do show that, even
when good and bad distributions are far apart (i.e., when
dTV(G,B) = Ω(1)), there still exist good and bad distri-
butions G and B such that the expected number of tests re-
quired is at least 1/2c. In other words, the policy constructed
in Theorem 5 is also asymptotically optimal (in a worst-case
sense) in terms of the expected number of tests.
Proposition 2. There exist piecewise constant good and bad
distributions G and B where dTV(G,B) ≥ 0.1, such that if
a policy-cost pair (P, c) is perfectly accurate, then

E[T (P, G)] ≥ 1

2c
.

Again, one can contrast Theorem 5 with the case where
the principal directly determines how many tests an agent
takes. In that case, as discussed above, the number of tests
required to correctly identify an agent’s distribution D is
Ω(dTV(G,B)−2), whereas Theorem 5 requires good agents
to take at most about 1/c tests and guarantees perfect accu-
racy, regardless of how close G and B are to each other. In
other words, unless G and B are far away and a small er-
ror probability is acceptable, allowing agents to choose be-
tween taking tests and leaving immediately is far more effi-
cient than enforcing a certain number of tests.

Finally, we remark that with a fixed cost per test, there is
no tradeoff between efficiency (i.e., the number of tests taken
by good agents) and cost efficiency (i.e., the expected total
cost paid by good agents) — they are always proportional to
each other.

6 Conclusion and Future Research
In this paper, we characterize the accuracy and efficiency
of classification with optional tests. Our results partially ex-
plain the practical success of optional tests, and provide a
principled way of designing accurate and efficient classifi-
cation processes. In particular, we show how much better
one can do with self-selection than in comparable settings
without self-selection that were studied recently, even when
we augment those models with self-selection in the sim-
plest possible way. Our results also easily generalize to some
richer settings. For example, if taking the test might make
one better at the test next time (due to practice), this retains
the key property that once an agent starts taking tests, that
agent will continue until the agent succeeds. For future di-
rections, one could relax some of the assumptions to obtain
more robustness in the design of classification processes. For
example, test outcomes might be strategically transformed
(as studied in (Zhang, Cheng, and Conitzer 2019a)), the cost
per test might be unknown, and agents might not be com-
pletely sure about their own distributions before taking tests.
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