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Abstract

Given the ubiquity of negative campaigning in recent politi-
cal elections, we find it important to study its properties from
a computational perspective. To this end, we present a model
where elections can be manipulated by convincing voters to
demote specific non-favored candidates, and study its proper-
ties in the classic setting of scoring rules.
When the goal is constructive (making a preferred candidate
win), we prove that finding such a demotion strategy is easy
for Plurality and Veto, while generally hard for t-approval
and Borda. We also provide a t-factor approximation for t-
approval for every fixed t, and a 3-factor approximation al-
gorithm for Borda. Interestingly enough—following recent
trends in political science that show that the effectiveness
of negative campaigning depends on the type of candidate
and demographic—when assigning varying prices to differ-
ent possible demotion operations, we are able to provide in-
approximability results.
When the goal is destructive (making the leading opponent
lose), we show that the problem is easy for a broad class of
scoring rules.

Introduction
Recent years have seen negative campaigning becoming
ubiquitous in elections (Mattes and Redlawsk 2014). For in-
stance, according to studies by the Wesleyan Media Project
(WMP)—which monitors the content and volume of po-
litical advertising in the United States (Franklin Fowler
and Ridout 2014)—in the U.S. Congress elections of 2010,
2012, and 2014, more than 50% of ads were negative in
nature—even when not including contrast ads which com-
pare a favoured candidate to his or her opponent. In the 2012
U.S. presidential election—according to an analysis by The
Washington Post (Andrews, Keating, and Yourish 2012)—
one candidate’s campaign had spent 91% of its $492 million
budget on negative ads, and the other candidate’s campaign
had spent 85% of its $404 million budget on negative ads.

Negative campaigning is not a novel approach and its im-
portance traces back to antiquity; in a 64 BC letter by Quin-
tus Tullius Cicero (Cicero 2012), to his brother Marcus, run-
ning for the consul of Rome, he writes: “It also wouldn’t
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hurt to remind them of what scoundrels your opponents are
and to smear these men at every opportunity [...]”

Haselmayer (2019) argues about some of the advantages
of negativity in campaigns: first, it may convince voters to
refrain from voting for an opponent even if it will not make
them support the candidate favored by the campaign man-
ager; second, it relies on the concept of ‘negativity bias’
from cognitive psychology: that people tend to give more
weight to negative information; and third, the perceived
‘newsworthiness’ of negative facts or stories among jour-
nalists tends to be higher, and thus attracts more attention
from media outlets. Haselmayer also shows that research
about the potential effect of negative campaigning has be-
come widespread as well. Starting as an occasional topic in
the 1990s, research on negative campaigning by political sci-
entists has increased substantially in recent years.

In recent years, targeted advertising has emerged (John-
son 2013). That is, many platforms allow the advertisers to
deliver a user-specific content, based on the user-specific
traits, interests or preferences. It has been shown that tar-
geted advertising is an efficient and effective manner of com-
munication, in which the advertiser benefits from a more
efficient campaign and a better use of its advertising bud-
get (Iyer, Soberman, and Villas-Boas 2005). Combining tar-
geted advertising with negative campaigning can thus be a
very useful approach (Wong 2020). Even though the effec-
tiveness of targeted negative campaigning was demonstrated
in practice, to the best of our knowledge, it has not been stud-
ied from a computational perspective.

In this work, we study targeted negative campaigning
from a computational perspective by modeling it as a unique
variant of BRIBERY. In our variant, a campaign manager
can direct funds for targeting specific demographics (or—
in BRIBERY jargon—pay voters) in order to demote any
opponent. Our model—termed TNC (for targeted negative
campaign) is constructed in such a way to ensure consis-
tency with the properties and effectiveness of targeted neg-
ative campaigning in practice: roughly, it makes demotions
cheap while effectively making promotions expensive. We
contrast this with SHIFT BRIBERY (Elkind, Faliszewski, and
Slinko 2009) where only promotions of the preferred candi-
date are allowed. We also prove that our model cannot be
framed within the SWAP BRIBERY framework (of the same
paper). While we consider both constructive and destructive
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settings, our model should not be confused with the destruc-
tive variants of existing models. A full discussion is provided
later.

Our Contributions. We prove that for t ≥ 3, t-approval-
TNC is NP-hard, but that if t is fixed, it can be approxi-
mated in polynomial-time within a factor of t, even when
each voter has a different price. The same algorithm can
compute the exact solution for the plurality scoring rule. We
then show that Borda-TNC is NP-hard as well, and pro-
vide a 3-multiplicative approximation to the problem. We
also show that if we introduce prices that are a function of
both the voter and candidate, then Borda-TNC cannot be
approximated within (1 − ε) ln(m/2 − 1) unless P = NP,
where m is the number of candidates. We also introduce a
destructive variant and provide an exact solution for a wide
array of scoring rules, even with a varying price per voter.

Related Work. The BRIBERY problem was originally for-
mulated by Faliszewski, Hemaspaandra, and Hemaspaandra
(2006, 2009), and has been studied extensively in recent
years, usually in the context of hardness (see a survey by
Faliszewski and Rothe 2016) but also in the context of ap-
proximation (Faliszewski 2008; Keller, Hassidim, and Ha-
zon 2019). Several types of bribery problems were stud-
ied; in SWAP BRIBERY (Elkind, Faliszewski, and Slinko
2009; Elkind and Faliszewski 2010), we pay for swap-
ping two adjacently ranked candidates within a single vote
(where price is a function of the bribed voter and the can-
didates swapped). SHIFT BRIBERY is the SWAP BRIBERY
variant where only changes promoting a preferred candi-
date p are allowed; it has received significant attention
(Schlotter, Faliszewski, and Elkind 2017; Faliszewski, Ma-
nurangsi, and Sornat 2019; Maushagen et al. 2018; Bred-
ereck et al. 2016a,b,c). In addition, many voting models
were considered, e.g., truncated ballots and partial informa-
tion (Baumeister et al. 2012; Briskorn, Erdélyi, and Reger
2016), soft constraints (Pini, Rossi, and Venable 2013), and
CP-nets (Mattei et al. 2012; Dorn and Krüger 2016).

Our work is mostly related to SHIFT BRIBERY, as SHIFT
BRIBERY is concerned with promoting the preferred candi-
date, where we may demote any candidate. SHIFT BRIBERY
was shown to be in P for t-approval and NP-hard for Borda
(Elkind, Faliszewski, and Slinko 2009), yet approximable
within a (1 + ε)-factor for any scoring rule (Faliszewski,
Manurangsi, and Sornat 2019). For Copeland, a hardness of
approximation result was shown in the same work. In con-
trast, SWAP BRIBERY was shown to be NP-hard to approx-
imate up to an arbitrary factor for a large list of voting rules
(including t-approval for t ≥ 2, Borda, Copeland, and Max-
imin; Elkind and Faliszewski 2010).

In most of the above mentioned works the goal is to
make a specific candidate win the election. In contrast, de-
structive BRIBERY variants, where the goal is to prevent
a candidate from winning, were studied by Faliszewski,
Hemaspaandra, Hemaspaandra, and Rothe (2009), and un-
der the name MARGIN OF VICTORY (Magrino, Rivest,
and Shen 2011; Cary 2011; Xia 2012; Dey and Narahari
2015). Other destructive variants of note are DESTRUC-
TIVE SWAP BRIBERY (Shiryaev, Yu, and Elkind 2013) and

DESTRUCTIVE SHIFT BRIBERY (Kaczmarczyk and Fal-
iszewski 2019). A detailed comparison between our work
and existing models is provided later.

Some computational aspects of negativity in elections
were previously studied in the context of social networks
(Mehrizi et al. 2019; Castiglioni, Ferraioli, and Gatti 2020).

Preliminaries
An election is a pair E = (C, V ) such that C =
{c1, c2, . . . , cm} is a set of candidates, and V =
(v1, v2, . . . , vn) is the preference profile, that is, a list of
preference orders for a set N = {1, . . . , n} of voters, where
a preference order v` ∈ V is a linear order of the candidates
according to `’s preferences. We sometimes refer to a pref-
erence order v` as a function such that v`(c) is the rank of
candidate c in v`. A rank of 1 means that the candidate is
preferred to any other candidate by `. We also use c �` c′ to
indicate that c is preferred to c′ by voter `.

A scoring rule for m candidates is described by a vector
α = (α1, α2, . . . , αm) of non-negative numbers such that
α1 ≥ α2 ≥ · · · ≥ αm ≥ 0. This rule is applied as follows:
each voter ` awards every candidate ci a score according to
its rank v`(ci) i.e., αv`(ci). A candidate’s final score is the
sum of the points awarded to him. The winner set is the set of
all the candidates with the highest final score; we use the co-
winner assumption where a candidate is considered a winner
if he is included in the winner set, and a loser otherwise.
Prominent examples of scoring rules are Borda, for which
α = (m − 1,m − 2, . . . , 1, 0) and t-approval for which
α = (1t;0m−t) where for b ∈ {0, 1}, bk is b concatenated
k times. Plurality is the specific case of 1-approval, and Veto
is the case in which α = (1m−1; 0).

We also mention the non-preferential range voting (RV)
rule, where voters award a score between 0 and m − 1 to
each candidate, and scores can be repeated.

Notation. We denote the initial score of a candidate c as
σ(c). The margin between two candidates c and c′ is de-
noted as diff(c, c′) = σ(c) − σ(c′) (and can be negative).
We sometimes use s(c) to denote a candidate’s final score.

For a candidate set C, we let
−→
C denote the sequence con-

taining the elements of C in some arbitrary yet predeter-
mined order. We use

←−
C to denote the reverse of

−→
C . For any

subsetC ′ ⊆ C, we let
−→
C ′ (resp.

←−
C ′) denote the sub-sequence

of
−→
C (resp.

←−
C ) containing only the elements of C ′. Given

a candidate set C ′, we use
(
C′

t

)
to denote the collection of

all size-t subsets of C ′, whose size is
(|C′|
t

)
. We let 1[·] de-

note the indicator function where 1C′(c) is a shorthand for
1[c ∈ C ′]. We also let [t] denote the set {1, . . . , t}.

We define the following problems:

TNC. Given an election E = (C, V ), and a preferred
candidate p ∈ C, the goal is to make p win by finding a
minimum-cost sequence Q of demotion operations, where
each such operation is a tuple (`, ci, δ) with the meaning
that ci is demoted δ positions in (the current) v`. The op-
erations in Q are performed sequentially, in order. In the un-
priced model, the cost of Q—denoted π(Q)—is the num-
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ber of operations in Q. We also mention priced variants
where the price of each operation (`, ci, δ) is a function
of either `, or both ` and ci. With a slight abuse of nota-
tion, we use π to also denote this price function and thus in
the former case π(Q) =

∑
(`,ci,δ)∈Q π(`) and in the latter

π(Q) =
∑

(`,ci,δ)∈Q π(`, ci).

DTNC. We also discuss a destructive version of TNC
named DTNC (Destructive Targeted Negative Campaign),
in which our goal is to find a minimum-cost sequence Q of
demotion operations that will prevent the currently leading
candidate d ∈ C from winning.

SET COVER. Given an instance I = (U,S) of SET
COVER, where U = {u1, . . . , un̄} is the ground-set and
S = {S1, . . . , Sm̄} is a collection of subsets ofU , the goal is
to find a minimal collection S ′ ⊆ S such that

⋃
S∈S′ = U .

3SET COVER is the variant where |S| = 3 for all S ∈ S .
Both problems are NP-hard (Garey and Johnson 1979).1

MIN COST FLOW. Given a graph G = (V,E) where
each edge e ∈ E has a capacity γ(e) and a cost a(e), two
specified vertices s and d, and a value T , the goal is to find
a flow f : E → R+

0 from s to d subject to the capacity con-
straints f(e) ≤ γ(e) for each e ∈ E, such that the flow value
is |f | =

∑
u∈N(s) f(s, u) = T (where N(s) are s’s neigh-

bors) and its total cost A(f) =
∑
e∈E a(e)f(e) is minimal

(Edmonds and Karp 1972). It is known that integral capaci-
ties lead to integral edge flow values.

Our Model: Discussion and Comparisons
In this section we discuss our model in light of the charac-
teristics of modern-day negative campaigning, and contrast
it with existing models.

Our model is constructed in such a way to ensure consis-
tency with the effectiveness of targeted negative campaign-
ing in practice. Specifically, recent practical trends in tar-
geted negative campaigning allow large-scale fine-tuning of
ads according to the views of a targeted voter (in one case
even supporting 218,000 ad variants; Wong 2020). There-
fore, if a voter has several topics she might care about in the
context of a political candidate—possibly in different levels
of importance—the choice of topic for an ad provides a way
not only to affect the sentiment towards a candidate, but also
to control its intensity, or level.

We identify this control over the level of negativity with
allowing the campaign manager to control the number of
positions a candidate is demoted by (hereafter, the demotion
level) when affecting a voter (as opposed to, for example,
always demoting a candidate to become last). Moreover, we
allow any demotion level.

This fine-grained demotion level is also similar to the in-
herent nuances in other models of manipulation and bribery
under scoring rules: demoting a candidate promotes some
candidates below him; as such, the campaign manager has

1In their definition of 3SET COVER, all subsets have size at
most 3. The reduction to our definition is easy using a padding
argument.

to apply discretion when choosing the demotion level, in or-
der to limit this effect.

We note that in some settings, a finer-grained control over
the demotion level is not even required, e.g., for scoring rules
that have blocks of same-score positions—like approval-
based rules—where we only care about a demotion that will
result in a strictly lower score for the candidate.

While we sometimes allow voters to have varying prices
for demotions—possibly on a per-candidate basis—in our
model the demotion level does not affect the price. This is
motivated by arguing that the price is paid for a single ad
exposure (or click through), and it is the content of the ad
(as discussed above)—and not the number of exposures—
that changes the voter’s mind. It thus leads to the following
observation: by having e.g., a unit price for any demotion
level, demoting a candidate by δ positions will cost a unit,
but promoting him by δ positions will cost δ (as it translates
to δ demotions), and this is consistent with the effectiveness
of negativity argued by political science researchers (Hasel-
mayer 2019). We contrast this with SHIFT BRIBERY where
only promotions of the preferred candidate are allowed.

Interestingly enough, while the SWAP BRIBERY model is
a very general model of campaign management, our model
cannot be framed within its framework. This is shown by the
following theorem.

Theorem 1. SWAP BRIBERY does not generalize TNC.

Proof. Assume a TNC instance with a unit price for any de-
motion operation, and assume by contradiction that it can
be modeled under SWAP BRIBERY. Now consider a pref-
erence order v` = a � b � c. Let π`(·, ·) be `’s SWAP
BRIBERY price function. Since demoting a by one position
costs 1, then π`(a, b) = 1. Similarly, since demoting b by
one position costs 1, then π`(b, c) = 1. However, since in
our instance any demotion has a unit price, demoting a all
the way down has price π`(a, b) + π`(a, c) = 1 and thus
π`(a, c) = 0. However, under the SWAP BRIBERY price
function we have just built, promoting c to the top position
will cost π`(b, c)+π`(a, c) = 1. However, as it involves two
demotion operations (for a and b), under the TNC frame-
work the price should be 2—a contradiction.

As mentioned, we consider both constructive (where the
goal is to make a preferred candidate win) and destructive
(where the goal is to prevent the leading opponent from win-
ning) settings. Specifically, our constructive variant should
not be confused with the destructive variants of existing
models: we allow ‘negative’ operations, but our goal is still
‘positive’ (or constructive): making p win.

Our destructive variants have some resemblance to DE-
STRUCTIVE SHIFT BRIBERY of Kaczmarczyk and Fal-
iszewski (2019). However, our model allows the demotion
of a candidate c in order to strengthen another candidate c′
with the goal of making the currently leading candidate d
lose. In contrast, in DESTRUCTIVE SHIFT BRIBERY, only
operations directly demoting d are allowed. As a result, the
cost of the strategy might be radically different. Consider
for example the “all-or-nothing” pricing model discussed by
Kaczmarczyk and Faliszewski (2019) which is similar to our
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assumption that a demotion has the same price regardless of
its level. Then the fact that we can demote any candidate
(and not just d) can change the overall cost from Ω(n) to 1,
as shown by the following theorem.

Theorem 2. There is an infinite family of election instances
under “all-or-nothing” pricing such that DTNC costs 1, but
DESTRUCTIVE SHIFT BRIBERY costs Ω(n) = Ω(m).

Proof. Let N = [n], C = {c1, c2, . . . , cn−2, a, b, d} (so
that |C| = |N | + 1), and fix the scoring rule α =
(2n2, 3n, 0, . . . , 0). We define the following ballots:

vi = ci � d �
−−−−−−−→
C \ {ci, d} ∀i ∈ [n− 2] ;

vn−1 = a � d �
−−−−−−→
C \ {a, d} ;

vn = b � a �
−−−−−−→
C \ {b, a} .

The scores are as follows: σ(d) = 3n2 − 3n, σ(a) =
2n2 + 3n, σ(b) = 2n2, and for every i ∈ [n − 2], σ(ci) =
2n2. When n > 6, d wins. While in DESTRUCTIVE SHIFT
BRIBERY we will need Ω(n) operations to make d lose (as
each operation can make him lose only O(n) points), in our
model a single operation—that is, (n, b, 1)—is enough to ef-
fectively promote a, award him a final score of 4n2, and
make him win.

t-Approval
In this section, for any fixed t ≥ 3, we will show NP-
hardness and a constant-factor approximation for t-approval.

NP-Hardness
We claim the following:

Theorem 3. Determining whether there exists a solution
with at most k demotion operations to t-approval-TNC is
NP-hard for every fixed t ≥ 3.

We provide a proof sketch for the case t = 3 (the other
cases are similar) and defer the complete proof to the full
version of the paper. The idea is to reduce a 3SET COVER
instance with a cover size k to a 3-approval-TNC instance
with 3k allowed demotion operations as follows. For every
S ∈ S , we define a voter who ranks the elements of S at
the 3 top positions, then two unique dummy candidates, and
then p. We refer to these voters as the main voters. We also
add many ‘filler’ voters and more dummy candidates until
(a) σ(p) = m̄; (b) for each u ∈ U , σ(u) = σ(p) + k + 1,
and (c) there exist a set D′ of 4k dummy candidates where
each of them has the score σ(p) + k. Then, the only way
to make sure p does not lose to the candidates in D′ is by
having p gain exactly k points. However this is the maxi-
mum p can gain and this can only be achieved by bribing
exactly k main voters, each of them 3 times: demoting the
top 3 candidates, thus having p take the third place in each.
However, at this point some candidates in U might still have
a point margin over p—unless the main voters that we have
bribed exactly correspond to a cover of the 3SET COVER
instance—in which case each candidate u ∈ U now has a
final score s(u) ≤ m̄+ k = s(p).

s `

uS,`

uS′,`

uc1,`

uc2,`

up,`

c1

c2

p

r

dt

t
π̄`(S)

t
π̄`(S

′)

1

1

1

1

1

1

1

b

b 2n− b

b

Figure 1: A sub-graph of G(b) for 2-approval. Assume that
S = {c1, c2} and S′ = {c1, p}. Edge labels are their ca-
pacity. Where edges have a second label, it is their cost. All
other edge costs are zero.

Moving away from the case of a fixed t, we note that Veto
can be solved in polynomial time by iterating over every
voter ` for which v`(p) = m, and greedily demoting the
candidate having the highest overall score to the bottom of
the list. This is repeated until p wins. This strategy is always
the most efficient: it increases diff(p, c) by 1 for every non-
preferred candidate c, besides the leading one c′, for which
diff(p, c′) is increased by 2. Interestingly, this method relies
on the co-winner assumption: if we get to the point where
no voter ` for which v`(p) = m exists, p must already be
winning. In the unique-winner assumption this is clearly not
the case and the solution is more involved.

Approximation
In this section we discuss a t-factor approximation for t-
approval for every fixed t.

For any set S ∈
(
C
t

)
, we let π̄`(S) = maxc∈S v`(c) − t.

We can assume w.l.o.g. that we know the value b, the final
score of p in the optimal demotion strategy (since we can
try all the possible values for b and choose the one resulting
in the cheapest final solution). We shall construct a priced
flow network G(b) in which units of flow represent awarded
points, as follows. The vertex set U = {s, d, r} ∪N ∪ U1 ∪
U2 ∪C is comprised of the following ‘layers’ (visualized in
fig. 1).

• N (resp. C) represents the voter set (resp. candidate set);
a flow unit passing through a vertex ` ∈ N (resp. c ∈ C)
represents a point awarded by ` (resp. awarded to c).

• U1 = {uS,` | S ∈
(
C
t

)
, ` ∈ N }; a flow unit passing

through a vertex uS,` ∈ U1 represents a point awarded by
` to a candidate in S (the choice of which candidate will
be immediately discussed).

• U2 = {uc,` | c ∈ C, ` ∈ N } ∈ U2; a flow unit passing
through a vertex uc,` represents a point awarded by ` to
the candidate c.

• s and d are the source and destination vertices. r repre-
sents any candidate other than p.

The edge setE = E1∪E2∪E3∪E4∪E5∪E6 is comprised
of the following, where γ(u, v) is the capacity of an edge
(u, v) and a(u, v) is its cost.
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• E1 = { (s, `) | ` ∈ N } with all capacities equal to
t, guarantees that each voter has at most t points to dis-
tribute.

• E2 = { (`, uS,`) | ` ∈ N,S ∈
(
C
t

)
} with capacities equal

to t, will be discussed later.
• E3 = { (uS,`, uc,`) | ` ∈ N, c ∈ S } with all capacities

equal to 1, guarantees that each candidate can receive at
most one point from a subset he is a member of.

• E4 = { (uc,`, c) | c ∈ C, ` ∈ N } with all capacities
equal to 1, guarantees that each candidate can receive at
most one point from a specific voter.

• E5 = { (c, r) | c ∈ C \ {p} }, with all capacities equal
to b guarantees that each candidate will receive at most b
points (where b will be p’s final score).

• E6 = {(p, d), (r, d)}, where γ(p, d) = b and γ(r, d) =
tn− b. By later setting the desired flow value to tn, these
edges will be saturated, and p’s score will be exactly b.

For each edge (`, uS,`) ∈ E2, we let a(`, uS,`) = π̄`(S). All
other edge costs are 0. Finally we let G(b) = (U,E, γ, a).
An example of a sub-graph of G(b) is shown in fig. 1.

The main procedure is the following. Given b, construct
G(b), and run a minimal cost flow algorithm on it with a de-
sired flow value tn (Edmonds and Karp 1972). If it failed
to find such a flow then return a fail status; otherwise, de-
note the resulting network flow as f . We shall modify f
to become another flow f ′ as follows. For each voter `, let
S′` = { c | f(uc,`, c) = 1 }. We will prove that |S′`| =
t. We define f ′(`, uS′

`,`
) = t, f ′(uS′

`,`
, uc,`) = 1S′

`
(c),

f ′(`, uS,`) = 0 for all S 6= S′`, and f ′(uS,`, uc,`) = 0 for all
S 6= S′`. Based on f ′, we compute the following demotion
strategy Q: perform the necessary demotions such that for
each `, the candidates in S′` become the top t candidates in
v`; this is done by demoting all candidates c′ /∈ S′` for which
v`(c

′) < maxc∈S′
`
v`(c) to the bottom of v`.

Our approximation algorithm, denoted M, repeats the
above procedure for each b ∈ [n], and returns the strategy
Q having the minimum cost out of all strategies computed.

Let Q? be the optimal demotion strategy. In the following
lemmas, we will argue that the above algorithm returns a
demotion strategy Q for which π(Q) ≤ tπ(Q?).
Lemma 1. For a size-t set S, the minimal price for making
all the candidate in S become the top t candidates in v` is
π̄`(S) = maxc∈S v`(c)− t.

Proof. Let c′ = arg maxc∈S v`(c) be the bottom-most can-
didate in S w.r.t. v`. The number of candidates not in S who
are ranked before him in v` is exactly v`(c′)− t.

Let b? be the final score of p under Q?.
Lemma 2. There exists a potential flow f? in G(b?) where
|f?| = tn and A(f?) = t · π(Q?).

Proof. We define f? in G(b?) as follows. For each `, let S?`
be the candidates ` approves of following the demotion op-
erations in Q?, and let s?(c) be the resulting score of c. Set
f?(`, uS?

` ,`
) = t, f?(uS?

` ,`
, uc,`) = 1S?

`
(c), f?(uc,`, c) =

1S?
`
(c), f?(c, r) = s?(c), f?(r, d) =

∑
c∈C\{p} s

?(c) =

tn − b?, f(p, d) = b?. All other edges will have 0 flow.
It can be easily verified that all the flow conditions are
satisfied, that |f?| = f(r, d) + f(p, d) = tn, and that
A(f?) =

∑
` a(`, uS?

` ,`
)f?(`, uS?

` ,`
) = t ·

∑
` a(`, uS?

` ,`
) =

t ·
∑
` π̄`(S

?
` ) = t · π(Q?).

The following lemmas assume that the algorithm did not
fail on G(b), and thus |f | = tn.

Lemma 3. For each voter `, |S′`| = t. f ′ is well-defined, is
a valid flow, and |f ′| = tn.

Proof. We have that |f | = tn. As every voter ` has an in-
coming capacity of t, each voter transfers exactly t flow units
to candidates. Fix a voter `. Since γ(uc,`, c) = 1 for each c,
there must be exactly t candidates such that each receives a
unit flow from `. Therefore |S′`| = t and uS′

`,`
is a node in

G(b). When defining f ′, after identifying the set S′`, the al-
gorithm simply reroutes the t flow units to the the candidates
in S′` through uS′

`,`
, thus the flow value is maintained.

Lemma 4. It holds that A(f ′) ≤ t ·A(f).

Proof. Fix a voter `, and let R = {S | f(`, uS,`) ≥ 1 }.
Now consider the candidate set C ′ =

⋃
S∈R S and the set

Smax = arg maxS∈R π̄`(S). Let c′ be the candidate c ∈ C ′
maximizing v`(c) and notice that c′ ∈ Smax. Now consider
S′` as defined by the algorithm and notice that S′` ⊆ C ′ by
the flow properties: a unit of flow which reaches a candidate
c from ` must pass through some node uS,` such that c ∈ S.
Therefore—applying Lemma 1—π̄`(S

′) ≤ π̄`(Smax).
It follows that a(`, uS′

`,`
)f ′(`, uS′

`,`
) = t · a(`, uS′

`,`
) ≤

t ·a(`, uSmax,`) ≤ t ·
∑
S∈R a(`, uS,`)f(`, uS,`). The lemma

follows by summing the last inequality over all voters ` ∈
N , and recalling that for each edge e /∈ E2, a(e) = 0.

Theorem 4. AlgorithmM returns a valid solution Q mak-
ing p win, and π(Q) ≤ tπ(Q?).

Proof. It is enough to show that in the iteration where b =
b?, we find a solution Q′ such that π(Q′) ≤ tπ(Q?).

As proven in Lemma 2, when b = b? there exists a max-
imal flow tn in G(b?) and therefore our algorithm will find
such a flow. Consider f and f ′, the min-cost flow and the
constructed flow in this iteration. Also consider f?, the flow
induced by the optimal strategy as detailed in Lemma 2.

It holds that |f ′| = tn and A(f ′) ≤ t ·A(f) ≤ t ·A(f?).
Since |f ′| = tn, then f ′(p, d) = b. Since f ′(c, r) ≤ b for all
c ∈ C \ {p}, p is necessarily winning.

For the flow f ′, it holds that

A(f ′) =
∑
`∈N

a(`, uS′
`,`

)f ′(`, uS′
`,`

)

= t ·
∑
`∈N

a(`, uS′
`,`

)

= t ·
∑
`∈N

π̄`(S
′
`)

= t · π(Q′) .
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We obtain that π(Q′) = A(f ′)/t ≤ A(f?) = t · π(Q?),
where the inequality follows from Lemma 4 and the final
equality from Lemma 2.

We make two important remarks: (a) our algorithm can
be easily extended to support prices that are a function of
the voters (by re-defining a(`, uS,`) to be also multiplied by
the voter’s price); and (b) our algorithm provides an exact
solution in the specific case of Plurality (as t = 1).

Borda
In this section we will show NP-hardness and a 3-
multiplicative approximation for Borda.

NP-Hardness
Theorem 5. Given a value k, determining whether there
exists a solution to Borda-TNC with at most k demotions is
NP-hard.

Proof. Given an instance I = (U,S) of SET COVER and a
desired cover size k ≤ m̄, we define a reduction as follows.

We define the candidate set C = U ∪ D ∪ {p, a, b},
where D = {d0, . . . , dn̄−2} is a set of n̄ − 1 dummy can-
didates, p is the preferred candidate and a, b are two ad-
ditional candidates. We let D<q = {d0, . . . , dq−1} and
D≥q = {dq, . . . , dn̄−2}.

The preference profile is defined as follows. For each set
Si ∈ S , we define two preference orders v1

i , v
2
i , such that

v1
i =
−−−−→
D≥|Si| �

−→
Si � a � b �

−−−−→
U \ Si �

−−−−→
D<|Si| � p (1)

v2
i = p �

←−−−−
D<|Si| �

←−−−−
U \ Si � b � a �

←−
Si �

←−−−−
D≥|Si| . (2)

In addition, we define the following two preference orders:

v̄ =
−→
D � a � b �

−→
U � p (3)

v̂ = p �
←−
U � a � b �

←−
D . (4)

Finally, we define the following two preference orders:

v̄′ =
−→
D � a �

−→
U � b � p (5)

v̂′ = p �
←−
U � a � b �

←−
D . (6)

We let

V = {v1
i , v

2
i }m̄i=1 ∪ {v̄j , v̂j}

k(n̄+3)−1
j=1 ∪ {v̄′, v̂′} ,

where each v̄j (resp. v̂j) is a copy of v̄ (resp. v̂).2 Let E =
(C, V ) be the resulting election.

Lemma 5. For E, it holds that diff(a, p) = k(n̄ + 3), that
diff(p, b) = k(n̄+ 3) + n̄, and that diff(p, d) = 0 for every
d ∈ D. In addition, diff(u1, p) = · · · = diff(un̄, p) = 1.

By summing the points awarded to each candidate. To see
that more easily, notice that each pair of preference orders
defined above awardsm−1 points to each candidate, unless
the following event occurs: whenever c � c′ in both of the
pair’s preference orders, it effectively means that a points is
‘transferred’ from c′ to c.

2While V is a list of preference orders, with a slight abuse of
notation, we have defined it using set operations.

Lemma 6. LetQ be a winning demotion strategy forE with
k demotion operations. Then all bribed voters have votes of
types v1

i , v̄, or v̄′, and in each of them a was demoted by
n̄+ 2 positions.

Proof. Let s(c) be the score of candidate c after the demo-
tion operations. Since we have k demotion operations, s(p)
will be at most σ(p) + k. To make p indeed win we re-
quire that s(a) ≤ s(p), thus a should lose at least k(n̄ + 2)
points. However, notice that for each voter, a can be pushed
down at most n̄ + 2 positions. Indeed, only for voters of
types v1

i , v̄, v̄
′, a can be demoted by n̄ + 2 positions (for all

other voters, a can be demoted by at most n̄ + 1 positions).
Thus, to reach the desired decrease in score, only voters of
types v1

i , v̄, v̄
′ can be bribed, each once, and in each opera-

tion a will be demoted exactly n̄ + 2 positions. As a result,
s(a) = s(p) = σ(p) + k.

We are now ready to complete the proof of Theorem 5 by
showing that E has a winning strategy with k operations if
and only if U can be covered by k subsets of S .

Completeness: Let S ′ be a valid k-cover. For each Si ∈
S ′, bribe v1

i and move a to the last position in v`. Notice
that now s(p) = s(a) = σ(p) + k. Now focus on the effect
of bribing a single voter v1

i : it does not change the value
diff(p, u) for each u ∈ U \ Si, but increases diff(p, u) by
1 for each u ∈ Si. Since S ′ is a proper cover, it means that
according to our scheme, for each u there exists at least one
bribed voter v1

i who increases diff(p, u) by 1 (this is a voter
v1
i for which Si ∈ S ′ and u ∈ Si), thus at the end of the

bribery process, diff(p, u) ≥ 0. We have just showed that
s(p) ≥ s(u) for each u ∈ U , and that s(p) ≥ s(a). As
for the remaining candidates in D ∪ {b}, notice that at first
they were ranked equally or less than p, and that each time
one of them was promoted, p was promoted as well, and
therefore diff(p, c) does not decrease for each c ∈ D ∪ {b}.
We conclude that as a result of this bribery scheme, p now
wins.

Soundness: Assume that p can be made to win by bribing
k voters, and consider the corresponding demotion strategy.
By Lemma 6, in all bribed votes a was pushed down n̄ + 2
positions. Now observe only the bribed voters of type v1

i .
Since for each u ∈ U it held before that diff(p, u) = −1,
but now diff(p, u) ≥ 0, we bribed at least one voter v1

i such
that u ∈ Si, which allowed diff(p, u) to increase by a point.
Therefore, the collection S ′ = {Si ∈ S | v1

i is bribed }
constitutes a valid cover. Since |S ′| ≤ k we are done.

Approximation
The main idea behind our approximation is noticing that the
hardness of TNC under Borda stems from the fact that when
we demote a candidate by δ positions, then δ candidates re-
ceive a point. Now assume that we ignore this issue for a
moment. This is equivalent to range voting (RV) where each
voter awards a score between 0 and m − 1 to each candi-
date. Here, demoting a candidate—e.g., by having a voter
decrease her awarded score by δ points—does not have any
consequence on the score of other candidates.
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Algorithm 1: BTNCRV((C, V̄ ), k, T )

1 Q← ∅
2 foreach c ∈ C do
3 Sc ← { (`, δ) | (c, δ) ∈ v̄`, ` = 1, . . . , n }
4 sc ← σ(c)
5 for i← 1 to k do
6 C ′ ← { c ∈ C | sc > T }
7 if C ′ = ∅ then
8 break
9 Pick an arbitrary c ∈ C ′.

10 (`′, δ′)← arg max(`,δ)∈Sc
δ

11 Q← Q ∪ {(`′, c, δ′)}
12 Sc ← Sc \ {(`′, δ′)}
13 sc ← sc − δ′
14 C ′ ← { c ∈ C | sc > T }
15 if C ′ = ∅ then return Q else fail

We start by reducing our instance into a corresponding
RV instance Ē: we naturally translate a ranking in the j-
th place of a candidate by a voter to awarding him a score
of αj = m − j by the voter. In the reduced instance, we
look for the smallest k for which we can make sure—using
at most k demotion operations—that all candidate scores do
not exceed a bound T = σ(p) + k. We refer to TNC under
RV with this goal as bounded TNC under RV. We denote
the function that—given a RV instance, and the values k and
T—either returns a sequence of at most k demotion opera-
tions or fails—as BTNCRV(Ē, k, T ).

Computing BTNCRV is easily achievable by a greedy
algorithm which iteratively: (a) identifies a violating can-
didate for which the score exceeds T ; (b) finds the voter
who awards him the maximal number of points; and (c) per-
forms a demotion operation, decreasing the score given by
this voter to the candidate to 0. The algorithm for BTNCRV
is illustrated as Algorithm 1.

After finding the smallest k for which
BTNCRV(Ē, k, σ(p) + k) succeeds, we take the re-
sulting demotion strategy and apply it on the original Borda
instance. Unfortunately, these operations now do have their
consequences, and candidate scores might increase as a
result of the demotion operations. However, we will prove
that not by too much. In any case, p might be losing. We
address this by repeating the following procedure: we find
a voter who currently has p at any position but the top one,
and then swap p and the candidate ranked above him by
this voter. We shall repeat this step until p is winning. The
overall algorithm is described in Algorithm 2.

Lemma 7. Algorithm 1 finds a solution to bounded TNC
under range voting (BTNCRV).

Proof. For RV, a demotion of a candidate by a voter does
not have any consequences on other voters and candidates.
Therefore, a simple greedy procedure of repeatedly identi-
fying and demoting a violating candidate is sufficient.

Algorithm 2: TNC for Borda
1 V̄ = (v̄`)` where v̄` = { (c, αv`(c)) | c ∈ C \ {p} }
2 Let Ē = (C \ {p}, V̄ )
3 Let k′ be the minimum k for which

BTNCRV(Ē, k, σ(p) + k) does not fail
4 Q← BTNCRV(Ē, k′, σ(p) + k′)
5 foreach (`, c, δ) ∈ Q do
6 Demote c in v` by δ positions.
7 while p is not winning do
8 Let ` ∈ N, c ∈ C \ {p} such that c is ranked

immediately before p in v`.
9 Demote c in v` by one position.

10 return the sequence of demotion operations
performed.

Lemma 8. Let E be a preferential election under Borda,
and let Ē be its corresponding election under RV, as con-
structed in Line 2 of Algorithm 2. Then:

• A sequence of operations Q for range voting can be ap-
plied on the Borda instance, only that in each operation
(`, c, δ) ∈ Q, δ now pertains to the number of positions c
is demoted by in v` (for RV δ was the decrease in points).

• A sequence of operations Q applicable on E can be mod-
ified into a sequence of operations f(Q) applicable on Ē
such that the final score of each candidate in the RV set-
ting will be at most his final score in the Borda setting.

Proof. For the first item, assume that we apply each op-
eration in Q sequentially, in parallel on the two elections.
In Borda, an operation (`, c, δ) might have side effects on
other candidates, however the value v`(c′) for any candi-
date c′ 6= c can only decrease. As such, if a later applied
operation is of the type (`, c′, δ′), this means that the score
currently awarded to c′ by ` in the Borda instance is at least
δ′, and thus c′’s rank is at most m − δ′, meaning that the
operation can be safely applied.

For the second item, simply replace each operation
(`, c, δ) ∈ Q with an operation (`, c, δ′) where δ′ is the score
currently awarded to c by ` in the RV instance (so that fol-
lowing the operation, the score awarded to c by ` is 0).

Let k? be the optimal number of demotion operations re-
quired to make p win, and let k′ be the value from Line 3 of
Algorithm 2.

Lemma 9. BTNCRV(Ē, k?, σ(p) + k?) does not fail. In
particular, this implies that k′ ≤ k?.

Proof. For TNC under Borda, if p can be made to win by
at most k? demotion operations, then p’s final score s(p) is
at most σ(p) + k?. In addition, following these operations,
each other candidate score is at most s(p) ≤ σ(p) + k?.
Let Q? be the demotion strategy applied by an optimal strat-
egy on E. Assume we apply the strategy f(Q?) as defined
by Lemma 8 on Ē. Since here when we demote a candi-
date, other candidate scores do not increase, each candi-
date’s final score is at most his corresponding Borda final
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score. As such, the sequence f(Q?) is a valid solution for
BTNCRV(Ē, k?, σ(p) + k?).

Lemma 10. The loop in Line 7 of Algorithm 2 will run at
most 2k′ times.

Proof. Let s′(c) be the score of a candidate c right before
Line 7 of Algorithm 2. The demotion strategyQ found in Al-
gorithm 2 guarantees that under RV, each candidate’s score
will be at most σ(p)+k′. In contrast, when applyingQ on the
original Borda instance E (which is possible by Lemma 8),
each candidate might be awarded one additional point for
each operation. As π(Q) ≤ k′, this means that the score of
each candidate might increase by additional k′ points com-
pared to their final RV score. Thus s′(c) ≤ σ(p) + 2k′ for
each c ∈ C \ {p}. As s′(p) ≥ σ(p), at most 2k′ swaps
promoting p are enough to make him win.

Theorem 6. Algorithm 2 is a 3-approximation algorithm for
TNC under Borda.

Proof. As k′ ≤ k? (by Lemma 9), it is sufficient to show
that Algorithm 2 performs at most 3k′ operations. To see
that, notice that π(Q) ≤ k′ and that the loop of Line 7 of
Algorithm 2 runs at most 2k′ times (by Lemma 10), where
each iteration involves a single demotion operation.

Inapproximability Results
What if the price of a demotion is a function of both the
bribed voter and the demoted candidate? Indeed, assigning
prices for different demographic-candidate pairs is consis-
tent with the observation that the effect of negative cam-
paigns changes with different demographic and targeted
candidate combinations. Some demographics were shown
to be more tolerant to negativity in campaigns, while others
might pose a risk for a backlash against the favored candi-
date. In addition, the effectiveness of such attacks was shown
to be dependent on candidate properties, such as ethnicity,
gender, and whether the candidate is incumbent or challeng-
ing (Fridkin and Kenney 2011).

Interestingly enough, when the price function is of type
π̂ : N × C → R+

0 (π̂(`, c) is the price for demoting c in v`),
TNC for Borda is hard to approximate within some ratio:

Theorem 7. With the price function π̂ : N × C → R+
0 , for

every constant ε > 0, TNC for Borda cannot be approxi-
mated within (1− ε) ln(m/2− 1) in polynomial time unless
P = NP.

Proof. Let f be the reduction from SET COVER described
in the proof of Theorem 5, adjusted such that in f(I, k),
for each voter ` with a vote in {v1

i }m̄i=1, π(`, a) = 1 and
π(`, c) = k ln(m/2− 1) for every c 6= a. In addition, every
voter ` with vote in V \ {v1

i }m̄i=1, π(`, c) = k ln(m/2 − 1)
for every c ∈ C.

Assume by contradiction that there exists a polynomial-
time (1 − ε) ln(m/2 − 1)-approximation algorithm A for
TNC with prices π̂. Assume that we know what is the opti-
mal set cover size k. In this case, we know that a strategy of
price k exists, by an argument very similar to the complete-
ness argument in Theorem 5.

In this case, A(f(I, k)) will find a strategy of price of at
most (1− ε)k ln(m/2− 1) in polynomial time.

Now focus on the strategy returned byA(f(I, k)). By the
overall price paid being at most (1 − ε)k ln(m/2 − 1), we
know that only voters having votes of type v1

i were bribed,
and that in each such operation, a was demoted. We can
assume w.l.o.g. that in each operation, a was demoted to
be ranked last, otherwise we can modify the operation so
that this will be the case; although this modification might
award a point to some additional candidates, since it will
also award an additional point to p, then diff(p, c) for any
c ∈ C can only maintain its value or increase. Specifically,
after applying these modifications p is still winning and no
price increase was made.

We again reach a point where for all bribed voters a
was pushed down n̄ + 2 positions. Now observe only
the bribed voters having votes of type v1

i . Since for each
u ∈ U it held before that diff(p, u) = −1, but now
diff(p, u) ≥ 0, we bribed at least one voter having a vote
of type v1

i such that u ∈ Si, which allowed diff(p, u) to
increase by a point. Therefore, the collection S ′′ = {Si ∈
S | v1

i is bribed in A(f(I, k)) } constitutes a valid cover and
|S ′′| ≤ (1− ε)k ln(m/2− 1) = (1− ε)k ln n̄.

We can now relax the assumption that we know what is
the optimal set cover size k, by considering the following
procedure for SET COVER: for k = 1, . . . , n̄, we compute
f(I, k) and apply A on the result. If the returned strategy
involved price at most (1−ε)k ln(m/2−1), halt and extract
the set cover from the bribery strategy as described above.
Notice that this procedure will have to halt and succeed at
the iteration where k is indeed the optimal set cover size (if
not even before). The procedure we have just described is
a (1 − ε) ln n̄-approximation to SET COVER. However, this
contradicts the inapproximability of SET COVER within a
(1 − ε) ln n̄ factor, unless P = NP, as shown by Dinur and
Steurer (2014).

Destructive Variants
For the destructive variant DTNC our goal it to make the
currently leading candidate d ∈ C lose (by making sure
he will not be in the winner set). To this end we introduce
a polynomial algorithm for scoring rules, applicable even
when voters have prices π(`) for each voter `. We assume
that each score value of the scoring rule is representable as
an O(log (nm))-bit integer (notice that the ‘natural’ input
size is Θ(nm)). This is a very natural assumption: it is triv-
ially true for Plurality and Veto, t-approval, Borda and trun-
cated variants thereof. Even Dowdall, for which αj = 1/j,
can be modified to conform to this assumption, by noticing
that the smallest difference between two score values in α
is at least m−2. Thus, by rounding each score to the nearest
multiple of e.g., 1/(2nm2), a candidate’s final score would
change by at most 1/(2m2) and the order induced by can-
didates’ final scores will be unchanged. At this point, the
modified scores can be normalized to becomeO(log (nm))-
bit integers. A scoring rule not satisfying our assumption is,
for example, exponential-Borda (Put and Faliszewski 2016),
for which α = (2m−1, 2m−2, . . . , 21, 20).

5775



It is sufficient that one candidate beats d, therefore, we
can loop over each candidate c and find the minimal-cost
strategy making c beat d. Assume we do so, and let c be such
candidate. Let Q? be the optimal strategy (unknown to us)
making c beat d. We can split Q? to two sets of operations,
A and B, such that A are all operations demoting d and B
are all operation demoting a candidate other than d.

Lemma 11. W.l.o.g., all the following hold for Q?:

1. All operations in A were performed before all operations
in B.

2. All operations in A demoted d to be ranked last.
3. All operations inB involved demoting a candidate ranked

immediately before c to be immediately after c.

Let ` be a voter bribed during the execution of B, let C ′ be
the candidates demoted by ` within B, and let t be the point
in time following the operations in A and before those of B.

4. At time t, c �` d.
5. At time t, the candidates in C ′ were ranked consecutively

immediately before c.

Proof. The first three claims are straightforward. For the
fourth claim, assume that following the operations in A it
holds that d �` c. ` was not bribed in A because d is above
c. Let c′ be the voter demoted in this operation. Then we
can demote d instead of c′ and have an even greater effect
on diff(d, c). However, in that case this operation can be
placed as part of A. The fifth claim follows from the fact
that if we demote j candidates ranked before c, the choice
of which candidates is unimportant; in any case c will gain
αv`(c)−j − αv`(c) points.

Let s be the change in diff(d, c) as a result of applying A,
and notice that 0 ≤ s ≤ diff(d, c) + α1 (in the edge-case
where B is empty, it is possible that the final operation in A
makes the change exceed diff(d, c)). We do not know what
A is, but we can exhaustively try all possibly values for s.
Given the correct guess for s, we can then find A using the
following reduction to the 0-1-Knapsack problem.

For each voter ` we create an item ` with a weight
w(`) = π(`) and a value v(`) = (αv`(d)−αm)+1[d �` c] ·
(αv`(c)−1−αv`(c)). This value represents the demotion of d
to be last, such that d loses (αv`(d) − αm) points and c pos-
sibly gains (αv`(c)−1 − αv`(c)) points (if d was previously
above him).

Our goal is to find the minimal total weight of items
needed in order to obtain a value of at least s. Fortunately,
Knapsack has an algorithm which is pseudo-polynomial in
the values (Cormen et al. 2009);3 as our values can be rep-
resented as integers bounded by a polynomial in the input
size, this Knapsack instance is polynomial-time solvable.

Once we have found A for a guess of s, before we con-
tinue to finding B, we will require another version of the
Knapsack problem: let the sets X1, . . . , Xn be a partition
of a set of items, where each X` = {x`,1, . . . , x`,|X`|}.
Each such item has a weight w(x`,j) ≥ 0 and a value

3There is also an algorithm pseudo-polynomial in the weights.

v(x`,j) ≥ 0. Given a positive value L the goal is to con-
struct a set of items S that minimizes

∑
x`,j∈S w(x`,j) while∑

x`,j∈S v(x`,j) ≥ L, which also satisfies the constraint that
|S ∩X`| ∈ {0, 1} for each `. This problem is a specific case
of GROUP FAIRNESS KNAPSACK (GFK), studied by Patel,
Khan, and Louis (2020). For completeness, we provide an
algorithm for our case in the following.

Lemma 12. GFK can be solved in time polynomial in the
input size and pseudo-polynomial in L.

Proof. Let f(k, i) represent the minimal weight needed in
order to have a value of at least k when only choosing
from X1, . . . , Xi. We can compute f(L, n) (our objective)
with dynamic programming using the following recursion:
f(k, i) = min0≤j≤|Xi|(f(k − v(xi,j), i − 1) + w(xi,j))
where xi,0 is a placeholder item having zero weight and
value representing not taking any item from the set. The
edge cases are as follows: f(0, 0) = 0; for every k > 0,
f(k, 0) =∞; and for each k < 0, i ∈ [n], f(k, i) = 0.

We can now find B (or an equivalent sequence of opera-
tions) by a reduction to GFK: For every voter ` create a set
X` containing v`(c) − 1 items x`,1, . . . , x`,v`(c)−1, where
for every j ∈ [v`(c) − 1] we define w(x`,j) = j · π(`) and
v(x`,j) = αv`(c)−j −αv`(c); the item x`,j represents the op-
tion of making c gain αv`(c)−j − αv`(c) points by demoting
the j candidates which are currently consecutively ranked
immediately before c. We choose L = diff(d, c) − s + 1
(i.e., L is the difference between d and c after the operations
in A were executed, plus an additional point to make sure
that d is not in the winner set).

Theorem 8. For every scoring rule, in which each score can
be represented as an O(log (nm))-bit integer, the DTNC
problem with prices which are a function of the voters can
be solved in polynomial time.

Proof. Follows from the above discussion.

Conclusions
The contribution of this work is twofold: first, we studied
the de facto standard of political campaigns: targeted nega-
tive campaigning. While being so widespread—as far as we
know—it was not studied computationally. Second, our re-
sults show that it is a sweet-spot between SHIFT BRIBERY—
which models positive campaigns—and SWAP BRIBERY
which we feel is too granular: it models bribery and cam-
paigning in a ‘local’, swap-oriented level, instead of the
more global effect or our demotion operations. As such our
results for both the unpriced and priced variants are some-
where between the (1 + ε) SHIFT BRIBERY approximation
and the general inapproximability of SWAP BRIBERY for
many voting rules.

We mention some directions for future research: (a) to
better understand the complexity of t-approval-TNC when
t = 2, or when t is not fixed, and of Borda with a price of the
form π : N → R+

0 ; (b) to research other voting rules that are
not necessary scoring rules, such as Copeland and Maximin.
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Dorn, B.; and Krüger, D. 2016. On the Hardness of Bribery
Variants in Voting with CP-Nets. Annals of Mathematics
and Artificial Intelligence 77(3-4): 251–279.
Edmonds, J.; and Karp, R. M. 1972. Theoretical Improve-
ments in Algorithmic Efficiency for Network Flow Prob-
lems. Journal of the ACM (JACM) 19(2): 248–264.
Elkind, E.; and Faliszewski, P. 2010. Approximation Algo-
rithms for Campaign Management. In Proceedings of Inter-
net and Network Economics - 6th International Workshop,

volume 6484 of Lecture Notes in Computer Science, 473–
482. Springer.

Elkind, E.; Faliszewski, P.; and Slinko, A. M. 2009. Swap
Bribery. In Proceedings of Algorithmic Game Theory, 2nd
International Symposium, volume 5814 of Lecture Notes in
Computer Science, 299–310. Springer.

Faliszewski, P. 2008. Nonuniform Bribery. In Proceedings
of the 7th International Conference on Autonomous Agents
and Multiagent Systems, 1569–1572. IFAAMAS.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. A. 2006. The Complexity of Bribery in Elections. In
Proceedings of the 21st National Conference on Artificial
Intelligence, 641–646. AAAI Press.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra,
L. A. 2009. How Hard Is Bribery in Elections? J. Artif.
Intell. Res. 35: 485–532.

Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L. A.;
and Rothe, J. 2009. Llull and Copeland Voting Computa-
tionally Resist Bribery and Constructive Control. J. Artif.
Intell. Res. 35: 275–341.

Faliszewski, P.; Manurangsi, P.; and Sornat, K. 2019. Ap-
proximation and Hardness of Shift-Bribery. In Proceed-
ings of the 33rd AAAI Conference on Artificial Intelligence,
1901–1908. AAAI Press.

Faliszewski, P.; and Rothe, J. 2016. Control and Bribery in
Voting. In Handbook of Computational Social Choice, 146–
168. Cambridge University Press.

Franklin Fowler, E.; and Ridout, T. N. 2014. Political Adver-
tising in 2014: The Year of the Outside Group. The Forum
12(4): 663–684.

Fridkin, K. L.; and Kenney, P. 2011. Variability in Citizens’
Reactions to Different Types of Negative Campaigns. Amer-
ican Journal of Political Science 55(2): 307–325.

Garey, M. R.; and Johnson, D. S. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman.

Haselmayer, M. 2019. Negative Campaigning and its Con-
sequences: a Review and a Look Ahead. French Politics
1–18.

Iyer, G.; Soberman, D.; and Villas-Boas, J. M. 2005. The
Targeting of Advertising. Marketing Science 24(3): 461–
476.

Johnson, J. P. 2013. Targeted Advertising and Advertising
Avoidance. The RAND Journal of Economics 44(1): 128–
144.

Kaczmarczyk, A.; and Faliszewski, P. 2019. Algorithms for
Destructive Shift Bribery. Autonomous Agents and Multi-
Agent Systems 33: 275–297.

Keller, O.; Hassidim, A.; and Hazon, N. 2019. Approximat-
ing Weighted and Priced Bribery in Scoring Rules. J. Artif.
Intell. Res. 66: 1057–1098.

Magrino, T. R.; Rivest, R. L.; and Shen, E. 2011. Comput-
ing the Margin of Victory in IRV Elections. In Proceedings

5777



of the 2011 Electronic Voting Technology Workshop / Work-
shop on Trustworthy Elections. USENIX Association.
Mattei, N.; Pini, M. S.; Venable, K. B.; and Rossi, F. 2012.
Bribery in Voting over Combinatorial Domains is Easy.
In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, 1407–1408.
IFAAMAS.
Mattes, K.; and Redlawsk, D. P. 2014. The Positive Case for
Negative Campaigning. University of Chicago Press.
Maushagen, C.; Neveling, M.; Rothe, J.; and Selker, A.
2018. Complexity of Shift Bribery in Iterative Elections.
In Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems, 1567–1575.
IFAAMAS / ACM.
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