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Abstract
Online platforms sell advertisements via auctions (e.g., VCG
and GSP auction) and revenue maximization is one of the
most important tasks for them. Many revenue increment
methods are proposed, like reserve pricing, boosting, coupons
and so on. The novelty of coupons rests on the fact that
coupons are optional for advertisers while the others are com-
pulsory. Recent studies on coupons have limited applications
in advertising systems because they only focus on second
price auctions and do not consider the combination with other
methods. In this work, we study the coupon design problem
for revenue maximization in the widely used VCG auction.
Firstly, we examine the bidder strategies in the VCG auction
with coupons. Secondly, we cast the coupon design problem
into a learning framework and propose corresponding algo-
rithms using the properties of VCG auction. Then we further
study how to combine coupons with reserve pricing in our
framework. Finally, extensive experiments are conducted to
demonstrate the effectiveness of our algorithms based on both
synthetic data and industrial data.

Introduction
Online advertising has been one of the most important in-
dustry on the Internet. In the United States, its revenue has
grown by 15.9 percent in 2019 compared to 2018, surpassing
124$ billion. 1 Advertising has become one of the key rev-
enue sources for many Internet companies, such as Google,
Facebook, ByteDance. For example, more than 83.8 percent
of Google’s revenue comes from online advertising. And the
market still shows no signs of slowing down. There are var-
ious types of online advertising, for example, social media
advertising (e.g., Instagram and Facebook), paid search ad-
vertising (e.g., Google and Baidu), and native advertising
(e.g., BuzzFeed and Tiktok), and so on. These advertise-
ments are usually sold via auction mechanisms. The mecha-
nisms determine which advertisements will be presented and
how much the corresponding advertisers need to pay. There
are two widely used auctions, i.e., the GSP auction (Edel-
man, Ostrovsky, and Schwarz 2007) (generalized second
price) which is used by Google and Baidu, and the VCG auc-
tion (Vickrey 1961; Clarke 1971; Groves et al. 1973) which
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1https://www.statista.com/statistics/183816/us-online-
advertising-revenue-since-2000/

is used by Facebook and Bytedance. The difference between
them is that the VCG auction is truthful, i.e., advertisers sub-
mit bids that truthfully reveal their valuations, while the GSP
auction is not. However, it has been proved that the GSP auc-
tion has a Nash equilibrium whose outcome is equivalent to
that of the VCG auction. Therefore, in this paper, we study
how to maximize the revenue in the VCG auction.

Coupons have been widely studied in economics (Bester
and Petrakis 1996; Moraga-González and Petrakis 1999;
Kang et al. 2006; Board and Skrzypacz 2016). The most
common arguments developed by economists to explain
the use of coupons are twofold: 1) Coupons allow for
price discrimination. 2) Coupons allow for peak-load pric-
ing (Mckenzie 2008). In this work, coupons play the role of
price discrimination. The intuition of revenue increment is
that low-valued advertisers would spontaneously bid higher
if they are provided with coupons, which in turn forces the
high-valued advertisers to pay more when they win based
on the payment rule of the VCG auction. In fact, many
methods can be used to increase revenue, such as reserve
price (Hartline and Roughgarden 2009), boosting (Golrezaei
et al. 2017), squashing (Lahaie and Pennock 2007a), anchor-
ing (Lahaie and Pennock 2007b). Coupons are significantly
different from them. As for coupons, advertisers hold the
right to decide whether to use them. However, they can-
not refuse to use the other methods, e.g., advertisers always
want to remove the reserve price but they can not. In fact,
sometimes reserve prices may have a negative effect on rev-
enue (Ostrovsky and Schwarz 2011). Higher reserve prices
make the auction less attractive which results in fewer par-
ticipated advertisers.

In this work, we generalize (Shen et al. 2020b) to the VCG
auction, including the combination with reserve pricing. The
intuition is that the VCG auction (with heterogeneous slots)
can be decomposed into some tractable sub-VCG auctions
(with homogeneous slots). Our contributions can be summa-
rized as follows: 1) We generalize the application of coupons
for revenue maximization in advertising systems to more re-
alistic scenarios (i.e., VCG auctions). 2) We propose algo-
rithms for coupon optimization using the properties of the
VCG auction, along with the combination with reserve pric-
ing. 3) Based on both synthetic data and industrial data, ex-
tensive experiments are conducted to demonstrate the effec-
tiveness of our algorithms.
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Related Works
Our work is related to the revenue-maximizing mechanism
design. Myerson (1981) studies the optimal auction where
advertisers should be ranked in descending order of their
virtual values. If nobody has positive virtual values, the item
would not be sold to anyone. However, Roughgarden and
Schrijvers (2016) argus that this setting relies heavily on the
exact estimation of the advertisers’ value distribution and
can be sensitive to estimation errors. Thus, simpler mecha-
nisms are applied in industry, e.g., VCG and GSP auction.
Many methods have been proposed to increase revenue in
these auctions. Reserve pricing is one of the most widely
studied methods: Hartline and Roughgarden (2009) presents
how to use a reserve-price-based VCG auction to approxi-
mate the optimal one. Jin et al. (2019) proves a tight approx-
imation ratio for anonymous reserve prices. Another method
is boosting (Golrezaei et al. 2017) where the seller assigns a
boost value to each advertiser which can transform his reg-
ular bid into a boosted one. Besides, squashing (Lahaie and
Pennock 2007a) and anchoring (Lahaie and Pennock 2007b)
are also widely used methods in industry (Chawla, Fu, and
Karlin 2014; Huang, Mansour, and Roughgarden 2015; Tang
and Wang 2016; Tang and Sandholm 2011).

Our work is also related to automated mechanism de-
sign. Conitzer and Sandholm (2002) introduces the auto-
mated mechanism design approach, where the mechanism
is computationally created for the specific problem instance
at hand. Learning theory tools such as pseudo-dimension
have been used to prove strong guarantees in auction set-
tings (Morgenstern and Roughgarden 2015, 2016). In a sim-
ilar direction, bounds on the sample complexity have also
been developed (Hsu et al. 2016). Mohri and Medina (2014)
uses DC programming to learn anonymous reserve price
for the second-price auction. Duetting et al. (2019) uses
deep learning to design revenue-maximizing mechanisms
and deals with the incentive constraint via regret network.
Shen, Tang, and Zuo (2019) also handles the same problem
but can always return exactly incentive compatible mecha-
nisms. Recently, Tang (2017) uses reinforcement learning to
design and optimize mechanisms in dynamic industrial en-
vironments and has achieved success in industry (Cai et al.
2018a,b; Shen et al. 2020a).

Preliminaries
In this section, the setting of VCG auction with coupons in
advertising systems will be introduced first. Then the formal
problem of learning to design coupons will be defined.

VCG Auction with Coupons in Advertising
Systems
There are n bidders [n] = {1, 2, . . . , n} andm slots (usually,
n� m). We will refer to ‘ad i’ as the advertisement submit-
ted by bidder i. Each bidder can occupy at most 1 slot and
each slot can be allocated to at most 1 bidder. Let vi be the
private value which quantifies the value of a click for bidder
i. And vi is drawn from a publicly known distribution Fi.
For convenience, let v = (v1, . . . , vn) denote the value pro-
file, and let v−i = (v1, . . . , vi−1, vi+1, . . . , vn) denote the

value profile of all bidders except bidder i. Similarly, we can
define the bid profile b and b−i. We only use αj ∈ [0, 1] to
denote the click-through-rate of ad i when it is allocated to
slot j as (Edelman, Ostrovsky, and Schwarz 2007) do, which
implies that the number of times a particular slot is clicked
does not depend on the ad in this slot. The reason is that the
click-through-rate can be decomposed into position effect
and ad effect while the ad effect can be taken into account in
the private valuation. Besides, αj ≥ αj′ holds when j < j′.
In response to the bid profile, VCG auction determines how
to allocate each bidder and how much each bidder has to
pay according to some allocation rule and payment rule. To
be specific, the allocation rule is a function π that maps the
bid profile b to an n-dimensional vector indicating the quan-
tity of clicks allocated to each bidder, i.e., π : Rn 7→ [0, 1]n;
The payment rule is a function p : Rn 7→ Rn+ that maps the
bid profile b to an n-dimensional non-negative vector spec-
ifying the payment for each bidder. For simplicity, we use
π(b) and π, p(b) and p interchangeably. If bidder i is allo-
cated to slot j, then πi = αj , and if bidder i does not win
the auction, then πi = 0. These rules are specified as:
• Allocation rule: π(b) ∈ arg maxπ′

∑n
i=1 π

′
ibi.

• Payment rule: pi(b) = maxπ′
∑
i′ 6=i π

′
i′bi′−

∑
i′ 6=i πi′bi′ .

Coupons work as follows. Before submitting bids, each
bidder i will be informed that he will be provided with a
constant coupon ci ≥ 0. This coupon can get ci off the
payment when he wins. Hence bidders would change their
regular bids depending on their values and coupons, i.e.,
bi = bi(vi; ci). Therefore, the allocation rule and payment
rule of VCG auction with coupons would be:

π(b) ∈ arg max
π′

n∑
i=1

π′ibi,

pi(b) = max
π′

∑
i′ 6=i

π′i′bi′ −
∑
i′ 6=i

πi′bi′ − πici.
(1)

The utility of bidder i is ui(b) = πivi − pi, and the revenue
of platform would be:

Rev(v, c) =
n∑
i=1

pi. (2)

In what follows, let (i) denote the order of bidders satisfying
if i < i′, then [b(i) > b(i′)] ∨ [(b(i) > b(i′)) ∧ (c(i) ≤ c(i′))],
that is, (i) denotes the bidder with the i-th highest bid (if
there are more than one, then choose the bidder with the
least coupon).

Learning Formulation
There are two sets of data – the training data and the testing
data, containing features and bids. Both sets of data are gen-
erated by VCG auction without coupons. And our goal is to
train a model which can provide coupons for bidders in each
auction and maximize the revenue for platform. Since VCG
auction is a truthful mechanism, in these sets of data, we can
regard bids as bidders’ values.

Let us define the problem formally. We consider a generic
feature space X with the label space B = Rn+ consisting
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of the value profile v. We regard (xt,vt) as a data instance
where xt,vt denote the feature vector and value profile in
auction t, respectively. The hypothesis function h : X →
Rn+ is used to set coupons ct = h(xt). Thus, the objective is
to select a hypothesis function h out of some hypothesis set
H to minimize the corresponding empirical loss:

LS(h) = − 1

T

T∑
t=1

Rev(vt;h(xt)). (3)

where S = ((x1,v1), . . . , (xT ,vT )). Let αtj , p
t
i and πti de-

note the corresponding notations in auction t. The goal is to
learn the predictor which can work for any advertiser if cor-
responding features can be provided. For the sake of descrip-
tion, we use a new hypothesis function hi to set the coupon
for bidder i as cti = hi(x

t
i), where xti denotes the feature for

bidder i in auction t. For convenience, in what follows we
will omit the superscript t when there is no confusion.

It is worth noting that all proofs can be found in supple-
mentary materials due to limited space.

Problem Analysis
In this section, we will introduce the property of coupons
and show the difficulty of coupon optimization first. Then,
the comparison with related work would be presented.

Proposition 1. In VCG auction with coupons, the dominant
strategy of bidder i is using coupon ci and bidding vi + ci.

Proposition 1 denotes the dominant strategy of bidders in
VCG auction with coupons. Therefore, we can use vi+ ci to
denote the bid of bidder i when he is provided with coupon
ci in experiments. Thus we can define the revenue of VCG
auction with coupons as Equation (4).

Rev(v; c) =

m∑
j=1

( m∑
i=j

αib(i+1) −
m∑

i=j+1

αib(i) − αjc(j)
)

=
m∑
j=1

[
j · (αj − αj+1)(v(j+1) + c(j+1))− αjc(j)

]
(4)

Definition 1 (No-feature case). In this case, features are
not considered, and the coupon optimization problem is to
minimize the following empirical loss:

LS(c) = − 1

T

T∑
t=1

Rev(vt; c), (5)

where c is an n−dimensional vector specifying coupons
which need to be optimized.

Proposition 2. In the no-feature case, the optimization of
coupons in VCG auction (i.e., Equation (5)) is NP-hard.

Proposition 2 points out coupon optimization is hard,
so we use the coordination descent method to optimize
coupons. In this method, instead of optimizing coupons si-
multaneously, we optimize one of them while fixing the oth-
ers at each time step.

Comparison with Related Work
As proposition 1 demonstrated, although coupons are op-
tional for advertisers, they still accept and use all coupons
in equilibrium. We will compare the difference between
coupons and other involuntary discount mechanism, like
boosting (Golrezaei et al. 2017) and bidding credits in
squashing (Lahaie and Pennock 2007a). Boosting and bid-
ding credits both multiply the submitted bids with a factor,
i.e., ai ∗ bi. As for boosting, there is no restriction on ai.
While for bidding credits, ai is between 0 and 1. Then in the
VCG auction, there are two differences.
• When 0 ≤ ai < 1, advertiser i prefer not to accept boost-

ing or bidding credits. However, as for coupons, advertis-
ers’ dominant strategy would always be accepting them.

• Coupons can increase the revenue in some cases where
boosting can not. For example, consider one slot and two
bidders whose values are 0 and 1. Then, boosting can not
increase the revenue since ai multiplies 0 still equals 0.
While for coupons, this would not be a problem.
Comparing with the second-price setting, several non-

trivial technical issues are raised in the VCG setting. For
example, Shen et al. (2020b) relies heavily on the fact that
given value profile v and coupons profile c−i, Rev(v; c) (as
a function of ci) has at most one discontinuous point. Hence
the surrogate loss function can be decomposed as a differ-
ence of two convex functions and DC programming can be
applied. However, in the VCG setting, the revenue function
is more complicated as Proposition 3 denotes.
Proposition 3. In VCG auction with coupons, given value
profile v and the coupon profile c−i, Rev(v; c) (as a func-
tion of ci) is not continuous, and is neither convex nor con-
cave. Actually, there can be m discontinuous points.

We use Example 1 to demonstrate Proposition 3. As illus-
trated in Figure 1, Rev(v; c) (as a function of ci) is a piece-
wise function. There can be multiple discontinuous points.
They divide the function into multiple line segments, which
can have different slopes.
Example 1. Let n = 6, m = 4, v = (5, 4, 3, 2, 1, 0) and
α = (1.0, 0.4, 0.3, 0.1). When c−6 = 0, the value of revenue
with respect to c6 is demonstrated in Figure 1.

Figure 1: The value of revenue w.r.t. c6
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Furthermore, when reserve price is taken into considera-
tion, the revenue function can be much more complicated,
making the coupon optimization harder.

Warm up
In this section, we will introduce a special case of VCG auc-
tion with coupons. As Proposition 4 denotes, we can extend
the technique in (Mohri and Medina 2014; Shen et al. 2020b)
to tackle the special case.

Definition 2 (Special case). In this case of VCG auction
with coupons, the slots are homogeneous, i.e., α1 = α2 =
· · · = αm = α.

Let subscript (j) only represent the order of bids. We
use b−i,(j) = v−i,(j) + c−i,(j) to denote the j-th high-
est bid in bid profile b−i, that is, if j < l, then the order
[b−i,(j) > b−i,(l)]∨ [(b−i,(j) = b−i,(l))∧ (c−i,(j) ≤ c−i,(l))]
is ensured. Let L(y;v, c−i) = −Rev(v; (y, c−i)) be the
negative number of the revenue as a function of ci = y,
which can be rewritten as:

L(y;v, c−i)

=



−mαb−i,(m+1) + α
∑m
j=1 c−i,(j), y ≤ b−i,(m+1) − vi

[−mαb−i,(m) + α
∑m
j=1 c−i,(j)

−α(c−i,(m) − y)+], y = b−i,(m) − vi
αy −mαb−i,(m) + α

∑m−1
j=1 c−i,(j), y > b−i,(m) − vi

−mαy −mαvi + α
∑m
j=1 c−i,(j), otherwise

(6)

Here x+ means max {x, 0}. As Proposition 4 states,
L(y;v, c−i) has at most one discontinuous point, which is
a reduction of Proposition 3.

Proposition 4. In the special case, given the value pro-
file v and the coupon profile c−i, L(y;v, c−i) has at most
one discontinuous point at y = b−i,(m) − vi. When y <
b−i,(m) − vi, L(y;v, c−i) is non-increasing and concave.
When y > b−i,(m) − vi, L(y;v, c−i) is an increasing lin-
ear function. What’s more, for all the cases, L(y;v, c−i)
achieves its minimum at y = (b−i,(m) − vi)+.

However, L(y;v, c−i) is still not a good choice for opti-
mization since L(y;v, c−i) is neither convex nor concave,
but quasi-convex in fact. And a sum of quasi-convex func-
tions does not maintain the quasi-convex property and can
have many local minima (Mohri and Medina 2014). We ex-
tend the technique in (Mohri and Medina 2014; Shen et al.
2020b) to tackle the special case:

1. We smooth Equation (6) to derive a surrogate loss func-
tion Lγ(y;v, c−i), which is training-friendly and has a
good approximation of Equation (6) theoretically.

2. We decompose Lγ as the difference of two convex func-
tions, i.e., Lγ = g1−g2. Then we apply DC programming
and coordination descent method to optimize the coupons.

Due to limited space, detailed formulas ofLγ and algorithms
are presented in the supplementary materials.

Solution for the General Case
In this section, we will discuss how to extend the afore-
mentioned special case into the general case, i.e., the click-
through-rates of different slots are also different. We decom-
pose each VCG auction into m sub-VCG auctions which
belong to the special case, and complete the coupon opti-
mization based on the decomposition. Then we study how
to combine coupons with reserve prices in our framework.

Constructing m sub-VCG Auctions

Algorithm 1 Constructing m sub-VCG auctions

1: Initialize Q = ∅.
2: for j = 1 to m do
3: Let dj = αj − αj+1, and construct a sub-VCG auc-

tion Aj as: there are n bidders, j slots, and each slot
has the same click-through-rates dj .

4: Q = Q ∪ {Aj}.
5: end for

The decomposition process is demonstrated in Algo-
rithm 1. There are m steps. At the j-th step, we construct
the j-th sub-VCG auction, where there are j slots and n
bidders, and all slots share the same click-through-rates dj .
Thus, the j-th sub-VCG auction belongs to the special case.
Furthermore, Theorem 1 denotes that given value profile v
and coupon profile c, the results of these m sub-VCG auc-
tions are equivalent to those results of the original VCG auc-
tion for both platform (in terms of revenue) and each bidder
(in terms of allocation and payment).

Theorem 1. Given value profile v and coupon profile c, the
original VCG auction and these sub-VCG auctions would
receive the same bid profile b. Besides, for bidder i, his total
payment and allocation (the sum of obtained click-through-
rates) within these sub-VCG auctions are equivalent to those
in the original VCG auction.

As a result, we present Theorem 2 to denote that by com-
puting the optimal coupon for bidder i in sub-VCG auctions,
the optimal coupon for bidder i in the original VCG auction
can also be obtained.

Theorem 2. Given v and c−i, the optimal coupon c∗i for
bidder i in the original VCG auction belongs to the follow-
ing sets

{0} ∪ {(b−i,(j) − vi)+}j∈[m],

where (b−i,(j) − vi)+ is the optimal coupon for bidder i in
the j-th sub-VCG auction Aj .

Combine with the coordinate descent method, we propose
Algorithm 2 to optimize coupon for the no-feature case.
Here λ in line 7 denotes the learning rate, ε and Kout in
line 10 are used to determine when the algorithm terminates.

Algorithm Design for the General Case
The hypothesis set H consists of linear functions whose un-
biased term is bounded, i.e., H = {h : xi 7→ ω · xi +
c0|‖ω‖ ≤ ∆} and c0 is a positive constant. Besides, ∆
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Algorithm 2 Algorithm for the no-feature case

1: Run Algorithm 1 to construct mT sub-VCG auctions.
2: Initialize c ← 0 and kout = 0, and generate a random

permutation of 1 to n as N̄ .
3: repeat
4: Set cp ← c and kout ← kout + 1.
5: for i = N̄1 to N̄n do
6: Fix c−i, calculate the optimal coupon via evaluat-

ing Equation (5) at the following O(mT ) points
and returning the best y∗.

{0} ∪ {(bt−i,(j) − v
t
i)

+}t∈[T ]
j∈[m]

7: Use λy∗ + (1− λ)ci to update ci.
8: end for
9: Generate a new random permutation N̄ if LS(c) ≥

LS(cp).
10: until ‖c− cp‖ ≤ ε or kout = Kout

is chosen to satisfy ∆ ≤ c0
max ‖xi‖ , which guarantees that

coupons are non-negative because

ω · xi + c0 ≥ c0 − |ω · xi| ≥ c0 − ‖ω‖‖xi‖
≥ c0 −∆ ·max ‖xi‖ ≥ 0.

It is worth noting that max ‖xi‖ can be bounded once we
normalize the feature space.

Note that Theorem 1 states that the results of the m sub-
VCG auctions are equivalent to those of the original VCG
auction, which holds over the T VCG auctions, thus the em-
pirical surrogate loss can be written as

T∑
t=1

m∑
j=1

Lγ(ωi · xti + c0;vt, ct−i, A
t
j), (7)

where Atj denotes the j-th constructed sub-VCG auction of
the t-th VCG auction by executing Algorithm 1, and the cor-
responding click-through-rate is dtj = αtj−αtj+1. It is worth
noting that Atj belongs to the special case. Follow the work
in (Mohri and Medina 2014; Shen et al. 2020b), we also use
the technique DC programming for optimization. Therefore,
we complete the algorithm design for the general case as
Algorithm 3. Here DCA(ωk−1

i ) (line 8) means to solve the
following optimization problem (Equation (8)),

min
||ωi||≤Λ,s

T∑
t=1

m∑
j=1

stj − δG2(ωk−1
i ) · ωi s.t. ∀j ∈ [m]



cti = ωi · xti + c0, t ∈ [T ]

stj/d
t
j ≥ cti − jbt−i,(j) +

∑j−1
l=1 c

t
−i,(l), t ∈ C

j
1 ∪ C

j
3 ∪ C

j
4

stj/d
t
j ≥ −jcti − jvti + f t,ji,1 , t ∈ Cj2

stj/d
t
j ≥ (1 +

et,ji

γdt,ji,1

)(cti − d
t,j
i,1)− jbt−i,(j) + f t,ji,1 , t ∈ C

j
2

stj/d
t
j ≥ (

et,ji

γdt,ji,1

− j)(cti − d
t,j
i,1)− jbt−i,(j) + f t,ji,2 , t ∈ C

j
3

stj/d
t
j ≥

φt,j
i

αt (cti − d
t,j
i,1)− jbt−i,(j) + f t,ji,2 , t ∈ Cj4

(8)

Algorithm 3 Algorithm for the general case

1: Run Algorithm 1 to construct mT sub-VCG auctions.
2: Initialize ω ← 0 and kout = 0, and generate a random

permutation of 1 to n as N̄ .
3: repeat
4: Set ωp ← ω and kout ← kout + 1.
5: for i = N̄1 to N̄n do
6: Use ω to initialize ω0

i , and calculate coupons for
bidders except i via ctj = ω · xtj + c0.

7: for k = 1 to K do
8: ωki ← DCA(ωk−1

i ).
9: end for

10: Use λωKi + (1− λ)ω to update ω.
11: end for
12: Set Ψ = {0.1 · (10∆/‖ω‖)0.1j |j = 0, 1, . . . , 10},

compute η∗ ∈ arg minη∈Ψ LS(η · ω) and use η∗ · ω
to update ω.

13: Generate a new random permutation N̄ if LS(ω) ≥
LS(ωp).

14: until ‖ω − ωp‖ ≤ ε or kout = Kout

where G2(ωk−1
i ) =

∑
t,j g2(ωk−1

i · xti + c0;vt, ct−i, A
t
j)

and δG2(ωk−1
i ) denotes an arbitrary element of the sub-

gradient ∂G2(ωk−1
i ). Besides, Cjk, dt,ji,1, dt,ji,2, et,ji , f t,ji,1 , f t,ji,2

and φt,ji are similar to the definitions in the special case with
just a substitution from m to j as Equation (9).

dt,ji,1 = bt−i,(j) − v
t
i , d

t,j
i,2 = bt−i,(j+1) − v

t
i , e

t,j
i = vt−i,(j) − v

t
i ,

f t,ji,1 =
∑j

l=1
ct−i,(l), f

t,j
i,2 =

∑j−1

l=1
ct−i,(l) + dt,ji,1,

φt,ji = dtj/γd
t,j
i,1 · (j(b

t
−i,(j+1) − b

t
−i,(j)) + et,ji ),

Cj1 = {t|vti ≥ bt−i,(j)}, C
j
2 = {t|vti < bt−i,(j), v

t
i ≤ vt−i,(j)},

Cj3 = {t|vti < bt−i,(j), v
t
i > vt−i,(j), (1− γ)dt,ji,1 ≥ d

t,j
i,2},

Cj4 = {t|vti < bt−i,(j), v
t
i > vt−i,(j), (1− γ)dt,ji,1 < dt,ji,2}.

(9)

Combination with Reserve Price
We combine reserve prices with coupons to further improve
the revenue by eliminating the negative payments caused by
large coupons. Let ri + ci denote the eager reserve price for
bidder iwhere ri is independent of ci, the eager reserve price
works as below.

1. The auction first eliminates the bidder who does not clear
his reserve price, then the remaining bidders form the can-
didate set S = {i|bi ≥ ri + ci}.

2. Bidders in the candidate set S are allocated according to
the allocation rule of VCG auction.

3. The payment rule can be modified as follows. If bidder i
gets the j-th slot, then he need to pay

m∑
k=j

(αk − αk+1) max{b(k+1), ri + ci} − αjci, (10)

where b(k+1) = 0 holds for k = |S|, . . . ,m if |S| ≤ m.

5721



It is worth noting that the payment (Equation (10)) must
be non-negative. Furthermore, we use Proposition 5 to
show the dominant strategy of bidders in VCG auction with
coupons when we combine reserve prices. Thus we can still
use vi + ci to denote the bid of bidder i when he is provided
with coupon ci in experiments.

Proposition 5. In VCG auction with coupons {ci} and re-
serve prices {ri + ci}, the dominant strategy of bidder i is
using coupon ci and bidding vi + ci.

Note that ri is independent of ci, we can naturally inte-
grate the reserve prices into the framework of VCG auction
with coupons once we optimize the coupon for each bidder.
For example, if we simply select ri = 0 for bidder i, then
the reserve price for bidder i is ci. Bidder i will always clear
his reserve price, but his payment can never be negative.

Experiment
In this section, we first verify the validity of the design of
surrogate loss function by comparing it with the real loss
function. Then we examine the impact of hyper-parameters
of our algorithms and verify the properties of coupons. Fi-
nally, we conduct some experiments to show the effective-
ness of our algorithms against state-of-the-art algorithms.

Data Description
We use both synthetic data and industrial data to demon-
strate the results of our experiments.

As for synthetic data, we choose three different types of
distribution to sample the value data, i.e., the uniform dis-
tribution, the Pareto distribution and the lognormal distri-
bution. To be specific, we sample T numbers from a stan-
dard distribution with fixed parameters for each bidder (i.e.,
X ∼ U(0, 1) or lnX ∼ N(0, 1)), and then each bidder
is associated with a random scale size to multiply these T
numbers as his values in T auctions.

As for industrial data, it comes from one of the biggest
short-form mobile video community in the world. We ran-
domly extract 177 million auctions from the log. Each ad-
vertiser instance contains many features, including labels,
industry category, pricing type (i.e., cost per click, cost per
mille or cost per action), budget and so on, and the number
of features for each bidder in each auction is 178. Besides,
all the bids are transformed into the interval (0, 10), and
features are normalized to satisfy ‖xi‖ ≤ 10. We choose
c0 = 10 so that ∆ = 1.

Surrogate Loss vs. Real Loss
We use synthetic data to show the difference betweenLγ and
L. For a target bidder, we randomly select related T = 50
value profiles and generate others’ coupons. Without loss of
generality, the click-through-rates are all 1. As Figure 2(a)
show, LγS is a lower bound for LS , and the difference be-
tween two functions is relatively small. Besides, Figure 2(b)
denotes that we can approach the real loss function as we
select sufficiently small γ. Similar results are also shown
on the industrial data (see in supplementary materials). Al-
though small γ is necessary to guarantee the precision accu-

racy, too small γ could make the surrogate loss function tend
to be discontinuous. γ is chosen to be 0.1 in the experiments.

(a)

(b)

Figure 2: Plot of the difference between LS and LγS on the
synthetic data. (a) LS and LγS as the function of coupon y
when γ = 0.09, where x-axis denotes the coupon y while
y-axis denotes the value of loss. (b) average difference be-
tween LS and LγS as the function of γ, where x-axis denotes
the choice of γ while y-axis denotes the difference.

Demonstration of Training Phase
We implement the algorithms for coupon optimiza-
tion, where Algorithm 3 is implemented using Gurobi
9.0 (Gurobi Optimization 2021). We first examine the im-
pact of learning rate λ in terms of revenue. The results
are shown as Figure 3(a), where Alg-2 and Alg-3 repre-
sent Algorithm 2 and 3 respectively and λ is selected from
{0.01, 0.05, 0.1, 0.5}. We can see that Alg-3 always yields
better performance than Alg-2 since it can utilize features.
Algorithms may not converge within 20 iterations when λ
is small, i.e., λ ≤ 0.1 in Alg-2 and λ = 0.01 in Alg-3.
As for Alg-2, larger λ can achieve better performance, thus
we choose λ = 0.5 in Alg-2 to guarantee convergence and
achieve better performance. While for Alg-3, although larger
λ can have higher revenue in some iterations, it is unstable
during the training phase. Hence λ is set to 0.05 in Alg-3
to maintain robustness and obtain comparable performance.
Besides, in the remaining experiments, we use ε = 0.001
and Kout = 20 in both algorithms.

We further verify the property that the payment can be
negative for some bidder when the coupon provided for him
is too large. We calculate the ratio of negative payments after
each iterations, i.e., #{(i,t)|pti≤0}

mT . As shown in Figure 3(b),

5722



(a)

(b)

Figure 3: Plot of training process. (a) revenue curve, where
x-axis denotes the iteration while y-axis denotes the corre-
sponding revenue gain. (b) ratio curve, where x-axis denotes
the iteration while y-axis denotes the corresponding ratio of
negative payments.

the payment of some bidder can be negative, but the ratio
of negative payments is small (< 0.5%). Besides, the ratio
increases to improve the revenue in the beginning, but then
tends to decrease. What’s more, the final ratio of negative
payments in Alg-3 is smaller than that in Alg-2.

Revenue Comparison
We conduct some experiments to show the effectiveness
of coupons and our algorithms. The performance metric is
ρa = Reva−Rev0

Rev0
× 100%, where Reva represents the rev-

enue achieved through the corresponding algorithm a and
Rev0 denotes the revenue obtained without these methods
in VCG auction. The following methods are compared:
• (ARP) This method sets anonymous reserve price in VCG

auction (Mohri and Medina 2014).
• (SRP) This method sets bidder-specific reserve price in

VCG auction via maximizing vi(1−Fi(vi)) (Hartline and
Roughgarden 2009).

• (BVCG) This method assigns a boost value for each bid-
der in VCG auction (Golrezaei et al. 2017).

• (Alg-2a/Alg-3a) This method combines Algorithm 2 or 3
with reserve prices ri + ci where ri = 0.

• (Alg-2b/Alg-3b) This method combines Algorithm 2
or 3 with reserve prices ri + ci where ri belongs to
arg maxvi vi(1− Fi(vi)).

Note that (Mohri and Medina 2014; Golrezaei et al. 2017)
only study the second price setting, we extend their methods

to VCG auction as ARP and BVCG (details are provided in
supplementary materials).

As for synthetic data, given the type of distribution and
the number of slots m, we randomly sample the value data
and divide the whole dataset into training data and testing
data, with training data makes up about 70%. Then we run
different algorithms on the training data and calculate ρa on
the testing data. This procedure is repeated for 20 times and
the results when m = 4 are summarized as Table 1 shows.

Method Uniform Pareto Lognormal
ARP 2.58(1.05) 8.88(2.38) 2.92(3.24)
SRP 12.16(5.98) 9.80(3.36) 21.86(9.44)

BVCG 7.51(3.32) 1.83(1.27) 6.94(2.80)
Alg-2 13.91(5.77) 3.18(2.57) 10.36(4.77)
Alg-2a 13.94(5.75) 3.28(2.57) 10.41(4.75)
Alg-2b 15.75(6.07) 9.94(3.36) 22.54(9.15)

Table 1: Performance (i.e. ρa) on synthetic data when m =
4. Numbers in the brackets denote standard deviations.

We can draw the following conclusions from Table 1.
Firstly, coupons work well on these synthetic datasets as
Alg-2 can increase the revenue by a large margin. Sec-
ondly, Alg-2 always outperforms ARP, SRP and BVCG on
the datasets sampled from uniform distribution. This is be-
cause coupons can approximate the optimal auction in (My-
erson 1981) via producing similar allocation (see in sup-
plementary materials). For other distributions, Alg-2 always
has better performance than BVCG. Thirdly, results show
the effectiveness of combining reserve prices with coupons.
Alg-2(a) outperforms Alg-2 by eliminating the negative pay-
ments and Alg-2(b) performs the best among above methods
in all datasets by setting bidder-specific reserve prices. Sim-
ilar conclusions can also be seen in the results when m 6= 4,
we demonstrate them in the supplementary materials.

Considering the limited space, we omit the experiment re-
sults on industrial data here and refer readers to the full ver-
sion of our paper.

Conclusion
In this paper, we study how to design coupons in VCG auc-
tion via a learning framework. Firstly, we derive the dom-
inant strategy of each bidder and characterize the coupons.
Then we start from a special case where slots are homoge-
neous and extend this special case to the general one via auc-
tion decomposition and complete the algorithm design. We
also combine coupons with reserve prices in our framework.
Finally, extensive experiments are conducted to demonstrate
the effectiveness of the algorithms.
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