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Abstract

We study the problem faced by a decision maker who wants to
locate a set of facilities on a real line and allocate agents/items
to the facilities. The items have given locations on the line,
and can only be assigned to one of their closest facilities. The
facilities are controlled by managers, who have additive util-
ity over the items. An optimal solution that maximizes the
(utilitarian or egalitarian) social welfare of the facilities may
present a very unbalanced allocation of the items to the facil-
ities and hence be perceived as unfair. In this paper, we are
interested in fair allocation among facility managers and con-
sider the well-studied proportionality and envy-freeness fair-
ness notions and their relaxations. We assess the availability,
existence, approximability, and the quality (price of fairness)
of fair solutions, where the quality measures the system effi-
ciency loss under a fair allocation compared to the one that
maximizes the social welfare. further, we show that one can
find a Pareto-optimal solution in polynomial time.

1 Introduction
Facility location problems and their variants (Stollsteimer
1963; Manne 1964; Shmoys, Tardos, and Aardal 1997; Jain
and Vazirani 2001) have been actively (and most commonly)
studied in the economics, operations research, and computer
science communities since the mid 20th century due to its
applicability in modeling and solving various realistic opti-
mization and resource allocation problems (e.g., transporta-
tions and clustering). In the standard facility location prob-
lem, we are given a set of m facilities such as libraries,
parks, and schools, a set of locations (e.g., bounded inter-
val of [0,1]), and a set of n agents locating within the set
of locations. The typical goal, from the agent’s perspective,
is to locate the facilities within a set of locations to mini-
mize the total or maximal distance/cost of the agents to their
closest facilities.

Despite the numerous research work of facility location
problems in the mechanism design and algorithmic settings
(see e.g., (Procaccia and Tennenholtz 2013; Lu et al. 2010;
Fotakis and Tzamos 2014; Cheng and Zhou 2015)), limited
work has explored the facility location problems from the
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facility’s perspective where each facility has a (cardinal, sat-
isfaction) utility function/preference over the possible sub-
sets of agents the facility can serve – the larger value it is for
a subset, the more preferable the subset is to the facility. It
is not hard to see that each facility, e.g., managed by certain
personnel, can form a utility preference over the agents. For
example, a recreation facility management of a recreation
center has an underlying preference with regards to serving
various groups of citizens. A principal or an organization of
a public school has a preference over the types of students
(see e.g., (Abdulkadiroğlu 2005; Ehlers et al. 2014) in school
choice) that can be admitted to the school.

An optimal solution that maximizes the (utilitarian or
egalitarian) social welfare of the facilities may present a very
unbalanced allocation of the items to the facilities and hence
be perceived as unfair, while fair allocations may induce a
bad social welfare. Motivated by this, in this work, we con-
sider the facilities’ utility preferences over the agents and
initiate the study of fair facility location problems from the
facility’s perspective. More specifically, we aim to locate fa-
cilities within a set of locations to serve a set of population
such that each facility’s partition of agents (i.e., induced by
the agents selecting the closest facilities) is fair under the
facility’s utility function. We address such a key problem
of locating facilities under fundamental fairness notations to
achieve (approximately) fairness.
Our Results and Organization. We study the fair facility
location problem where there is a set of m facilities with
additive valuations over n agents or items in a bounded in-
terval of [0,1]. We consider the well-studied proportionality
(Prop) and envy-freeness (EF) fairness and their (additive)
relaxations for our setting. Given the fairness concepts, we
study the existence and guarantees of (approximately) fair
contiguous valid allocations, which admit a location profile
of facilities such that the allocation satisfies the closest as-
signment rule. We note that our problem is related to the fair
division problems with contiguous bundles (FDC) (Bouveret
et al. 2017; Bilò et al. 2018; Suksompong 2019) in which the
goal is to fairly allocate indivisible items to players/facilities
such that each bundle forms a contiguous block; but we ad-
ditionally require the closest assignment.

In Section 3, we first prove that the problem of deter-
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mining the existence of a Prop allocation is NP-complete,
using a similar reduction in (Bouveret et al. 2017) for the
FDC. We show that for any instance, there exists a valid
n+m−1

2m · umax-Prop allocation where umax is highest value
of any facility for any item. On the other hand, the existence
of a valid ( n

12 · umax − ε)-Prop allocation is not guaranteed
for any ε > 0, even if there are m = 3 facilities.

In Section 4, we prove that the problem of determining
the existence of an EF allocation is NP-complete. For any
instance, there exists a valid ( 3

5n + 8
5 )umax-EF allocation.

The existence of a valid (n
4 · umax − ε)-EF allocation is not

guaranteed for any ε > 0, even if there are m = 3 facilities.
When there are exactly two facilities, one can find a valid
umax-EF allocation.

In Section 5, we study the best and worst price of fairness
for both utilitarian and egalitarian social welfare, which is
the ratio of the maximum possible social welfare over that
of a (best or worst) fair allocation. While the best price of
fairness is well-studied for fair division problems, we are
the first to study the worst price of fairness. We show that
they have significant difference for the egalitarian price of
proportionality. Table 1 summarizes our results on the price
of fairness, where UB and LB indicate the worst and best
price of fairness, respectively.

In Section 6, we propose an algorithm that returns a
Pareto-optimal valid allocation in polynomial time, and an-
alyze its efficiency on both types of social welfare.

Comparison with FDC. In both settings, determining the
existence of a Prop (and EF) allocation is NP-complete. Ta-
ble 2 summarizes the results on additive fairness relaxations,
and shows that both fairness concepts are much more diffi-
cult to approximate in our problem. Surprisingly, the closest
assignment constraint does not change the best price of fair-
ness (LB in Table 1), which is the same as (Suksompong
2019) for FDC. We give all omitted proofs in Supplemen-
tary Material.

Price Utilitarian Egalitarian

Prop.
UB: [m− 1 + 1

m ,m] UB: m
LB: m− 1 + 1

m LB: 1

EF UB: [ b
√
mc
2 ,

√
m
2 + 1− o(1)] UB:

[m2 ,m]

LB: [ b
√
mc
2 ,

√
m
2 + 1− o(1)] LB: m

2

Table 1: Our results on the price of fairness.

Fairness Our setting FDC

Prop.
UB: m+n−1

2m · umax UB∗: m−1
m · umax

LB: n
12 · umax LB∗: m−1

m · umax

EF
UB: ( 3n

5 + 8
5 ) · umax UB∗: 2umax

LB: n
4 · umax

Table 2: Additive-approximate fairness guarantees for our
setting and FDC. The latter can be found in (Suksompong
2019), indicated by ∗.

Related Work. Our work is grounded on a string of fruit-
ful research in fair division and facility location problems.
It is related to the Hotelling-Downs model (Hotelling 1929;
Downs 1957), where some players (facilities) strategically
locate themselves at a point along a line so as to attract the
greatest number of clients; the client is attracted by the clos-
est player. Our model differs from theirs in that the facili-
ties have utility functions, i.e., different agents have different
values to the facilities.

Fair division with contiguous bundles. In FDC, the goal is
to fairly allocate indivisible items that are located on a line
to a group of players such that the allocation is required to be
contiguous. The main difference to our problem is that, we
need additionally to locate the facilities and allocate items
to their closest players/facilities on the line. Such a variation
takes into account the decisions of agents/items and intro-
duces new challenges into fair division.

More formally, the n items form a connected graph and
are to be allocated to m players. In a contiguous allocation,
the bundle of each player must form a contiguous block
of items, inducing a connected subgraph. Each player has
a value for each item. When the graph is a line, under the
additive fairness relaxation, Suksompong (2019) shows that
there is a contiguous m−1

m · umax-Prop allocation, and a
contiguous 2umax-EF allocation where umax is the high-
est value of any player for any item. Bouveret et al. (2017)
prove that the problem of determining the existence of a con-
tiguous Prop/EF allocation for an instance is NP-complete.
Bei et al. (2019) study the price of connectivity.

Price of Fairness. The price of fairness quantifies the loss
of social welfare that is necessary if we impose a fairness
constraint on the allocation, initially studied by Caragian-
nis et al. (2012) for both allocating divisible and indivisible
items. Later, Aumann and Dombb (2015) focus on contigu-
ous allocations of divisible items and consider both utilitar-
ian and egalitarian welfare, where utilitarian welfare refers
to the sum of agents’ utilities and egalitarian welfare refers
to their minimum. Suksompong (2019) completes the pic-
ture by providing tight or almost tight bounds on the price
of fairness for contiguous allocations of indivisible items.

Facility location games. In the algorithmic mechanism
design settings of facility location games (Procaccia and
Tennenholtz 2013; Chen et al. 2019), the locations of the
agents are private. The planner’s goal is to elicit (true) lo-
cations from the agents and locate the facilities to optimize
the desirable objectives. In many of such facility location
problems, fairness is usually studied from the agents’ per-
spective. For example, Cai et al. (2016) introduced a fairness
criterion, called minimax-envy, to 1-facility location games
and proposed strategy-proof mechanisms. Chen et al. (2020)
study the minimax-envy for 2-facility location games. Liu et
al. (2020) study the envy ratio for k-facility location games,
which is a fairness concept derived from fair division (Lip-
ton et al. 2004), and defined as the maximum over the ra-
tios between any two agents’ utilities. In this paper, how-
ever, we are interested in the fairness of facilities, and to our
best knowledge, no previous work considers fairness from
the facility’s perspective.
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2 Preliminaries
LetN = {1, . . . , n} be the set of agents/items. The items are
located in a line segment, represented by the interval [0, 1].
We want to locate m ≥ 2 facilities F = {F1, F2 . . . , Fm}
in the interval [0, 1] and allocate n items to the m facilities
such that each item is assigned to the closest facility.

An allocation A = (A1, . . . , Am) is a partition of all
items into bundles for the facilities so that facility Fi re-
ceives bundle Ai. An allocation A is contiguous, if each
bundle forms a contiguous block of items. An allocation A
is valid, if there exists a location profile of the facilities such
that the locations of facilities are pairwise distinct and each
item is assigned to a facility who has the smallest distance
to the item. Since the facility locations must be different, a
valid allocation implies that the bundle of every facility in-
duces a contiguous block, and thus it is contiguous.

Each facility Fi ∈ F has some nonnegative value ui(j)
for item j ∈ N . Assume w.l.o.g. that for every item j,
there is some facility Fi with positive value, i.e., ui(j) >
0. For each facility Fi, define ui,max := maxj∈N ui(j)
to be the highest value of Fi for an item. Let umax :=
maxFi∈F ui,max be the highest value of any facility for an
item. We assume that utilities are additive, which means
ui(N

′) =
∑

j∈N ′ ui(j) for any facility Fi and any subset
of items N ′ ⊆ N . In terms of social welfare, the utilitar-
ian welfare of A is the total utility

∑
Fi∈F ui(Ai) of all fa-

cilities, and the egalitarian welfare is the minimum utility
minFi∈F ui(Ai) among the facilities.

We are interested in finding valid allocations that are fair
for the facilities, which implicitly induce a location profile of
facilities. We mainly study the following two fairness con-
cepts and their (additive) relaxations.

Definition 2.1 (Proportional (Prop)). An allocation A =

(A1, . . . , Am) is proportional if ui(Ai) ≥ ui(N)
m for all

Fi ∈ F . For ε ≥ 0, the allocation is ε-proportional if
ui(Ai) ≥ ui(N)

m − ε for all Fi ∈ F .

Definition 2.2 (Envy-Free (EF)). An allocation A =
(A1, . . . , Am) is envy-free if ui(Ai) ≥ ui(Aj) for all
Fi, Fj ∈ F . For ε ≥ 0, the allocation is ε-envy-free if
ui(Ai) ≥ ui(Aj)− ε for all Fi, Fj ∈ F .

From these definitions, it is not hard to see that EF implies
Prop, and ε-EF implies ε-Prop.

We know that a valid allocation is contiguous but not
vice versa. For example, consider a 3-facility instance with 4
items located at (0, 0.1, 0.9, 1), and a contiguous allocation
({1}, {2, 3}, {4}). There is no feasible location profile of fa-
cilities such that each item is assigned to the closest facility,
and thus it is not valid. In particular, when there are two fa-
cilities, any contiguous allocation is also valid, because we
can locate one facility at the right endpoint of the left bundle,
and locate the other at the left endpoint of the right bundle,
such that every item is assigned to the closest facility.

Observation 2.3. When m = 2, every contiguous alloca-
tion is valid.

We assume that the items have pairwise distinct locations.
If the items can be located at the same point, there is a very

bad instance of 2 facilities, where n− 1 items are located at
0 and one item is located at 1. Note that the facility locations
are different. Then any valid allocation cannot be fair, be-
cause it must assign the items at 0 to one facility, and the re-
maining item to the other. This is unacceptably unbalanced.
Therefore, we only consider the case with pairwise distinct
locations of items.

As a preliminary result, we present a key proposition that
is important for finding ε- Prop and ε-EF valid allocations in
Sections 3 and 4.

Proposition 2.4. Given a contiguous allocation A =
(A1, . . . , Am), we can have a valid allocation A′ =
(A′1, . . . , A

′
m) which obtains at least half utility for each fa-

cility from A, that is, ui(A′i) ≥ 1
2 ·ui(Ai) for every Fi ∈ F .

Proof. Let A = (A1, . . . , Am) be a contiguous alloca-
tion. Let ai and bi be the leftmost and rightmost items al-
located to facility Fi ∈ F . Denote by yi = ai+bi

2 the mid-
point of Fi’s bundle. Now we construct a location profile
x = (x1, . . . , xm) of facilities. In view of each facility Fi,
if the total utility for the items located in interval [ai, yi] is
greater than that for the items located in [yi, bi], then locate
facility Fi at xi = ai, otherwise xi = bi. Based on the
facilities’ location profile x = (x1, . . . , xm), we obtain an
allocation A′ = (A′1, . . . , A

′
m) by assigning each item to

the closest facility, breaking ties arbitrarily.
By definition, allocation A′ is contiguous and valid. By

the above construction of location profile x and the closest
assignment, if xi = ai (resp. xi = bi), then all items in the
interval [ai, yi] (resp. [yi, bi]) are assigned to Fi. Therefore,
we have ui(A′i) ≥ 1

2 · ui(Ai), establishing the theorem.

To end this section, we show that, given a contiguous al-
location A = (A1, . . . , Am), there is an efficient algorithm
that determines whether it is valid. This enables us to focus
on valid allocations, as the corresponding location profile
of facilities can be computed efficiently. We assume each
bundle Ai is non-empty here, otherwise we can remove fa-
cility Fi from the allocation, and do not locate it. Let ai
and bi be the left and right endpoints of Ai. (Recall that
items have distinct locations.) Renaming if necessary, as-
sume bi−1 < ai ≤ bi < ai+1, for i = 2, . . . ,m − 1. Let
xi be a variable indicating the location of facility Fi. We
need to check the existence of a facilities’ location profile
(x1, . . . , xm) so that the locations are pairwise distinct and
items are assigned to their closest facilities. We can do that
by solving the following program, whose feasible solution
corresponds to such a location profile and whose feasible
region is non-empty if and only if A is valid.

max 0
s.t. |xi − ai| ≤ |ai − xi−1| for i = 2, . . . ,m

|bi − xi| ≤ |xi+1 − bi| for i = 1, . . . ,m− 1
0 ≤ xi ≤ 1. for i = 1, . . . ,m

(1)

The first 2m−2 constraints characterize closest assignment.
Through simple manipulation of the absolute value expres-
sion, this problem can be solved via linear programming.
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3 Proportionality
In this section, we consider Prop allocations. Inspired by
Theorem 3.1 of (Bouveret et al. 2017), which states that de-
termining whether an FDC instance admits a Prop allocation
is NP-complete, we adapt their reduction by adding distance
terms and locating facilities to obtain the NP-hardness result
in Theorem 3.1. Then, we present possibility and impossi-
bility results for the existence of ε-Prop valid allocations.

Theorem 3.1. The problem of determining the existence of
a proportional valid allocation is NP-complete.

Proof. We reduce from EXACT-3-COVER (X3C), which
is an NP-complete problem (Garey and Johnson 1979). An
instance of X3C is given by I = (X, T ), where X =
{x1, . . . , x3s} is a set of elements, and T = {T1, . . . , Tr}
is a family of 3-element subset of X . The answer is “yes”
if and only if X can be exactly covered by s sets from T ,
i.e., each element in X is covered by exactly one of the s
sets. This problem remains NP-complete if the frequency
fx = |{T ∈ T : x ∈ T}| of each x ∈ X is at most 3.

Consider an instance I = (X, T ) of X3C, where fx ≤
3 for each x ∈ X , and the elements of T are denoted by
x1T , x

2
T , x

3
T for each T ∈ T . We construct an instance of

our problem as follows. There are three items v1T , v
2
T , v

3
T for

each set T ∈ T , a set of s items B = {b1, . . . , bs} and a
dummy item w. Let ε > 0 be a sufficiently small number.
The order of these n = 3r+ s+ 1 items in the line segment
[0,1] is

v1T1
< v2T1

< v3T1
< v1T2

< · · · < v3Tr
< b1 < · · · < bs < w.

For each Ti ∈ T , the lengths of both intervals (v1Ti
, v2Ti

) and
(v2Ti

, v3Ti
) are ε. For i = 1, . . . , r− 1, the lengths of both in-

tervals (v3Ti
, v1Ti+1

) and (v3Tr
, b1) are 3ε. For j = 1, . . . , s−1,

the lengths of intervals (bj , bj+1) and (bs, w) are ε. Define a
T -set to be VT = {v1T , v2T , v3T } for each T ∈ T .

There are a total of m = 3s+ r+ 1 facilities: one facility
FT for each T ∈ T , one facility Fx for each x ∈ X and one
dummy facility Fd. The values are defined as:

uT (v) =


1/(3m) if v ∈ VT

1/m if v ∈ B
(m− s− 1)/m if v = w

0 otherwise

ux(v) =

{
1/m if v ∈ VT and x ∈ T

1− 3fx/m if v = w
0 otherwise

ud(v) =

{
1 if v = w
0 otherwise

Then each facility has a utility of 1 over the set of all items,
and in any Prop allocation he should have a utility of at least
1/m. It is easy to see that, an allocation is Prop, if and only
if facility Fd receives the dummy item w, each facility Fx

receives an item in VT such that x ∈ T , and each facility FT

receives the set VT or an item from B.
Suppose that there is a valid Prop allocation. As |B| = s,

the number of T -facilities who is assigned to a T -set must

be r − s. So the number of T -sets available for x-facilities
is s, which constitutes a cover for X .

Suppose that I admits an exact cover T ′ ⊆ T of size s.
Let µ be a perfect matching between T ′ and B. Define a
location profile of facilities and the allocation as follows:

• for each T ∈ T ′, facility FT is located at the position of
item µ(T ) ∈ B, and receives item µ(T );

• for each T /∈ T ′, facility FT is located at the position of
item v2T , and receives the T -set VT ;

• each facility Fx is located at the position of item vkT such
that x = xkT and T ∈ T ′, and receives item vkT ;

• facility Fd is located at the position of item w, and re-
ceives item w.

It is easy to verify that each facility receives a contiguous
piece of value at least 1/m, and each item is assigned to the
closest facility. Thus, the allocation is Prop and valid.

ε-Proportionality
Suksompong (2019) shows that there always exists a con-
tiguous allocation A such that ui(Ai) ≥ 1

m ·ui(N)− m−1
m ·

ui,max. By Proposition 2.4, we can obtain a valid allocation
with a loss of at most half utility for each facility, by locating
each facility in the left (or right) endpoint of his bundle in A
if he prefers the left (or right) half of his bundle, and then
allocating the items subject to the closest assignment.

Theorem 3.2. Given any instance, there exists a valid allo-
cation (N1, . . . , Nm) such that for every facility Fi,

ui(Ni) ≥
1

m
· ui(N)− n+m− 1

2m
· ui,max.

In particular, there exists a valid n+m−1
2m ·umax-proportional

allocation.

Proof. By Theorem 1 of (Suksompong 2019), there is
a contiguous m−1

m · umax-proportional allocation A =

(A1, . . . , Am) such that ui(Ai) ≥ 1
m ·ui(N)−m−1

m ·ui,max.
By Proposition 2.4, it can induce a valid allocation A′ =
(A′1, . . . , A

′
m) such that, for every facility Fi ∈ F ,

ui(A
′
i) ≥

ui(Ai)

2
≥ ui(N)

2m
− (m− 1)ui,max

2m

=
ui(N)

m
− (

ui(N)

2m
+
m− 1

2m
· ui,max)

≥ ui(N)

m
− (

n · ui,max

2m
+
m− 1

2m
· ui,max)

=
ui(N)

m
− m+ n− 1

2m
· ui,max.

Next, we give a non-existence result for ε-Prop valid allo-
cations.

Theorem 3.3. The existence of a valid ( n
12 · umax − δ)-

proportional allocation is not guaranteed for any δ > 0,
even if there are m = 3 facilities.
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Proof. Suppose that there are n = 2k (k > 1) items with
unit value of 1 (implying umax = 1) to be assigned to
m = 3 facilities. The leftmost k items are located in [0, 0.1],
and the rightmost k items are located in [0.9, 1]. Then a
( n
12 ·umax− δ)-proportional allocation guarantees that each

facility receives a utility at least n
3 − ( n

12 − δ) = k
2 + δ.

If such an allocation is valid, it admits a location profile of
facilities so that each item is allocated to his closest facility.
Renaming if necessary, assume F1 is the leftmost facility
and F3 is the rightmost one. Assume w.l.o.g. that F1 and F2

are located in [0, 0.5]. Then they cannot receive the items
located in [0.9, 1], because facility F3 is always closer to
them. It indicates that F1 and F2 can only be allocated the
leftmost k items, and one of them has a utility at most k

2 ,
giving a contradiction.

4 Envy-Freeness
In this section, we consider EF valid allocations. Using a
similar reduction as in Theorem 3.1, we have the following
hardness result on EF. Then we present possibility and im-
possibility results for the existence of ε-EF valid allocations.

Theorem 4.1. The problem of determining the existence of
an envy-free valid allocation is NP-complete.

ε-Envy-Freeness
For m = 2 facilities, one can find a contiguous umax-EF
allocation (Suksompong 2019). It follows by Proposition 2.4
that a valid umax-EF allocation also exists.

Theorem 4.2. Given any instance with two facilities, there
exists a valid allocation such that facility i has envy at most
ui,max towards the other. In particular, there exists a valid
umax-envy-free allocation.

Proof. Arranging the items in an order from left to right,
we add one item to a block (initiated as an empty set) at
each time, until some facility i (say F1) values this block
at least ui(N)/2 − ui,max/2. Then we allocate this block
(denoted by A1) to F1, and the leftover (denoted by A2)
to F2. Clearly facility F1 values F2’s block A2 at most
u1(N)/2+u1,max/2. It implies u1(A1) ≥ u1(A2)−u1,max,
and F1 has envy at most u1,max towards F2. Similarly, F2

values F1’s block A1 less than u2(N)/2 − u2,max/2 +
u2,max = u2(N)/2+u2,max/2, because the last item added
in A1 has a value at most u2,max to F2. Then he values his
own block A2 more than u2(N)/2 − u2,max/2, which im-
plies u2(A2) > u2(A1) − u2,max, and F2 has envy at most
u2,max towards F1.

For general number of facilities, Suksompong (2019)
shows that there exists a contiguous allocation such that fa-
cility Fi has envy less than 2ui,max towards any other. We
can also modify it to construct a valid allocation, incurring a
loss of the utility.

Theorem 4.3. Given any instance, there exists a valid ( 3
5n+

8
5 )umax-envy-free allocation.

Proof. Suppose that A = (A1, . . . , Am) is a contiguous
allocation given in (Suksompong 2019). We construct a

valid allocation A′ = (A′1, . . . , A
′
m) as in Proposition 2.4,

where ui(A′i) ≥ ui(Ai)/2 holds for every facility Fi ∈ F .
Note that A is 2ui,max-envy-free (Suksompong 2019). So
the inequality ui(Ai) ≥ ui(Aj) − 2ui,max holds for any
j 6= i. Let Ak be the bundle which satisfies ui(Ak) =
maxAj∈A ui(Aj). By the construction rule of allocation A′,
the bundle A′j is a subset of the union of Aj and Aj’s
one neighbor bundle in A, which implies that ui(A′j) ≤
ui(Ak) + ui(Aj). We obtain that for any j 6= i,

ui(A
′
i) ≥

1

2
ui(Ai) ≥

1

4
(ui(Ak) + ui(Aj)− 4ui,max)

≥ 1

4
ui(A

′
j)− umax.

Since ui(A′j) + ui(A
′
i) ≤ numax, it gives that

ui(A
′
i) ≥

1

4
ui(A

′
j)− umax

= (
5

8
− 3

8
)ui(A

′
j)− umax

≥ 5

8
ui(A

′
j)−

3

8
numax +

3

8
ui(A

′
i)− umax.

It immediately follows that ui(A′i) ≥ ui(A
′
j) − ( 3

5n +
8
5 )umax, establishing the proof.

Using the example constructed in the proof of Theorem
3.3, we have the following lower bound.
Theorem 4.4. For any δ > 0, the existence of a valid (n

4 ·
umax − δ)-envy-free allocation is not guaranteed, even if
there are m = 3 facilities.

The bounds in Theorems 4.3 and 4.4 are asymptotically
tight when m = 3.

5 Price of Fairness
The price of fairness measures the efficiency loss of alloca-
tions due to fairness constraints. In this section, we study the
best and worst prices, which compare the solution maximiz-
ing the social welfare and the best/worst fair solution. We
assume the normalization ui(N) = 1 for all i = 1, . . . ,m
when considering the price of fairness notions.

Given an instance (along with a set of allocations consid-
ered), its best utilitarian price of proportionality is defined
as the ratio of the utilitarian welfare of the optimal valid al-
location over that of the best Prop valid allocation. Formally,
given instance I , if it admits a valid Prop allocation, its best
utilitarian price of proportionality is

Pu
pr(I) :=

∑
Fj∈F uj(A

∗)∑
Fj∈F uj(A

∗
pr)

,

where A∗ is an optimal valid allocation, and A∗pr is an opti-
mal Prop valid allocation. If a Prop valid allocation does not
exist, then the price is not defined for that instance.

The egalitarian price is defined analogously. Given in-
stance I , if it admits a valid Prop allocation, its best egal-
itarian price of proportionality is

P e
pr(I) :=

minFj∈F uj(A
∗)

minFj∈F uj(A
∗
pr)

.
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The (overall) best utilitarian (resp., egalitarian) price of
proportionality is then the supremum over all instances:
Pu
pr = supI P

u
pr(I) (resp., P e

pr = supI P
e
pr(I)). The price

of envy-freeness Pu
ef and P e

ef are defined analogously.
Suksompong (2019) studies the best price of fairness for

the FDC problem. His results are applicable to our prob-
lem, because we can define suitable distances of items in the
constructed instances such that each contiguous allocation
considered is valid.
Theorem 5.1. For valid allocations of indivisible items,
Pu
pr = m− 1 + 1

m , and P e
pr = 1.

Theorem 5.2. For valid allocations of indivisible items,
Pu
ef ∈

( b√mc
2 ,

√
m
2 + 1− o(1)

)
, and P e

ef = m
2 .

Proof sketch. The upper bound of Pu
ef can be derived by

using the proof of Theorem 2.1 in (Aumann and Dombb
2015), which establishes the same upper bound for the con-
nected cake cutting problem, by linear programming. The
lower bound of Pu

ef can be derived as in the proof of Theo-
rem 8 in (Suksompong 2019), which considers best price for
the FDC problem. The bounds of P e

ef comes from Theorem
11 in (Suksompong 2019).

While the best price of fairness is well-studied in fair di-
vision problems, we are the first to study the worst price of
fairness: given instance I ,

P̄u
pr(I) = sup

A∈Apr

∑
Fj∈F

uj(A
∗)∑

Fj∈F
uj(A)

, P̄ e
pr(I) = sup

A∈Apr

min
Fj∈F

uj(A
∗)

min
Fj∈F

uj(A)
,

where Apr is the set of Prop valid allocations. Similarly, the
overall price of proportionality is P̄u

pr = supI P̄
u
pr(I) and

P̄ e
pr = supI P̄

e
pr(I). The worst price of envy-freeness P̄u

ef

and P̄ e
ef are defined analogously. We show that the worst

price has a significant difference with the best price only for
the egalitarian price of proportionality.
Theorem 5.3. For valid allocations of indivisible items,m−
1 + 1

m ≤ P̄
u
pr ≤ m.

Proof. Consider an arbitrary instance. In any Prop valid al-
location, since the utility of each facility is at least 1

m , the
utilitarian welfare is at least 1. In an optimal valid allocation,
the utility of each facility is no more than 1, so the utilitarian
welfare is at most m. Thus we have that P̄u

pr ≤ m. Since
P̄u
pr ≥ Pu

pr = m− 1 + 1
m , we obtain the lower bound.

Theorem 5.4. For valid allocations of indivisible items,
P̄ e
pr = m.

Proof. Upper bound. Consider an arbitrary instance. A Prop
valid allocation ensures that every facility has utility at least
1
m , while the optimal egalitarian welfare is no more than 1.
Thus the worst egalitarian price is no more than m.

Lower bound. Suppose that there are m facilities and n =
m2 items. The value of facility Fi is ui(j) = 1

m for j =
(i − 1)m + 1, . . . , im and ui(j) = 0 otherwise. For i =
1, 2, . . . ,m, items (i − 1)m + 1 are located at i−1

m + 1
2m ,

and items (i− 1)m+ 2, (i− 1)m+ 3, . . . , im are located in
( i−1

m + 1
2m ,

i
m ). Consider a valid allocation A where facility

Fi is located at i−1
m + 1

2m . The items (i− 1)m+ 1, . . . , im
are assigned to facility Fi which implies that Fi has a utility
1, and the egalitarian welfare is 1.

Consider another valid allocation A′ where facility Fi is
located at i−1

m , and let F1 receive item 1, Fi receive items
(i− 2)m+ 2, (i− 2)m+ 3, . . . , (i− 1)m, (i− 1)m+ 1 for
i = 2, . . . ,m−1, and Fm receive items (m−2)m+2, (m−
2)m+3, . . . , (m−1)m, (m−1)m+1, (m−1)m+2, . . . ,m.
Since each facility has a utility at least 1

m , this allocation
is Prop. As the utility of facility F1 is 1

m , the egalitarian
welfare is 1

m . Thus we have that P̄ e
pr ≥ 1

1/m = m.

Theorem 5.5. For valid allocations of indivisible items,
b
√
mc
2 < P̄u

ef ≤
√
m
2 + 1− o(1), and m

2 ≤ P̄
e
ef ≤ m.

6 Pareto-Optimality
In this section, we study the Pareto-optimality of valid allo-
cations. Given an allocation A, an allocation A′ is a Pareto-
improvenment of A if ui(A′i) ≥ ui(Ai) for all Fi ∈ F
and uj(A

′
j) > uj(Aj) for some Fj ∈ F . A valid allo-

cation is Pareto-optimal if no valid allocation is its Pareto-
improvement. Denote set {1, . . . , k} by [k]. We assume the
normalization ui(N) = 1 for i ∈ [m].

Theorem 6.1. Given any instance, a Pareto-optimal valid
allocation can be found in polynomial time.

Proof. Let min(V ) be the leftmost item in bundle V . Let
Si ⊆ N be the minimum contiguous bundle containing all
items to whichFi has positive utility, that is,Fi benefits from
the leftmost and rightmost items in Si, and ui(N\Si) = 0.
We show that Algorithm 1 finds a Pareto-optimal valid al-
location. We consider unallocated items from left to right,
and give a facility (say Fi), who has positive utility to the
current item, the intersection between Si and unallocated
items, if this allocation is valid1. This process ends when
all items are assigned or the allocation is no longer valid. If
there are remaining items unallocated, we assign them to the
last facility who receives a non-empty bundle. The returned
allocation is valid, because the process always maintains the
validity when adding a new bundle to the allocation. The
time complexity of Algorithm 1 mainly comes from check-
ing the validity of an allocation in Line 10, which can be
done by solving LP (1), and thus is polynomial.

It remains to show the Pareto-optimality of the returned
allocation A = (A1, . . . , Am). Assume bundlesA1, . . . , Ak

are non-empty, andAk+1, . . . , Am are empty. Suppose there
is a valid allocation A′ = (A′1, . . . , A

′
m) which is a Pareto-

improvement of A. Note that items in N\A1 have 0 value
to F1, and u1(A′1) = u1(A1) = u1(N). Because A1 is
the minimum contiguous bundle such that facility F1 re-
ceives the full utility, it must be A1 ⊆ A′1. Since A2 is
the minimum contiguous bundle such that F2 receives the
maximum possible utility u2(N\A1) = u2(A2), we have
A1 = A′1 (otherwise the leftmost item in A2 belongs to A′1,
and u2(A′2) < u2(A2)). Similarly, it must be A2 ⊆ A′2 and

1If partial allocation (A1, . . . , Ai−1, {j}) is valid for facilities
F1, . . . , Fi, then (A1, . . . , Ai−1, Ai = Si\∪i−1

k=1Ak) is also valid.
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Algorithm 1 Pareto-optimal valid allocation

Require: The numberm of facilities, and location profile x
of items N satisfying x1 ≤ · · · ≤ xn.

Ensure: A valid allocation of items.
1: Initialize Ai = ∅ for i ∈ [m].
2: Let Si ⊆ N be the minimum contiguous bundle con-

taining all items to which Fi has positive utility.
3: Let Pj = {Fi ∈ F|ui(j) > 0} be the set of facilities

that have positive utility to item j ∈ N . Pj 6= ∅.
4: Assume F1 ∈ P1 (renaming if necessary). A1 ← S1.
5: for i = 2, . . . ,m do
6: if N = ∪i−1k=1Ak then
7: break
8: end if
9: Let j = min(N\∪i−1k=1Ak) be the leftmost one among

the unallocated items.
10: Assume Fi ∈ Pj (renaming if necessary). Check if

(A1, . . . , Ai−1, {j}) is valid for facilities F1, . . . , Fi.
11: if not valid then
12: Ai−1 ← Ai−1 ∪N\ ∪i−1k=1 Ak.
13: return allocation A = (A1, . . . , Am).
14: else
15: Ai ← Si\ ∪i−1k=1 Ak.
16: end if
17: end for
18: return allocation A = (A1, . . . , Am).

u2(A′2) = u2(A2) by A1 = A′1. Since A3 is the minimum
contiguous bundle such that F3 receives u3(N\∪i=1,2Ai) =
u3(A3), we haveA2 = A′2. Repeating this analysis, we have
Ai = A′i for i ∈ [k − 1], and Ak ⊆ A′k.

If k = m, all facilities receive a non-empty bundle in A,
and it must be A = A′. So we consider the case when k <
m. Suppose Fl (l > k) improves in A′, andA′l is non-empty.
Let j = min(N\∪i−1k=1Ak), and Fi ∈ Pj . Note from Line 10
of Algorithm 1 that the partial allocation (A1, . . . , Ak, {j})
is not valid for facilities F1, . . . , Fk, Fi. The only possible
reason is that any potential location for Fi that is closest for
item j would attract some item in Ak. Then it is easy to see
that the partial allocation (A′1, . . . , A

′
k, A

′
l) is not valid for

facilities F1, . . . , Fk, Fl, because any potential location for
Fl that is closest for items in A′l would attract some item in
A′k. Thus A′ is not valid, a contradiction.

Once a valid allocation is given, one can find the corre-
sponding location profile of facilities easily by solving LP
(1). Our solution is not (approximately) fair, as it may assign
nothing to a facility. We also remark that, while Igarashi and
Peters (2019) show that a Pareto-optimal contiguous alloca-
tion on a path can be found efficiently, their algorithm is not
applicable here due to the closest assignment constraint.

For the utilitarian welfare, every optimal allocation must
be Pareto-optimal. For the egalitarian welfare, there exists
an optimal valid allocation (which lexicographically maxi-
mizes the facilities’ utility, from the smallest to the largest)
is Pareto-optimal. Thus the (best) price of Pareto-optimality
equals 1 for both types of social welfare. However, it is dif-

ficult to calculate a valid allocation maximizing social wel-
fare, and the solution found by Algorithm 1 may incur a
large loss of social welfare.
Theorem 6.2. The utilitarian welfare induced by Algorithm
1 is at least 1

m fraction of the optimal utilitarian welfare. For
the worst instance, the ratio of the utilitarian (or egalitarian)
welfare of the optimal valid solution over that of the outcome
of Algorithm 1 approaches m (or infinity).

Proof. In an allocation given by Algorithm 1, the utility of
the first facility equals 1, implying that the utilitarian welfare
is no less than 1. Note that the utilitarian welfare is no more
than m in the optimal allocation. Thus, the first claim holds.

Consider m facilities and n = m + 1 items. The utilities
of facilities are defined as folllows: u1(1) = 1− ε, u1(2) =
· · · = u1(m) = 0, u1(m + 1) = ε; uj(j) = 1, uj(i) = 0
for j = 2, . . .m and i 6= j. In the optimal allocation, facility
Fi serves item i for i = 1, . . . ,m − 1, and Fm serves two
items m and m+ 1. The utilitarian welfare equals m − ε,
and the egalitarian welfare equals 1 − ε. But in the Pareto-
optimal allocation given by Algorithm 1, facility F1 obtains
all items, implying that the utilitarian welfare equals 1 and
the egalitarian welfare equals 0, completing the proof.

7 Conclusions
This paper is devoted to the problem of fairly locating the
facilities and assigning the agents/items to the facilities. We
consider the fairness concepts of proportionality and envy-
freeness, and their additive relaxations. Compared with the
results for the well-studied fair division problem with con-
tiguous bundles, an approximate fair allocation in our prob-
lem is much harder to obtain and to guarantee the existence,
while the price of fairness is almost the same. A Pareto-
optimal valid allocation can be found efficiently, though it
does not satisfy the fairness criteria.

This problem contributes to the class of facility location
problems by first considering the fairness of facilities, while
previous works only consider the fairness of agents (items).
On the other hand, it adds a new dimension to the typical fair
division problems, that all items/agents must be assigned to
their closest individuals/facilities. It takes into account the
preference of items, and the allocations are non-imposing in
the sense that the items can freely select the facilities.

There are a lot of future directions for this problem.
First, we only consider the additive approximate fairness.
What about the multiplicative approximate fairness, or envy-
freeness up to one good (EF1) (Bilò et al. 2018)? Sec-
ond, other fairness concepts (e.g., maximin share (Garg and
Taki 2020)) and other social welfare (e.g., Nash welfare
(McGlaughlin and Garg 2020)), along with their prices, can
be studied. Further, when the items and facilities are allowed
to locate on a more general space such as a tree or a cycle,
there are more possibilities to explore.
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