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Abstract

We propose a model of winners allocation. In this model, we
are given are two elections where the sets of candidates may
intersect. The goal is to find two disjoint winning commit-
tees from respectively the two elections that are subjected to
certain reasonable restrictions. For our model, we first pro-
pose several desirable properties. Then, we investigate the
implication relationships among these properties. Finally, we
study the complexity of computing winners allocations pro-
viding these properties. For hardness results, we also study
some fixed-parameter algorithms.

Introduction
Multiwinner voting has attracted a considerable amount of
attention of AI community very recently, due to its signif-
icant and wide applications in many areas. Standard multi-
winner voting aims to select exactly k winning candidates
based on the preferences of voters over candidates, where k
is a given integer. In this paper, we propose a model of win-
ners allocation. In particular, in our model there are two
elections (C1, V1) and (C2, V2), where C1 and C2 are two
sets of candidates, and V1 and V2 are two multisets of votes
over C1 and C2 respectively. Given two nonnegative inte-
gers k1 and k2, our model aims to select (allocate) two dis-
joint subsets w1 ⊆ C1 and w2 ⊆ C2 of cardinalities k1
and k2 respectively and of high quality, based on the votes
in V1 and V2. The quality of the allocated candidates are
measured via certain utility functions. For simplicity, we
study only approval-based elections.

To see the applicability of our model, let us first consider
two special cases. When C1 ∩ C2 = ∅, our model is equiv-
alent to performing two independent standard multiwinner
voting. Additionally, when one of k1 and k2 is 0, our model
is equivalent to performing one standard multiwinner vot-
ing. Besides these two special cases, in general our model is
relevant for several real-world applications.
Awards (grants) assignment. Assume that a community is

going to allocate two types of awards/grants to a number
of applicants (nominees), where each type of awards is
given to a respectively fixed number of applicants. Each
applicant may be eligible for one or two types of awards,
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which results in two sets of candidates. However, for some
kind of fairness, every applicant is only allowed to receive
at most one award, corresponding to that the two selected
winning committees are disjoint in our model. As each
type of awards has its own feature, the organizer may in-
vite two committees to valuate the applicants.

Sister conferences organization. Suppose two sister con-
ferences are going to be held soon and they have the same
submission deadlines. As the program committees of the
conferences share many common scholars, they want to
organize a cooperative review procedure to reduce their
workload. In this case, a meaningful review procedure
would be as follows. When submitting a paper, the au-
thors are free to decide whether they are only interested
in one particular conference or they are indifferent of the
two conferences. Therefore, submitted papers are classi-
fied into two sets C1 and C2 which may intersect. How-
ever, the copyright policy allows each paper to be pub-
lished in at most one of the conference proceedings.

Committee evaluations. Criticisms over the peer review
processes of many AI conferences have been posted a
number of times recently (see, e.g., (Brezis and Birukou
2020)), mainly triggered by the existence of high-quality
papers being rejected. It is speculated that a paper may re-
ceive different results when evaluated by two independent
committee members. To test this speculation, NIPS 2014
organizers select two independent program committees to
handle 10 percent of the submissions. The result more or
less confirms the speculation. Such a review procedure is
related to a special case of our model where C1 = C2

(each Ci, i ∈ [2], consists of the 10% of the submissions).

For our model, we study winners allocations that pro-
vide the maximum utilitarian/egalitarian/Nash social wel-
fare (USW/ESW/NSW) or some envy-freeness properties,
and investigate their implication relationships. In addition,
we study the complexity of calculating a winners allo-
cation belonging to these properties. Some of our results
are quite interesting. For instance, we prove that com-
puting a (k1, k2)-winners allocation of maximum USW is
polynomial-time solvable as long as the utility functions
adopted by the two voting communities V1 and V2 are
(weakly) additive. The complexity is consistent with the
polynomial-time solvability of computing winning com-
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mittees with respect to additive functions. However, we
show that the complexity of computing a winners alloca-
tion with the maximum ESW/NSW can be significantly dif-
ferent: there are both natural additive functions which lead
to polynomial-time solvability results and natural additive
functions which lead to NP-hardness results. It is also no-
table that the hardness results hold even when the given elec-
tions are both voters interval (VI) and candidates inter-
val (CI). Recall that an election is VI (CI) if the candidates
(votes) can be linearly ordered so that each vote approves
only consecutive candidates (each candidate is approved
in consecutive votes). It is known that when restricted to
only one of these two domains, many NP-hard problems be-
come already polynomial-time solvable (Brandt et al. 2015;
Elkind and Lackner 2015; Liu and Guo 2016; Peters 2018b;
Faliszewski et al. 2011).

Related Works
As an extension of approval-based multiwinner voting
(ABMV), our study is clearly related to the large body of lit-
erature on ABMV (see, e.g., (Aziz et al. 2018; Aziz and Lee
2020; Cygan et al. 2017; Kocot et al. 2019; Peters 2018a;
Yang 2019, 2020)). Recently, extensions of standard ABMV
have been proposed in the literature, including for instance
ABMV with a variable number of winners (Kilgour 2016;
Faliszewski, Slinko, and Talmon 2020), ABMV with labeled
candidates (Bredereck et al. 2018; Celis, Huang, and Vish-
noi 2018), ABMV with graph structured candidate set (Yang
and Wang 2018), etc. However, to the best of our knowledge,
our extension of ABMV has not been considered in the lit-
erature heretofore. It is also worth mentioning that a model
which captures parallel single-winner elections with a com-
mon set of candidates has been studied recently (Boehmer
et al. 2020). Particularly, this model aims to identify a high-
quality allocation of a set of candidates to a number of po-
sitions so that every position receives exactly one candidate
and every candidate is allocated to at most one position.

Our model is also related to the model of allocating in-
divisible goods. In this model, a set of indivisible goods
are supposed to be allocated to several agents so that every
good is allocated to exactly one agent and all goods are allo-
cated. Each agent has a utility function to valuate the goods
allocated to her. The goal is to compute an allocation that
achieves some optimization objectives or fulfills some desir-
able properties. We refer to Chapters 12–13 of (Brandt et al.
2016) for a comprehensive survey on this topic.

Preliminaries
We assume the reader is familiar with the basic notions of
(parameterized) complexity such as NP-hardness and fixed-
parameter tractability (FPT). For readers without these back-
ground, we refer to (Tovey 2002; Downey 2012). For an in-
teger i, let [i] = {j ∈ N : 1 ≤ j ≤ i}.

Multiwinner voting. An approval-based election is a tu-
ple (C, V ) where C is a set of candidates and V is a mul-
tiset of votes cast by a set of voters. Each vote v ∈ V is
defined as a subset of C consisting of all the candidates ap-
proved by the corresponding voter. A committee is a subset

of candidates, and a k-committee is a committee of cardi-
nality k. A k-committee selection rule (k-CSR) is a function
that maps each election (C, V ) such that |C| ≥ k to a class
of k-committees of C, called the winning k-committees. We
focus on k-CSRs each of which determines the k-winning
committees via a particular utility function. Precisely, a util-
ity function maps each tuple (w, V ) of a committee w ⊆ C
and a multiset V of votes over C to a nonnegative rational
number, which is the utility of V derived from w. We also
call f(w, V ) the f score of w from V . The rule selects all k-
committees that yield the maximum possible utility among
all k-committees. For notational brevity, throughout this pa-
per we write x for a singleton {x}. For instance, f(c, V )
is exactly f({c}, V ). Table 1 summarizes utility functions
widely studied in the literature. In this paper, we consider
only utility functions f such that f(∅, V ) = f(w, ∅) = 0,
which is the case for all utility functions in Table 1.

utility f(w, V )

AV
∑

v∈V |v ∩ w|
SAV

∑
v∈V,v 6=∅

|v∩w|
|v|

CSAV
∑

v∈V
|v∩w|
|w|

MSAV
∑

v∈V,v 6=∅
|v∩w|

min{|v|,|w|}

PAV
∑

v∈V,v∩w 6=∅
∑|v∩w|

i=1
1
i

WAV
∑

v∈V,v∩w 6=∅
∑|v∩w|

i=1
1

2i−1
CCAV |{v ∈ V : v ∩ w 6= ∅}|

Table 1: Where a value is not well-defined, it is 0.

A utility function f is additive if for every nonempty
w ⊆ C, it holds that f(w, V ) =

∑
c∈w f(c, V ). More-

over, f is weakly additive if for every integer k there is a
utility function gk such that f(w, V ) =

∑
c∈w gk(c, V ) for

every k-committee w ⊆ C. We call gk an additive realiza-
tion of f of order k. Apparently, additive functions must be
weakly additive. It is fairly easy to check that AV and SAV
are additive, but other functions given in Table 1 are not.
However, CSAV and MSAV are weakly additive.

We assume that all utility functions are given as oracles.
In addition, for weakly additive utility functions, we assume
that their additive realizations of all possible orders are avail-
able when needed.

Winners allocation. Let C be a set of candidates. In ad-
dition, let C1 ⊆ C and C2 ⊆ C be two subsets of C such
that C1 ∪ C2 = C, and let V1 and V2 be two multisets of
votes over C1 and C2, respectively. Let E1 = (C1, V1) and
E2 = (C2, V2). We call (E1, E2) a double-election, and call
each of V1 and V2 a voting community. For two nonnega-
tive integers k1 and k2 such that k1 ≤ |C1|, k2 ≤ |C2|,
and k1 + k2 ≤ |C1 ∪ C2|, a (k1, k2)-winners allocation of
(E1, E2) is a tuple (w1, w2) such that

• w1 ⊆ C1 and w2 ⊆ C2;

• w1 ∩ w2 = ∅; and

• |w1| = k1 and |w2| = k2.
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In other words, w1 ⊆ C1 and w2 ⊆ C2 are the subsets
of candidates allocated to the two communities V1 and V2
respectively so that no candidate is allocated to two subsets.
As in the standard setting, we assume that each Vi, i ∈ [2],
uses a utility function fi to valuate the committees. The goal
of the model is to find a winners allocation that provides
certain desirable properties with respect to f1 and f2. These
properties are defined in the next section.

Social Welfare and Envy-freeness
Needless to say, not all winners allocations of a double
election are equally important. We start our exploration by
studying numerous notions and properties which are helpful
for us to distinguish important winners allocations from less
important ones. Here, each property is defined as a subset of
winners allocations. We first give the definitions of the prop-
erties, and then we study their implication relationships.

Properties of Winners Allocations
First, we study three notions of social welfare. In the follow-
ing notions, let (w1, w2) be a (k1, k2)-winners allocation of
a double-election E = (E1 = (C1, V1), E2 = (C2, V2)).
Let f1 and f2 be two utility functions.

Definition 1. Three types of social welfare with respect to
(f1, f2) are defined as follows.

• Utilitarian social welfare (USW):

f1(w1, V1) + f2(w2, V2).

• Egalitarian social welfare (ESW):

min{f1(w1, V1), f2(w2, V2)}.

• Nash social welfare (NSW): (f1(w1, V1) · f2(w2, V2))
1
2 .

For each X ∈ {USW,ESW,NSW}, we use
XO(E , (k1, k2), (f1, f2)) to denote the property con-
sisting of all optimal (k1, k2)-winners allocations of the
double election E with respect to the utility functions f1
and f2. (In the notions, “O” stands for “optimal”). By opti-
mal, we meant a (k1, k2)-winners allocation of E with the
maximum possible value of X among all (k1, k2)-winners
allocations. It should be pointed out that the above social
welfare have been also applied in other settings such as
resource allocations (see, e.g., (Nguyen et al. 2014)). Each
of the above notions has its own merits and which one is
the best to apply tightly depends on the concrete settings.
We refer to (Nguyen, Roos, and Rothe 2013) for a nice
discussion on this issue.

Next, we study three notions of envy-freeness aimed to
identify winners allocations such that each of the two voting
communities is happier with its own allocated winners than
with those allocated to the other community. In particular,
the first notion states that it is impossible to make any of the
voting communities better off by replacing some winners al-
located to the community with the same number of winners
allocated to the other community.

Definition 2 (envy-freeness (EF)). For each i ∈ [2], we say
that Vi envyw3−i with respect to fi if there arew ⊆ (w3−i∩

Ci) and w′ ⊆ wi such that |w| = |w′| and fi((wi \ w′) ∪
w, Vi) > fi(wi, Vi).

The allocation (w1, w2) is EF with respect to (f1, f2) if
the community Vi does not envy w3−i for both i ∈ [2].

The above notion concerns only whether one of V1 and V2
can be made better off by replacing some winners but ig-
nores whether after the replacement the other community
is guaranteed to have a committee not worse than the previ-
ously allocated one. This motivates us to study the protective
envy-freeness (PEF) defined as follows.

Definition 3 (PEF). For each i ∈ [2], we say that Vi pro-
tectively envy w3−i with respect to (f1, f2) if there are
w ⊆ (w3−i ∩ Ci), w′ ⊆ wi, and w∗ ⊆ ((C3−i \ (wi ∪
w3−i)) ∪ (w′ ∩ C3−i)) such that

(1) |w| = |w′| = |w∗|;
(2) fi((wi \ w′) ∪ w, Vi) > fi(wi, Vi); and
(3) the lose of the community V3−i after removing w can be

compensated by the addition of w∗, i.e.,

f3−i((w3−i \ w) ∪ w∗, V3−i) ≥ f3−i(w3−i, V3−i).

The allocation (w1, w2) is PEF with respect to (f1, f2)
if Vi does not protectively envy w3−i for both i ∈ [2].

The next notion, named replacement envy-freeness
(REF), is stronger than the above one in the sense that re-
placements only take place inside w1 ∪ w2.

Definition 4 (REF). We sat that V1 and V2 replacement envy
each other with respect to (f1, f2) if there are w′1 ⊆ (w1 ∩
C2) and w′2 ⊆ (w2 ∩ C1) such that

(1) |w′1| = |w′2|;
(2) f1((w1 \ w′1) ∪ w′2, V1) ≥ f1(w1, V1);
(3) f2((w2 \ w′2) ∪ w′1, V2) ≥ f2(w2, V2); and
(4) at least one of the inequalities in (2) and (3) strictly holds.

The allocation (w1, w2) is REF with respect to (f1, f2)
if V1 and V2 do not replacement envy each other.

Finally, we study the notion of Pareto optimality. A
(k1, k2)-winners allocation is Pareto optimal (PO) if there
are no other (k1, k2)-winners allocations which strictly im-
prove the utility of one community without hurting the other.

Definition 5 (PO). The (k1, k2)-winners allocation
(w1, w2) is PO if there does not exist a differ-
ent (k1, k2)-winners allocation (w′1, w

′
2) such that

f1(w
′
1, V1) ≥ f1(w1, V1), f2(w′2, V2) ≥ f2(w2, V2),

and at least one of the two inequalities holds strictly.

For a notion X being one of EF, PEF, REF, and PO,
let X(E , (k1, k2), (f1, f2)) be the property consisting of all
(k1, k2)-winners allocations of the double election E that
are X with respect to (f1, f2).

Implication Relationships
Now we study the implication relationships among the no-
tions introduced above. We say that a property (strictly) im-
plies another if for every double election E , every two inte-
gers k1 and k2, and every two utility functions f1 and f2,
the former with the arguments E , (k1, k2), and (f1, f2) is a
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Figure 1: An arc from a property X to another property Y
means that X implies Y.

(proper) subset of the latter with the same arguments. Two
properties are independent if neither implies the other.

The following theorem offers the implication relation-
ships among the properties. The relationships hold for all
utility functions and, moreover, for many natural utility
functions the implication relationships are strict. In the gen-
eral case, two different utility functions value k-committees
differently. However, when every voter approves exactly one
candidate and we want to select only one winner, almost
all natural utility functions degenerate to the AV function.
Let FAV be the set of all such utility functions. Precisely,
a utility function f belongs to FAV if for every election
(C, V ) where every vote in V is a singleton, it holds that
f(c, V ) = AV(c, V ) =

∑
v∈V |v ∩ {c}| for every c ∈ C.

Clearly, all utility functions listed in Table 1 belong to FAV.

Theorem 1. The implication relationships among the prop-
erties USWO, ESWO, NSWO, EF, PEF, REF, and PO shown
in Figure 1 hold. Moreover, if the two utility functions in the
properties belong to FAV, the relationships are complete, in
the sense that if it is not shown in the figure that a property X
implies another property Y, then X does not imply Y.

One may wonder why we state the completeness only
for utility functions in FAV. In fact, if this is not the
case, certain implications won’t be strict. Consider for in-
stance the AV function and a constant function f such that
f(w, V ) = 1 for all possible w and V . Then, it is easy to see
that, with respect to these two utility functions, PO implies
also USWO, ESWO, and NSWO.

It is easy to find a double election where EF winners al-
locations do not exist (e.g., C1 = C2 = {a, b}, all votes
in V1 and V2 approve only a but not b, and k1 = k2 = 1).
However, as there are always winners allocations with the
maximum USW, Theorem 1 gives us the following result.

Corollary 1. Every double election admits nonempty PEF,
REF, and PO (k1, k2)-winners allocations.

Complexity of Winners Allocations
Given the desirable properties defined in the previous sec-
tion, a natural question is then how efficiently can we com-
pute a winners allocation that provides these properties. This
is the focus of this section. In particular, we study the com-
plexity of the following problem.

Let X ∈ {USWO,ESWO,NSWO,EF, PEF,REF, PO},
and let f1 and f2 be two utility functions.

X WINNERS ALLOCATION W.R.T. (f1, f2) (X-WA-(f1, f2))

Given: A double election E = ((C1, V1), (C2, V2)) and
two nonnegative integers k1, k2 such that k1 ≤
|C1|, k2 ≤ |C2|, and k1 + k2 ≤ |C1 ∪ C2|.

Task: If X(E , (k1, k2), (f1, f2)) 6= ∅, return a (k1, k2)-
winners allocation from X(E , (k1, k2), (f1, f2));
otherwise, return (∅, ∅).

As shown in the previous section, except for X = EF, it
holds that X(E , (k1, k2), (f1, f2)) 6= ∅.

Winners Allocations with Maximum Social Welfare
For a utility function f , the COMMITTEE SELECTION prob-
lem is to compute a k-committee w ⊆ C such that
f(w, V ) ≥ f(w′, V ) for all k-committees w′ ⊆ C, where C
is a given set of candidates, k ≤ |C| is a given nonneg-
ative integer, and V is a given multiset of votes over C.
COMMITTEE SELECTION is a special case of our prob-
lem USWO-WA-(f1, f2) where one of k1 and k2 is zero.
It is known that if f is additive, then COMMITTEE SE-
LECTION is polynomial-time solvable (see, e.g., (Yang and
Wang 2019)): one first ranks the candidates according to a
nonincreasing order of their f scores, from the largest to the
smallest, and then the first k candidates constitute a solution.
It is easy to see that this algorithm is extendable to weakly
additive functions. In the following, we further extend the
result to USWO-WA-(f1, f2).

Theorem 2. If both f1 and f2 are weakly additive, then
USWO-WA-(f1, f2) is polynomial-time solvable.

Now we consider winners allocations that provide the
maximum egalitarian/Nash social welfare w.r.t. utility func-
tions that are weakly additive. Somewhat interestingly, in
this setting the complexity varies. We first show that if one of
the utility functions is AV or CSAV, and the other is weakly
additive, we still have polynomial-time solvability results.
To this end, we first show the polynomial-time solvability of
an intermediate problem defined below.

WINNERS COMPUTATION FOR f1 AND f2 (WC-(f1, f2))

Given: A double election E = ((C1, V1), (C2, V2)), two
nonnegative integers k1 and k2 such that k1 ≤ |C1|,
k2 ≤ |C2|, and k1 + k2 ≤ |C1 ∪ C2|, and one
nonnegative rational number r1.

Task: Return a (k1, k2)-winners allocation (w1, w2) of E
with the maximum value of f2(w2, V2) under the
restriction that f1(w1, V1) = r1, or return (∅, ∅) if
such a winners allocation does not exist.

We also study a decision version of WC-(f1, f2), where
we have an additional rational number r2 in the input, and
the question is whether E admits a (k1, k2)-winners alloca-
tion (w1, w2) such that f1(w1, V1) = r1 and f2(w2, V2) ≥
r2. We denote this problem by WD-(f1, f2).

Theorem 3. Let f be a weakly additive utility function.
Then, WC-(AV, f) is polynomial-time solvable.

Proof (sketch). Let I = ((E1, E2), k1, k2, r) be an instance
of WC-(AV, f) where E1 = (C1, V1) and E2 = (C2, V2).
For ease of exposition, let f1 be the AV function and let f2
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be an additive realization of f of order k2. We assume that
r ≤ |V1| · |C1| (otherwise we directly return (∅, ∅)).

Our algorithm first splits the given instance into poly-
nomially many subinstances and then solves each subin-
stance in polynomial time via a dynamic programming al-
gorithm. In particular, each subinstance is specified by three
nonnegative integers k′1 ≤ min{k1, |C1 \ C2|}, k′2 ≤
min{k2, |C2 \ C1|}, and s1 ≤ r, and the goal is to com-
pute a (k1, k2)-winners allocation (w1, w2) of (E1, E2) that
has the maximum possible f2(w2, V2) under the restrictions
that |w1 ∩ (C1 \ C2)| = k′1, |w2 ∩ (C2 \ C1)| = k′2, and
f1(w1∩(C1 \C2), V1) = s1, if it exists. We solve the subin-
stance as follows.

To compute a k′1-committee of C1 \ C2 of AV score s1
from V1, we resort to pseudopolynomial-time algorithms for
the classic κ-SUBSET SUM problem (see, e.g., (Koiliaris and
Xu 2019)). Particularly, we solve a κ-SUBSET SUM instance
(A = {f1(c, V1) : c ∈ C1 \ C2}, k′1, s1), where the goal is
to find k′1 integers in A whose sum is s1. As the input size
of I is at least |C1|+ |V1| and every number in A is at most
|V1| · |C1|, the algorithm in fact runs in polynomial time in
the input size of I . If the κ-SUBSET SUM instance is a NO-
instance, we discard this subinstance of I . Otherwise, Letw′1
be the set of the k′1 candidates corresponding to k′1 numbers
returned by the κ-SUBSET SUM algorithm.

Next, we order candidates in C2 \C1 according to their f2
scores received from V2, from the highest to the lowest.
Let w′2 be the set of the first k′2 candidates in the order and
let s2 denote the f2 score of these k′2 candidates received
from V2, i.e., s2 = f2(w

′
2, V2).

The task now is to identify, for every i ∈ [2], ki − k′i can-
didates from C1 ∩ C2 so that putting them into w′i provides
us a solution. Obviously, if k1 − k′1 + k2 − k′2 > |C1 ∩C2|,
we can immediately discard the subinstance. So, we assume
that this is not the case. The algorithm continues as follows.
If C1 ∩ C2 = ∅, we do the following: if k′1 = k1, k′2 = k2,
and s1 = r, we return (w′1, w

′
2) for the subinstance of I;

otherwise, we discard the subinstance. We may assume now
that C1 ∩ C2 6= ∅. Let (c1, c2, . . . , ct) be a fixed order of
C1 ∩ C2. For each i ∈ [t], let C≤i = {cj : j ∈ [i]}. We
maintain a 4-dimensional table T(`1, `2, i, r′) of four non-
negative integers such that i ∈ [t], `1 ≤ min{i, k1 − k′1},
`2 ≤ min{i, k2−k′2}, and r′ ≤ r−s1. The entry is supposed
to store the maximum possible f2 score of an `2-committee
wi

2 ⊆ C≤i from V2, under the restriction that there is an `1-
committee of C≤i \ wi

2 of f1 score exactly r′ from V1 (if
such an `1-committee under this restriction does not exist,
−∞ is stored in the entry). The values of base entries can be
calculated in polynomial time based on the definition of the
table. The remaining entries are computed via the following
recursive formula. In particular, if f1(ci, V1) ≤ r′, we define

T(`1, `2, i, r′) = max{T(`1 − 1, `2, i− 1, r′ − f1(ci, V1),
T(`1, `2 − 1, i− 1, r′) + f2(ci, V2),T(`1, `2, i− 1, r′)}.

The three entries in the max function respectively corre-
spond to that ci is allocated to the community V1, to the
community V2, or none of the communities V1 and V2. If,
however, f1(ci, V1) > r′, ci cannot be allocated to V1, and

hence in this case we define T(`1, `2, i, r′) =

max{T(`1, `2 − 1, i− 1, r′) + f2(ci, V2),T(`1, `2, i− 1, r′)}.

The output of the above dynamic programming algorithm
is a 3-tuple whose components are, respectively, denoted by
s(k′1, k

′
2, s1), w1(k

′
1, k
′
2, s1) and w2(k

′
1, k
′
2, s1). Precisely,

s(k′1, k
′
2, s1) = T(k1 − k′1, k2 − k′2, t, r − s1) + s2.

If s(k′1, k
′
2, s1) ≥ 0, then using standard backtracking tech-

nique of dynamic programming algorithms, we can compute
two disjoint subsets w∗1 , w

∗
2 ⊆ C1∩C2 such that f2(w∗2 , V2)

is maximized under the restrictions that |w∗1 | = k1 − k′1,
|w∗2 | = k2−k′2, and f1(w∗1 , V1) = r−s1. In this case, we de-
fine w1(k

′
1, k
′
2, s1) = w′1∪w∗1 and w2(k

′
1, k
′
2, s1) = w′2∪w∗2 .

However, if s(k′1, k
′
2, s1) < 0, we discard this subinstance.

For the original instance I , if all subinstances are dis-
carded, we return (∅, ∅). Otherwise, let k̂1, k̂2, and ŝ1
be such that s(k̂1, k̂2, ŝ1) = maxk′1,k′2,s1{s(k

′
1, k
′
2, s1)},

where k′1, k′2, and s1 run over all integers such that the subin-
stance specified by k′1, k′2, and s1 is not discarded. Then, we
return (w1(k̂1, k̂2, ŝ1),w2(k̂1, k̂2, ŝ1)) for I .

The algorithm in the proof of Theorem 3 can be adapted
for the case where f1 is CSAV. Furthermore, observe that
for f1 ∈ {AV,CSAV} and f2 being weakly additive,
NSWO/ESWO-WA-(f1, f2) is polynomial-time reducible to
WC-(f1, f2). We then have the following result.

Theorem 4. Let f1 ∈ {AV,CSAV} and f2 be a weakly ad-
ditive utility function. Then, ESWO/NSWO-WA-(f1, f2) is
polynomial-time solvable.

One may wonder whether the polynomial-time solvability
in Theorem 3 remains if we replace AV with some other ad-
ditive functions like SAV. Somewhat surprisingly, this can-
not be the case unless P=NP, as we can show that in this case
the problem becomes NP-hard. More interestingly, our NP-
hardness result holds even in a very special case, namely, the
case where the two elections in the given double election are
both CI and VI. (see Introduction for the definitions of CI
and VI, and related references)

It should be noticed that the algorithm in the proof of The-
orem 3 can be easily adapted to apply for all weakly additive
functions f1 and f2, by changing the fourth component in
the dynamic programming table into rational numbers which
run over all possible scores of committees. However, for f1
being some other additive functions like SAV, we could not
expect the size of the table to be polynomially bounded in
the input size, because of the fourth component.

Theorem 5. WD-(SAV, SAV) is NP-hard even when C1 =
C2 = C, V1 = V2 and, moreover, (C, V1) is both VI and CI.

Proof. We prove the theorem by a reduction from the κ-
RATIONAL (0, 1)-SUBSET problem, where given a multi-
set A = {a1

b1
, a2

b2
, . . . , an

bn
} of n rational numbers, an in-

teger k, and a rational number r, the question is whether
there are k numbers inAwhose sum is r. Very recently, Wo-
jtczak (2018) proved that this problem is strongly NP-hard
(note that if A contains only integers, the problem is weakly
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NP-hard). We assume that 0 < ai

bi
< 1 for all i ∈ [n]. 1 Let

s =
∑

i∈[n]
ai

bi
. We construct a WD-(SAV, SAV) instance

((C, V1), (C, V2), k1, k2, r1, r2) as follows.
For each ai

bi
∈ A, i ∈ [n], we create a set C(i) of bi can-

didates. For each i ∈ [n], we choose an arbitrary but fixed
candidate in C(i), and let c(i) ∈ C(i) denote this candi-
date. Let C∗ = {c(i) : i ∈ [n]} denote the set of the n se-
lected candidates. Let C =

⋃
i∈[n] C(i). Clearly, C consists

of
∑

i∈[n] bi candidates. This completes the construction of
the candidates. The following votes are created in both V1
and V2. For each ai

bi
∈ A, i ∈ [n], we create ai votes each of

which approves exactly the candidates in C(i). In addition,
for every i ∈ [n] we create k + 1 votes each of which ap-
proves exactly the candidate c(i). In total, each of V1 and V2
consists of (k+1) ·n+

∑
i∈[n] ai votes. We complete the re-

duction by setting k1 = k, k2 = n− k, r1 = r+ k · (k+ 1)
and r2 = s − r + (n − k) · (k + 1). Now we prove the
correctness of the reduction.

(⇒) Let H ⊆ [n] be a set of k integers such that∑
i∈H

ai

bi
= r. Let w1 = {c(i) ∈ C∗ : i ∈ H} and

w2 = {c(i) ∈ C∗ : i ∈ [n] \ H}. Due to the construc-
tion, each candidate c(i) ∈ C∗ has SAV score ai

bi
+ k + 1

from both V1 and V2, i.e.,

f1(c(i), V1) = f2(c(i), V2) =
ai
bi

+ k + 1. (1)

Then, f1(w1, V1) =
∑

i∈H

(
ai

bi
+ k + 1

)
= r+k·(k+1) =

r1 and f2(w2, V2) =
∑

i∈[n]\H

(
ai

bi
+ k + 1

)
= s − r +

(n − k) · (k + 1) = r2. So, (w1, w2) is a desired winners
allocation.

(⇐) Assume that the constructed WD-(SAV, SAV) in-
stance is a YES-instance. We first prove the following claim.

Claim 1. For every k-committee w ⊆ C such that
f1(w, V1) = r1, it holds that w ⊆ C∗.

Proof of Claim 1. Assume for the sake of contradiction
that there is a k-committee w ⊆ C such that f1(w, V1) = r1
but w \ C∗ 6= ∅. W.l.o.g., let x = |w ∩ C∗|. Hence, we
have x ≤ k − 1. From the construction of the votes, for
every i ∈ [n], it holds that every candidate in C(i) \ {c(i)}
has SAV score exactly ai

bi
, which is smaller than 1 as we

assumed. In addition, as pointed out above, every c(i) where
i ∈ [n] has SAV score exactly ai

bi
+ k + 1. It follows that

f1(w, V1) ≤ (k − x) +
∑

c(i)∈w∩C∗,i∈[n]

(
ai
bi

+ k + 1

)
≤ (k − x) + x · (k + 1) + x ≤ k2 + k − 1 < r1.

a contradiction. This completes the proof of the claim.
As k1 + k2 = n, and the SAV score of every candidate

in
⋃

i∈[n] (C(i) \ {c(i)}) is strictly smaller than that of any-
one in C∗, we know that if the WD-(SAV, SAV) instance

1In the strongly NP-hardness proof of k-RATIONAL (0, 1)-
SUBSET in (Wojtczak 2018), each ai

bi
is a positive rational number

smaller than 2. We can transform this instance into an equivalent
instance by replacing each ai

bi
with ai

2bi
and replacing r with r

2
.

is a YES-instance, it must admit a solution (w1, w2) such
that w2 ⊆ C∗. Furthermore, by Claim 1, we know that
w1∪w2 = C∗ holds. According to the analysis for the other
direction (see Equation (1)), the SAV score of the commit-
tee C∗ from each of V1 and V2 is

∑
i∈[n]

(
ai

bi
+ k + 1

)
=

s+ n · (k + 1), which is exactly r1 + r2. It follows that the
SAV score of w1 from V1 and the SAV score of w2 from V2
are r1 = r+k ·(k+1) and r2 = s−r+(n−k) ·(k+1), re-
spectively, which further implies that

∑
c(i)∈w1,i∈[n]

ai

bi
= r.

Finally, we show that (C1, V1) is both VI and CI. To this
end, we define a linear order overC where, for every i ∈ [n],
candidates in C(i) are consecutive. Analogously, we define
a linear order over V1 where for every i ∈ [n], the ai votes
approvingC(i) and the k+1 votes approving only the candi-
date c(i) are consecutive, with the latter k+1 votes ordered
after the ai votes. It is easy to check that the candidates ap-
proved in every vote constructed above are consecutive in
the candidates-order, and for every candidate c all votes ap-
proving c are consecutive in the votes-order.

Based on the hardness reduction in the proof of Theo-
rem 5, we establish the NP-hardness of ESWO/NSWO-WA-
(f1, f2) for f1 and f2 being SAV or MSAV.

Theorem 6. ESWO/NSWO-WA-(f1, f2) where f1, f2 ∈
{SAV,MSAV} are NP-hard. This holds even when the two
elections in the given double election are both VI and CI.

Envy-Free Winners Allocations
This section is devoted to the computation of envy-free win-
ners allocations. The following corollary is a consequence
of Theorems 1 and 2.

Corollary 2. Let X ∈ {PEF,REF,PO}, and let f1 and f2
be two utility functions that are weakly additive. Then, X-
WA-(f1, f2) is polynomial-time solvable.

As shown earlier, EF winners allocations do not always
exist. Nevertheless, we show below that once they exist, we
could compute in polynomial time an EF (k1, k2)-winners
allocation with the maximum USW, when the utility func-
tions used are weakly additive.

Theorem 7. If f1 and f2 are both weakly additive, determin-
ing if an EF (k1, k2)-winners allocation exists can be done
in polynomial time. Moreover, if such an allocation exists,
an EF (k1, k2)-winners allocation with the maximum USW
can be computed in polynomial time.

Now we study utility functions f1 and f2 for at least one
of which the COMMITTEE SELECTION problem is NP-hard.

Theorem 8. If for at least one of f1 and f2 COMMITTEE
SELECTION is NP-hard, then REF-WA-(f1, f2) is NP-hard.

Theorems 1 and 8 bring to us the following corollary.

Corollary 3. If for at least one of f1 and f2 COM-
MITTEE SELECTION is NP-hard, then for each X ∈
{USWO,NSWO,EF,PEF,PO}, X-WA-(f1, f2) is NP-hard.

The above corollary, however, does not extend to compu-
tation of winners allocations of maximum ESW. To verify
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USWO ESWO NSWO EF PEF/REF/PO

(AV/CSAV, wadd) P P (Thm. 4) P P
(wadd, wadd) P (Thm. 2) NP-h (Thm. 6) P (Thm. 7) P

FPT (|C1 ∩ C2|, k1 + k2 [Thms. 10, 12])
(PAV/CCAV, f ) NP-h NP-h (Thm. 9) NP-h NP-h NP-h (Thm. 8)

FPT (|V1 ∪ V2| [Thm. 11]) FPT: |V1 ∪ V2|

Table 2: In the table, “wadd” stands for “weakly additive”, and f can be any function in Table 1. Results in gray are implied by
other results in the table. The NP-hardness holds even when the two elections in the given instance are both CI and VI.

this, consider the case where f1 is CCAV for which COM-
MITTEE SELECTION is NP-hard (Procaccia, Rosenschein,
and Zohar 2008), and f2 is a constant utility function such
that f2(w, V2) = 0 for all w and V2. Then, all winners al-
locations have the same ESW 0, implying that ESWO-WA-
(f1, f2) for these specific functions f1 and f2 is polynomial-
time solvable. Therefore, to derive an analogous result for
ESWO, we need further restrictions. We say that a utility
function f ′ is a polynomial bound of another utility func-
tion f if for every multiset V of votes over a set C of
candidates and every nonnegative integer k ≤ |C|, we can
construct in polynomial time in |V | + |C| a multiset V ′ of
votes over C such that f ′(c, V ′) ≥ f(w, V ) holds for all k-
committees w ⊆ C and all candidates c ∈ C. It is not hard
to see that every utility function shown in Table 1 is a poly-
nomial bound of every function including itself in the table.
For instance, SAV is a polynomial bound of PAV because for
every C, V , and k as above, we can construct a multiset V ′
of |C| · |V | · k votes each of which approves all candidates.
Let m = |C| and n = |V |. Then, every candidate has SAV
score m ·n ·k · 1

m = n ·k from V ′, while every k-committee
has PAV score at most n ·

∑k
i=1

1
i ≤ n · k from V . With the

above notion, we have the following theorem.

Theorem 9. Let f1 and f2 be two utility functions. If COM-
MITTEE SELECTION for f1 is NP-hard, and f2 is a polyno-
mial bound of f1, then ESWO-WA-(f1, f2) is NP-hard.

Some Fixed-Parameter Tractability Results
Given the NP-hardness results established in previous sec-
tions, one could be interested in fixed-parameter algorithms
for these problems with respect to some natural parameters.
The number of candidates and the number of votes are two
natural parameters. It is trivial to check that with respect to
the parameter |C1 ∪ C2|, all the NP-hardness results estab-
lished in this paper are FPT. This motivates us to consider a
generally smaller parameter |C1 ∩ C2|.
Theorem 10. For weakly additive utility functions f1
and f2, ESWO-WA-(f1, f2) and NSWO-WA-(f1, f2) are
FPT with respect to the parameter |C1 ∩ C2|, where C1

and C2 are the two sets of candidates in the given
double election. In particular, they can be solved in
time O∗(4|C1∩C2|).

Now we study the parameter the number of votes. We
show that with respect to this parameter, computing winners
allocations with the maximum USW is FPT for f1 and f2
being any functions listed in Table 1.

Theorem 11. If both f1 and f2 are utility functions in Ta-
ble 1, then USWO-WA-(f1, f2) is FPT with respect to the
number of total votes.

Finally, we discuss the parameterized complexity of win-
ners allocation with respect to the number of candidates that
are allocated in total, i.e., the parameter k1 + k2.

Theorem 12. Let f1 and f2 be two weakly additive util-
ity functions. Then, ESWO-WA-(f1, f2) and NSWO-WA-
(f1, f2) are FPT with respect to the number of allocated
candidates.

Concluding Remarks
We proposed a model of winners allocation where given two
elections whose candidate sets may intersect, the goal is to
allocate k1 and k2 winners to two voting communities re-
spectively. We studied several properties of this model, in-
cluding three kinds of social welfare, three types of envy-
freeness, and the Pareto optimality property. For these prop-
erties, we explored their implication relationships (Theo-
rem 1 and Figure 1). Then, we investigated the complexity of
calculating winners allocations that provide these properties
(Theorems 2–9). If both utility functions used by the voting
communities are weakly additive, we designed polynomial-
time algorithms for almost all properties except for egali-
tarian/Nash social welfare, for which the complexity varies,
depending on the utility functions. Particularly, when the
utility functions are SAV or MSAV, computing a winners
allocation with the maximum egalitarian/Nash social wel-
fare is NP-hard and, moreover, this holds even when the two
elections in the given double election are both VI and CI.
When one of the utility functions is not additive, we often
have hardness results for all properties. Finally, for hardness
results, we also studied their parameterized complexity and
derived several fixed-parameter algorithms (Theorems 10–
12). Table 2 summarizes these results.

Recently, a set of axiomatic properties such as the justified
representation (JR), extended JR, proportional JR have been
advocated as desirable properties for approval-based multi-
winner voting in certain circumstances. We refer to (Aziz
et al. 2015, 2018; Sánchez-Fernández et al. 2017) for the
definitions of these properties. It is easy to see that there are
double elections where there are no (k1, k2)-winners allo-
cations (w1, w2) such that w2 and w2 satisfy these proper-
ties for both elections simultaneously. In fact, the exemplary
double election to show the nonexistence of EF winners al-
locations (after Theorem 1) directly works here.
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