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Abstract

We study the problem of designing posted-price mechanisms
in order to sell a single unit of a single item within a finite pe-
riod of time. Motivated by real-world problems, such as, e.g.,
long-term rental of rooms and apartments, we assume that
customers arrive online according to a Poisson process, and
their valuations are drawn from an unknown distribution and
discounted over time. We evaluate our mechanisms in terms
of competitive ratio, measuring the worst-case ratio between
their revenue and that of an optimal mechanism that knows
the distribution of valuations. First, we focus on the identical
valuation setting, where all the customers value the item for
the same amount. In this setting, we provide a mechanism
MC that achieves the best possible competitive ratio, dis-
cussing its dependency on the parameters in the case of linear
discount. Then, we switch to the random valuation setting.
We show that, if we restrict the attention to distributions of
valuations with a monotone hazard rate, then the competitive
ratio ofMC is lower bounded by a strictly positive constant
that does not depend on the distribution. Moreover, we pro-
vide another mechanism, calledMPC, which is defined by a
piecewise constant pricing strategy and reaches performances
comparable to those obtained with MC. This mechanism is
useful when the seller cannot change the posted price too of-
ten. Finally, we empirically evaluate the performances of our
mechanisms in a number of experimental settings.

Introduction
Posted-price mechanisms try to sell an item by proposing a
take-it-or-leave-it price to each arriving agent, who then de-
cides whether to buy the item or not (Chawla et al. 2010).
If an agent opts for purchasing the item, then the mech-
anism terminates; otherwise, the agent leaves without any
further possibility of buying the item, and the mechanism
goes on by proposing prices to upcoming agents. Over the
last years, growing attention has been devoted to the analysis
of posted-price mechanisms, both in the classical economic
literature (Seifert 2006) and in computer science (Babaioff
et al. 2015, 2017; Adamczyk et al. 2017; Correa et al. 2017),
within artificial intelligence and machine learning in par-
ticular (Kleinberg and Leighton 2003; Shah, Johari, and
Blanchet 2019). This is mainly motivated by the overwhelm-
ing number of online economic transactions carried out by
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posted-price mechanisms. This happens, for example, in on-
line travel agencies (e.g., Expedia), accommodation web-
sites (e.g., Booking.com), and e-commerce platforms (e.g.,
Amazon, eBay). As studied by Einav et al. (2018), an in-
creasing number of eBay users prefer buying goods via
posted prices rather than participating in auctions.

Posted-price mechanisms provide many advantages over
traditional auction-style mechanisms. From the designer’s
perspective, posting prices requires a much lower effort than
running an auction, since it avoids the burden of first elic-
iting information (the bids) from the agents, and then col-
lecting the payments. At the same time, posted-price mecha-
nisms retain most of the desirable properties of classical auc-
tions, such as truthfulness. Indeed, even though the agents
are not required to report their valuations for the item, they
are always better off deciding whether to buy the item or not
on the basis of their true valuations, without acting strate-
gically (Babaioff et al. 2017). From the agents’ perspective,
participating in a posted-price mechanism is preferable over
competing in an auction, for several reasons. For instance,
agents may prefer revealing minimal information about their
true preferences if they plan to participate in similar markets
in the future. Moreover, in some real-world settings, requir-
ing the agents to figure out their true valuations for the item
might need some additional efforts on their behalf, while an-
swering a take-it-or-leave-it offer is usually much easier.

In this work, we study posted-price mechanisms for sell-
ing a single unit of a single item within a finite period of
time, when the value of the item is discounted over time ac-
cording to an arbitrary continuous and non-increasing dis-
count function. Discounting is common in many real-world
applications and widely studied for a number of economic
situations, such, e.g., bargaining (Rubinstein 1982; Gatti,
Di Giunta, and Marino 2008) and auctions (Mao et al. 2018).
We tackle settings in which agents arrive sequentially—a
common assumptions in online mechanism design (Lavi and
Nisan 2004; Parkes 2007)—and the number of agents is un-
known a priori. In particular, following a mainstream ap-
proach in economics (see, e.g., (Mason and Välimäki 2011;
Rosenthal 2011)), we assume that agents’ arrivals are gov-
erned by a Poisson process. Remarkably, posted pricing with
Poisson arrivals has been previously investigated by Wang
(1993) and Rong, Qin, and An (2018) for undiscounted set-
tings, though without providing any theoretical result.
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We assume that each agent arriving at the mechanism has
a different initial (i.e., undiscounted) valuation for the item,
which is independently drawn according to a common prob-
ability distribution. This leads to a fundamental trade-off be-
tween setting high prices so as to achieve high revenue and,
on the other side, progressively lowering posted prices so as
to increase the probability of selling the item. Our assump-
tion is that the mechanism is only aware of the range of val-
uations, while it does not know anything about the shape of
the distribution. This is reasonable since, differently from
the actual distribution, the range of valuations can be esti-
mated from previous data or market surveys.

Lavi and Nisan (2004) and Babaioff et al. (2017) provide
the main state-of-the-art results on posted-price mechanisms
for single-item single-unit scenarios. However, their models
do not fit to our setting, since the agents’ valuations are not
discounted over time and the number of agents is known a
priori. As a result, these models do not embed an explicit
time representation and the proposed pricing strategies are
only driven by the number of agents arrived.

Our model encompasses many real-world scenarios, such
as, e.g., long-term rental of rooms and apartments. Think
of a website renting rooms to students for fixed periods of
one year. The value of a room naturally decreases over time,
reflecting the fact that a future tenant will benefit from the
room for a period shorter than one year. Moreover, the po-
tential customers arrive at the renting website according to
a stochastic process, which can be reasonably modeled by
a Poisson process whose rate parameter can be easily esti-
mated by looking at traffic logs of the website.

Original Contributions We adopt the perspective of com-
petitive analysis (Borodin and El-Yaniv 2005) and evalu-
ate our mechanisms in terms of competitive ratio, measur-
ing the worst-case ratio between their revenue and that of
an optimal mechanism that knows the distribution of valua-
tions. As it is customary in the literature (see, e.g., (Babaioff
et al. 2017; Kleinberg and Leighton 2003)), we first focus
on the identical valuation setting in which all the agents
share the same initial valuation for the item. Then, we ex-
tend our results to the random valuation setting where the
agents’ valuations are drawn i.i.d. from the same distribu-
tion satisfying the monotone hazard rate condition (when the
distributions of valuations are unrestricted, Lavi and Nisan
(2004) and Babaioff et al. (2017) show that then there is no
algorithm with good performances). In the identical valua-
tion setting, we design a posted-price mechanism MC and
prove that it is optimal, i.e., it provides the best possible
competitive ratio. In order to derive the ratio, we first iden-
tify two crucial properties that characterize optimal mech-
anisms: their undiscounted price is non-increasing in time
and they always guarantee the same fraction of the expected
revenue of an optimal mechanism that knows the agents’
valuation, independently of its actual value. For the specific
case of linear discount, we discuss how the competitive ra-
tio depends on the parameters. In the random valuation set-
ting, we first show that mechanismMC still provides good
performances by proving that its competitive ratio is lower

bounded by a constant, which does not depend on the distri-
bution of agents’ valuations. Then, motivated by real-world
scenarios in which the seller is constrained not to change the
posted prices too often, we propose a new mechanismMPC

defined by a piecewise constant pricing strategy and prove
that its performances in terms of competitive ratio are com-
parable with those obtained byMC. In conclusion, we em-
pirically compareMC with a natural adaption of the mecha-
nism proposed by Babaioff et al. (2017) to our setting, show-
ing that the latter is inefficient even without time discount-
ing. We also empirically evaluate the performances ofMC

andMPC as the frequency with which prices are allowed to
change decreases, showing that, when this is not too low,
then the performances ofMPC andMC are comparable.

Other Related Works As showed by Hajiaghayi, Klein-
berg, and Sandholm (2007) for single-item settings, posted
pricing is strictly related to the secretary problem and to
prophet inequalities; see also the work by Babaioff et al.
(2009) for single-item settings and that of Lucier (2017)
for multi-item scenarios. Differently from our model, these
works assume that the mechanism knows the probability dis-
tribution of agents’ valuations and that the agents reveal their
actual valuation for the item upon arrival. When multiple
units of the same item are available, learning approaches
based on bandit techniques are customarily adopted. In par-
ticular, Kleinberg and Leighton (2003) study an unlimited-
supply setting where the number of buyers is fixed, and de-
rive upper bounds on the regret. Several recent works extend
the results in (Kleinberg and Leighton 2003). Shah, Johari,
and Blanchet (2019) study a contextual setting, providing
a semi-parametric model that learns from the observation
of a binary outcome which stands for acceptance or rejec-
tion of the offered price. Mohri and Munoz (2014) study
revenue-maximizing learning algorithms for posted pricing
with strategic buyers. They consider a repeated game in
which, at each round, the seller offers the item at a certain
price and a strategic buyer accepts or rejects it. In that work,
the goal is to learn the buyers’ valuation for the item by min-
imizing the strategic-regret of the algorithm.

Preliminaries
We study a model in which a seller is interested in selling a
single unit of an item within a finite time period of length T .
The seller implements a posted-price mechanism by setting
a take-it-or-leave-it price at each time t ∈ [0, T ]. We denote
by p : [0, T ] → R+ the pricing strategy adopted by the
seller, with p(t) being the price offered at time t ∈ [0, T ].
The agents (i.e., the buyers) arrive sequentially over time,
according to a Poisson process with rate parameter λ > 0.

We label agents according to their order of arrival (i.e.,
agent i is the i-th agent arriving in [0, T ]). Each agent i has
a private valuation Vi for the item, drawn from a distribution
F with finite support [vmin, vmax], where vmax > vmin > 0
denote the maximum and minimum valuation, respectively.
In the following, for the ease of presentation, we normal-
ize agents’ valuations in the range [1, h], where h := vmax

vmin
.

Accordingly, we scale the support of F to [1, h]. Then, we
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denote by f the probability density function of F .
The value of the item for sale decreases over time. In par-

ticular, Vi is agent i’s initial valuation at time t = 0. We
model decreasing values by introducing a continuous non-
increasing discount function ξ : [0, T ] → [0, 1] such that
ξ(0) = 1 and ξ(T ) = 0. By letting Wi be the random vari-
able representing the arrival time of agent i, we define the
agent i’s discounted valuation as Di := Vi ξ(Wi), which
represents how much agent i is willing to pay upon her ar-
rival. As a result, whenever agent i arrives, she buys the item
if and only if Di ≥ p(Wi), i.e., her discounted valuation is
at least as large as the price offered by the mechanism.

We introduce the following additional notation. We de-
note by Is,τ := [s, s+ τ ] ⊆ [0, T ] the time interval of length
τ ∈ [0, T ] starting from time s ∈ [0, T − τ ]. The number
of agents arriving in Is,τ is a random variable denoted by
Ns,s+τ . Given τ ∈ [0, T ], the random variables Ns,s+τ are
equally distributed for all s ∈ [0, T − τ ], as the arrivals are
generated by a Poisson process. For the sake of presenta-
tion, we omit s in Ns,s+τ , denoting by Nτ the random vari-
able of the number of agents arriving in any time interval of
length τ , which follows a Poisson distribution with parame-
ter λτ . 1 Thus,NT is the random variable of the total number
of agents arriving in the overall time period. In the following,
we sometimes focus on the linear discount function, denoted
as ξlin : [0, T ] → [0, 1] with ξlin(t) := 1 − t

T . In this case,
each agent i’s discounted valuation is Di := Vi

(
1− Wi

T

)
.

Performances of Posted-Price Mechanisms
Given a deterministic posted-price mechanism M defined
by a price function pM : [0, T ] → R+, we denote by
EF [R(M)] the expected revenue that the mechanism pro-
vides to the seller. The expectation is calculated with respect
to both the Poisson arrivals and the distribution F of agents’
initial valuations. We made explicit the dependence on F , as
we will frequently refer to it along the paper.

We adopt the perspective of competitive analysis and
measure the performances of a mechanism M by compar-
ing the seller’s expected revenue with that of a benchmark
mechanismM?, which is optimal having knowledge of the
distribution F . Notice that the benchmark has no informa-
tion on the actual realizations of agents’ initial valuations,
but only on their distribution, whereas the mechanisms we
propose operate having knowledge of their range only.

Our goal is to bound the performances of our mechanisms
w.r.t. those of the benchmark M? by looking at the worst
case over the set F of possible distributions F , i.e., all those
with support [1, h]. This is captured by the following:

Definition 1. The competitive ratio of a deterministic
posted-price mechanismM is defined as:

ρ(M) := min
F∈F

ρF (M), where ρF (M) :=
EF [R(M)]

EF [R(M?)]
.

Moreover, we say that a mechanism is optimal when its com-
petitive ratio is the highest possible among all the determin-
istic posted-price mechanisms.

1By definition of Poisson distribution, P {Nτ=j}= (λτ)je−λτ

j!
.

Notice that ρ(M) ∈ [0, 1] and, for every possible dis-
tribution F ∈ F , we are guaranteed that the seller’s ex-
pected revenue EF [R(M)] provided by mechanismsM is
at least a fraction ρ(M) of that achieved byM?, i.e., it holds
EF [R(M)] ≥ ρ(M)EF [R(M?)].

As previously showed by Babaioff et al. (2017) in similar
settings, we can safely restrict our analysis to mechanisms
maintaining the bottom price for a non-negligible period of
time. Indeed, in the case in whichF places all the probability
mass on 1, then any mechanism providing a non-null seller’s
expected revenue must set the minimum price during some
time interval, otherwise no agent would buy the item.

Proposition 1. Every deterministic posted-price mechanism
M such that ρ(M) > 0 must set the minimum price
pM(t) = ξ(t) for every t in a time interval of length τ > 0.

Identical Valuation Setting
We start studying the identical valuation (IV) setting, where
all the agents share the same initial valuation v ∈ [1, h] for
the item, i.e., it holds Vi = v and Di = v ξ(Wi) for every
agent i. The IV setting is a special case of the general ran-
dom valuation model where one restricts the attention to dis-
tributions F placing all the probability mass on a single val-
uation in [1, h]. In the following, we adjust notation for ex-
pected revenues and competitive ratios accordingly, writing
Ev[R(M)] and ρv(M) instead of EF [R(M)] and ρF (M).

Our main result (Theorem 1) is to provide a deterministic
posted-price mechanism, called MC, which is optimal for
the IV setting for every discount function ξ. We also study
the specific case of a linear discount function ξlin, where
we design an optimal mechanism MC,lin (Theorem 2) that
enjoys an easily interpretable analytical description. All the
proofs are in (Romano et al. 2020).

First, we describe the shape of the benchmark mechanism
M? for the IV setting. Indeed, sinceM? knows the actual
initial valuation v, its price function pM? : [0, T ] → R+ is
such that pM?(t) = v ξ(t) for t ∈ [0, T ]. Therefore, we can
compute the expected revenue ofM? as follows:

Ev [R(M?)] :=

∫ T

0

pM?(t)λ e−λt dt =∫ T

0

v ξ(t)λ e−λt dt = v k?, (1)

where k? :=
∫ T
0
ξ(t)λ e−λt dt does not depend on v, but

only on the problem parameters T , λ, and the discount func-
tion ξ. Let us remark that the expected revenue of the bench-
mark M? defined in Equation (1) is expressed as a linear
function of v.

Optimal Mechanism for a General Discount
We start proving two lemmas that highlight two crucial prop-
erties which characterize optimal posted-price mechanisms
for the IV setting. Lemma 1 implies that the pricing strat-
egy of an optimal mechanism must be such that the undis-
counted price defined as p(t)

ξ(t) is non-increasing in t, whereas
Lemma 2 shows that any mechanism which always provides
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a constant fraction of the expected revenue of the bench-
mark, independently of the agents’ initial valuation v, is an
optimal mechanism.
Lemma 1. In the IV setting, given any deterministic posted-
price mechanism M, there always exists a deterministic
posted-price mechanismM′ with undiscounted price pM′ (t)

ξ(t)

non-increasing in t such that Ev[R(M)] ≤ Ev[R(M′)] for
every possible agents’ initial valuation v ∈ [1, h].

Notice that, since ξ is continuous and non-increasing by
definition, Lemma 1 also shows that there is always an op-
timal mechanism whose pricing strategy is non-increasing.
Moreover, by recalling Proposition 1, we can conclude that
any optimal mechanism must set the minimum price at the
end of the overall time period, i.e., during a time interval
[t0, T ] ⊆ [0, T ] defined for some t0 ∈ [0, T ). This result is
exploited to prove the following lemma.
Lemma 2. In the IV setting, let M be a deterministic
posted-price mechanism whose pricing strategy pM satisfies
pM(t) = ξ(t) for t ∈ [t0, T ] with t0 ∈ [0, T ). If the ratio
ρv(M) = Ev [R(M)]

Ev [R(M?)] forM does not depend on the agents’
initial valuation v, thenM is an optimal mechanism.

By Lemma 2, in order to find an optimal mechanism
for the IV setting, we can restrict the attention to mecha-
nisms M whose ratios ρv(M) do not depend on the ini-
tial valuation v. Therefore, since the expected revenue of
the benchmark M? is a linear function of v (see Equa-
tion (1)), we can search for an optimal mechanism among
those having an expected revenue which linearly depends
on v. This crucial observation allows us to design the opti-
mal mechanismMC in Theorem 1 by leveraging the condi-
tion Ev[R(MC)] = k v for every v ∈ [1, h], with k being a
suitably defined constant independent of v. The key insight
that allows us to derive an expression forMC is that we can
always find the desired pricing strategy pMC

among the con-
tinuous price functions such that pMC (t)

ξ(t) is non-increasing in
t ∈ [0, T ). Intuitively, using Lemma 1, we can always ex-
press the expected revenue Ev[R(MC)] as a function of the
time t∗ := sup{t ∈ [0, t0] | pMC

(t) > v ξ(t)}, which is the
first time in which pMC

intersects v ξ(t). The reason is that it
holds pMC

(t) ≤ v ξ(t) if and only if t ≥ t∗, and, thus, only
agents arriving after t∗ are willing to buy the item. By using
the relation among Ev[R(MC)] and t∗, we can find the de-
sired pricing strategy pMC

as a solution to a suitably defined
differential equation. This leads to the following theorem.
Theorem 1. In the IV setting, there exists an optimal deter-
ministic posted-price mechanism MC whose pricing strat-
egy pMC

is defined as follows:

pMC
(t) :=

{
a e

∫
b(t)dt if t ∈ [0, t0)

ξ(t) if t ∈ [t0, T ]
,

where b is a function such that b(t) := λ− λ
kζ(t) −

ζ′(t)
ζ(t) with

ζ(t) := 1
ξ(t) , whereas a, k, t0 are suitably defined constants

that do not depend on the agents’ initial valuation v.
As a byproduct of the proof of Theorem 1, we also get an

expression for the competitive ratio of the mechanismMC,
as stated by the following corollary.

T →∞ λ→∞ h→∞
t0 Θ(

√
T ) Θ(

√
T/λ) Θ(T )

ρ(MC,lin) Θ
(

1− 1√
T

)
Θ
(

1− 1√
λ

)
Θ
(

1
log2(h)

)
lim ρ(MC,lin) 1 1 0

Table 1: Values of t0 and ρ(MC,lin) as T, λ, h go to infinity.

Corollary 1. In the IV setting, mechanismMC achieves:

ρ(MC) =

∫ T−t0
0

ξ(t)λ e−λt dt∫ T
0
ξ(t)λ e−λt dt

.

Optimal Mechanism for a Linear Discount
The pricing strategy pMC

of the optimal mechanism defined
in Theorem 1 still depends on some parameters, namely a,
k, and t0, which do not admit an easy analytical formula
for a general discount function ξ. Nevertheless, they can be
expressed analytically if we restrict the attention to functions
ξ having a particular shape. In the following Theorem 2 and
Corollary 2, we analyze the case of a linear discount function
ξlin, defining an optimal mechanismMC,lin for such setting.
Theorem 2. In the IV setting with linear discount function
ξlin, there exists an optimal deterministic posted-price mech-
anismMC,lin whose pricing strategy pMC,lin is defined as:

pMC,lin(t) :=

{
h
(
1− t

T

)
eλ(1−

1
k )t+ λ

2kT t
2

if t ∈ [0, t0)
1− t

T if t ∈ [t0, T ]
,

where k := λ t0
2T−t0

2T (λ t0+lnh) and the time t0 ∈ [0, T ) is de-
fined as the unique positive real root of the following equa-
tion: 1− 1

λT

(
1 + λ t0 − e−λ(T−t0)

)
= k.

The prices posted by MC,lin decrease as a linearly dis-
counted exponential function until t = t0, starting, at time
t = 0, by setting the price equal to the maximum agents’ ini-
tial valuations h. Then, during the time interval [t0, T ], the
price function linearly decreases and equals zero in t = T .
Corollary 2. In the IV setting with linear discount function
ξlin,MC,lin achieves a competitive ratio:

ρ(MC,lin) =
1− 1

λT

(
1 + λt0 − e−λ(T−t0)

)
1− 1

λT (1− e−λT )
.

The asymptotic values of t0 and ρ(MC,lin) as T, λ, h go to
infinity are in Table 1 (see (Romano et al. 2020) for more de-
tails). In particular, ρ(MC,lin) goes asymptotically to 1 as λ
or T increases. This corresponds to having an infinite num-
ber of agents and, thus, selling the item with certainty. In-
stead, ρ(MC,lin) decreases as h increases, going asymptoti-
cally to 0 as 1

log2(h)
. The range [1, h] represents the degree

of uncertainty that the mechanism has on the agents’ valu-
ation. Therefore, ρ(MC,lin) decreases as the uncertainty in-
creases and it cannot be lower bounded by any strictly pos-
itive constant if no finite upper bound on h is known (i.e.,
when h → +∞). However, the dependency of ρ(MC,lin)
on the degree of uncertainty is logarithmic. Instead, notice
that a trivial mechanism setting the price equal to ξlin(t) for
t ∈ [0, T ] would have a competitive ration of 1

h , which de-
pends linearly on the degree of uncertainty.
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Random Valuation Setting
We now switch to the random valuation (RV) setting, where
agents’ initial valuations Vi are i.i.d. random variables de-
fined by a cumulative distribution function F with support
[1, h]. We focus on distributions F satisfying the mono-
tone hazard rate (MHR) condition. Formally, a distribution
F is MHR if the hazard rate H(x) := f(x)

1−F (x) is non-
decreasing in x. This assumption is common when studying
posted-price mechanisms that operate without knowing the
shape of the distribution of valuations (see (Babaioff et al.
2015, 2017)) and many distributions used in practice sat-
isfy it (such as, e.g., uniform, normal, and exponential dis-
tributions). Moreover, the MHR condition is necessary for
proving our main results (Theorems 3 and 4). Indeed, when
the family of possible distributions is unrestricted, one can-
not design posted-price mechanisms guaranteeing a constant
fraction of the revenue of M? independently of the distri-
bution F , as shown by Babaioff et al. (2017) for the easier
setting in which agents do not arrive stochastically. All the
proofs are provided in (Romano et al. 2020).

Auxiliary Definitions and Results We introduce the ran-
dom variable Xλτ as the maximum initial valuation of
agents arriving in an interval of length τ ∈ (0, T ]. Formally:

Xλτ := max
i∈{1,...,Nτ}

Vi.
2

Xλτ is the first order statistic of Nτ samples drawn from F
and, since agents’ arrivals are governed by a Poisson pro-
cess, its cumulative distribution function FXλτ is defined as:

FXλτ (x) :=

∞∑
j=1

P {Nτ = j}FXλτ |Nτ=j(x) =

∞∑
j=1

(λτ)je−λτ

j!
[F (x)]

j
= e−λτ(1−F (x)).

We also define Ys,λτ as the random variable representing
the maximum discounted valuation of agents arriving in an
interval Is,τ of length τ ∈ (0, T ] starting at s ∈ [0, T − τ ]:

Ys,λτ := max
i∈{1,...,Nτ}

Di.

The cumulative distribution function FYs,λτ of Ys,λτ is:

FYs,λτ (x) :=
∞∑
j=1

P {Nτ = j}FYs,λτ |Nτ=j(x) =

∞∑
j=1

(λτ)je−λτ

j!
FYs,λτ |Nτ=j(x),

where FYs,λτ |Nτ=j is the cumulative distribution function of
Ys,λτ conditioned on the event Nτ = j. Let us remark that,

2In the definition of Xλτ and Ys,λτ , overloading the notation,
we assume that the agents arriving in the considered time interval
of length τ are labeled from 1 toNτ according to their order. Their
actual labels referred to the overall period [0, T ] may be different.

by definition, FYs,λτ depends on distribution F . In the fol-
lowing, we also let YλT := Y0,λT be the random variable
representing the maximum discounted valuation of agents
arriving in the overall time period [0, T ]. In the Supplemen-
tal Material, for the specific case of a linear discount func-
tion, we show how to exploit some useful properties of Pois-
son processes so as to find an analytical expression for FYλT .
In particular, by letting Z := V U , where V and U are in-
dependent random variables distributed according to F and
U(0, 1), respectively, we obtain:

FYλT (x) :=
∞∑
j=1

(λT )je−λT

j!
[FZ(x)]

j
,

where

FZ(x) :=

{
x
∫ h
1

1
z f(z)dz if x ∈ [0, 1)

F (x) + x
∫ h
x

1
z f(z)dz if x ∈ [1, h]

.

Bounding ρ(MC) in the RV Setting
We show that mechanismMC (see definition in Theorem 1),
which is optimal in the IV setting, provides good perfor-
mances also in the RV setting. Our main result (Theorem 3)
is a lower bound on the competitive ratio of the mechanism,
which is obtained by showing that MC always provides at
least a constant fraction of the seller’s expected revenue
achieved by the benchmark M?, independently of the dis-
tribution of agents’ initial valuations F . 3 This is surprising
since, differently from M?, our mechanism works without
having knowledge about F (except for its range).

We first need some definitions and lemmas.
Definition 2. Let Is,τ be any interval of length τ ∈ (0, T ]
starting at s ∈ [0, T − τ ]. Then, the ratio between the prices
posted byMC at the endpoints of Is,τ is defined as:

κτ (s) :=
pMC

(s)

pMC
(s+ τ)

.

Intuitively, κτ (s) bounds the slope of the price function
of MC in the time interval Is,τ , which depends on both
the starting time s and the length τ of the interval. More-
over, notice that κτ (s) ≥ 1 since pMC

is non-increasing by
Lemma 1. Next, we introduce an upper bound on the price
ratios of all the time intervals of length τ , which is useful in
deriving our main result.
Definition 3. The maximum price ratio of MC over inter-
vals of length τ ∈ (0, T ] is denoted by:

κτ := max
s∈[0,T−τ ]

κτ (s).

The following lemma establishes a relation between the
price function pMC

of MC and the expected value of the
random variable XλT representing the maximum initial val-
uation of agents arriving in the overall time period. This is
crucial to prove Theorem 3.

3To prove the lower bound, we follow an approach similar to
that used by Babaioff et al. (2017) to bound the competitive ratio of
their Equal-Sample-of-Every-Scale mechanism. However, our set-
ting introduces additional challenges, since the agents’ arrivals are
stochastic and the valuations are discounted. Thus, our proofs re-
quire different techniques w.r.t. those of Babaioff et al. (2017).
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Lemma 3. In the RV setting with agents’ initial valuations
drawn from a distribution F , given τ ∈ (0, T ] and 0 < ε <
1, there exists at least an interval Is,τ of length τ ∈ (0, T ]
starting at s ∈ [0, T − τ ] such that the prices pMC

(t) posted
by mechanism MC during the time instants t ∈ Is,τ lie in

the range
[
E[XλT ]ξ(s+τ)(1−ε)

κτ
,E[XλT ]ξ(s+ τ)(1− ε)

]
.

The following two lemmas are the final pieces that we
need to prove Theorem 3. Lemma 4 establishes that, if the
distribution F is MHR, then the same holds for the distribu-
tion FXλτ of Xλτ . Lemma 5, given two intervals of length
τ and τ ′ with τ ≤ τ ′, provides a lower bound on the ex-
pected value ofXλτ which depends on the expected value of
Xλτ ′ and the logarithms of the expected number of agents’
arrivals in the two intervals, respectively λτ and λτ ′.

Lemma 4. FXλτ has non-decreasing monotone hazard rate.

Lemma 5. For every τ, τ ′ ∈ (0, T ] with τ ≤ τ ′, it holds:

E[Xλτ ]

E[Xλτ ′ ]
≥ ln (λτ)

ln (λτ ′)
.

Theorem 3. Consider the RV setting with λτ = (λT )1−ε ≥
1 − ln(e − 1) for some τ ∈ (0, T ] and 0 < ε < 1. Then,
restricted to the set F of distributions F satisfying the MHR
condition, mechanismMC has a competitive ratio that can
be lower bounded as follows:

ρ(MC) ≥ ξ(t0 + T 1−ελ−ε)(1− ε)
κτe

.

The idea of the proof is to use ρF (MC) ≥ EF [R(MC)]
E[YλT ] , fol-

lowing from the fact that EF [R(M?)] cannot be larger than
E[YλT ], which is the expected revenue achieved by an opti-
mal mechanism that knows the realization of agents’ initial
valuations and arrivals. Then, EF [R(MC)] is lower bounded
by the revenue that MC achieves in a suitably defined in-
terval Is,τ , whose existence is guaranteed by Lemma 3.
Moreover, Lemmas 3, 4, and 5, together with the proper-
ties of MHR distributions, allow us to write EF [R(MC)] ≥
E[XλT ]ξ(t0+τ)(1−ε)

κτe
, giving the result as E[YλT ] ≤ E[XλT ].

A Mechanism with a Piecewise Constant Price
We introduce a new mechanismMPC whose pricing strategy
pMPC

is a piecewise constant function. This turns out to be
useful in all the situations in which the seller is constrained
not to change the posted price too often, e.g., when the
mechanism is required to set prices for time intervals hav-
ing a given minimum length. Our main result (Theorem 4)
is a lower bound on the competitive ratio ofMPC in the RV
setting, which is comparable to that obtained forMC in The-
orem 3. Thus, we show that, even in presence of constraints
on the allowed pricing strategies, we are still able to design
mechanisms with good performances in terms of compet-
itive ratio. Clearly, MPC depends on the minimum length
requirement, which influences the resulting lower bound. In
particular,MPC is tuned by a parameter δ related to the num-
ber of time intervals in which the price must be constant.

t

h

1

Tt0

(a) τ = 1

t

h

1

Tt0

(b) τ = 0.25

Figure 1: Prices of mechanisms MC,lin (blue) and MPC,lin
(black) when h = 2.8, λ = 10, and T = 12.

Mechanism MPC works by evenly partitioning the time
interval [0, t0] into dlogδ he sub-intervals of length τ , where
δ ∈ (1, h] and t0 ∈ [0, T ] are suitably defined parameters.
Then, the remaining time [t0, T ] is organized in other sub-
intervals of length τ . As a result, [0, T ] is partitioned into⌈
T
τ

⌉
sub-intervals, which, overloading notation, we denote

by Ii := [(i− 1)τ,min{iτ, T}] for i = 1, . . . ,
⌈
T
τ

⌉
. Notice

that τ = t0
dlogδ he

, and, thus, parameters t0 and δ can be tuned
to match the required minimum length τ . The pricing strat-
egy pMPC

ofMPC is defined in such a way that the price is
constant in each interval Ii. By letting pMPC

(Ii) be the price
posted during Ii, we define the function pMPC

as follows: 4

pMPC
(Ii) :=


h
δi ξ(iτ) if i = 1, . . . , blogδ hc
ξ(iτ) if i = dlogδ he, . . . ,

⌈
T
τ

⌉
− 1.

ξ((i− 1)τ) if i =
⌈
T
τ

⌉
We compare in Figure 1 the prices ofMC,lin andMPC,lin

(i.e.,MPC with a linear discount) in a specific setting for two
values of τ . Notice thatMPC can be thought of as an exten-
sion of the Equal-Sample-of-Every-Scale (ESoES) mecha-
nism by Babaioff et al. (2017) to the more general setting
in which agents arrive stochastically according to a Poisson
process and agents’ valuations are discounted over time.

Before proving our main result, we need the following
lemma, which is the analogous of Lemma 3 working for
mechanismMPC instead ofMC.
Lemma 6. In the RV setting with agents’ initial valuations
drawn from a distribution F , given 0 < ε < 1, there
exists i = 1, . . . , dlogδ he such that the price pMPC

(Ii)
posted by MPC during the interval Ii lies in the range[
ν
δ ξ(iτ), νξ(iτ)

]
, where ν := max{1,E[XλT ](1− ε)}.

Now, we provide our main result. The idea behind its
proof is similar to the one used for Theorem 3.
Theorem 4. Consider the RV setting with λτ = (λT )1−ε ≥
1 − ln(e − 1) for some τ ∈ (0, T ] and 0 < ε < 1. Then,
restricted to the set F of distributions F satisfying the MHR
condition, mechanismMPC has a competitive ratio that can
be lower bounded as follows:

ρ(MPC) ≥ ξ((dlogδ he+ 1)T 1−ελ−ε)(1− ε)
δe

.

4Whenever T is not divisible by τ , then the last time interval is
shorter than τ . Thus, in order to satisfy the minimum length con-
straint, we set its price equal to the one in the preceeding interval.
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Figure 2: Average normalized revenue of MC, MPC,
ESoES-SS in a RV setting w. uniform distribution (h = 10).

Empirical Evaluation
We evaluate mechanisms MC, MPC, and a natural adap-
tion of the ESoES mechanism by Babaioff et al. (2017) to
stochastic settings with no time discounting (called ESoES-
SS). The pricing strategy of ESoES-SS is defined as follows.
First, we compute the prices of ESoES by setting the num-
ber of agents equal to the expected number λT of agents
arriving in [0, T ] according to a Poisson process of parame-
ter λ. Then, ESoES-SS proposes the price that ESoES would
propose to the i-th agent arrived if i ≤ λT and 1 otherwise.

We use the following parameters values for the experi-
ments: λ ∈ {1, . . . , 20}, T ∈ {10, 20, 50, 100}, and h ∈
{2, . . . , 20}. The following results do not consider time dis-
counting so as to have a fair comparison between our mech-
anisms and ESoES-SS. Further results with a linear discount
function are provided in (Romano et al. 2020).

Result #1 We study a RV setting with a uniform probabil-
ity distribution over [1, h]. For every combination of values
of λ, T, h, we run 1000 Monte Carlo simulations, evaluat-
ing the revenue provided by mechanisms ESoES-SS, MC,
andMPC. In particular, we analyze some variants of mech-
anisms MPC differing for the number of subintervals (i.e.,
Nsub) in which [0, t0] is partitioned. Furthermore, we nor-
malize the revenue provided by the mechanisms in each sim-
ulation with respect to h. We report the results in Figure 2
for T = 10 and T = 50, when h = 10. The results ob-
tained for different values of h are similar. MC and MPC
with Nsub = 232 have overlapping performances that beat
those of the other mechanisms.MPC with Nsub = 13 has a
performance close to that of the previous two mechanisms,
showing that mechanismMPC provides good performances
even with few subintervals. MPC with Nsub = 4 and
ESoES-SS have almost overlapping performances, showing
that very few subintervals are sufficient toMPC to match the
performances of ESoES-SS. The worst mechanism isMPC
with Nsub = 2. The loss of ESoES-SS w.r.t.MC averaged
over the values of λ is about 0.3h when T = 10, and 0.4h
when T = 50. Surprisingly, the performances of ESoES-SS
seem to do not strictly depend on λ and T .

5 10 15 20
0

0.5

(a) T = 10

5 10 15 20
0

0.5

(b) T = 50

Figure 3: Maximum difference between the normalized rev-
enues ofMC and ESoES-SS in an IV setting (h = 10).

Result #2 We study an IV setting. For every combination
of values of λ, T, h, and for every v ∈ {1.0, 1.5, 2.0, . . . , h},
we run 1000 Monte Carlo simulations, evaluating the nor-
malized revenue provided by mechanisms ESoES-SS and
MC. For every combination of values of λ, T, h, we cal-
culate maxv

Ev [R(MC)]−Ev [R(ESoES-SS)]
h , corresponding to

the maximum normalized loss of ESoES-SS w.r.t. MC

over all valuations v, and maxv
Ev [R(ESoES-SS)]−Ev [R(MC)]

h ,
corresponding to the maximum normalized loss of MC

w.r.t. ESoES-SS over all valuations v. These two indexes are
shown in Figure 3 for T = 10 and T = 50, when h = 10.
The results obtained for different values of h are similar. The
loss of ESoES-SS w.r.t.MC is always larger than 0.5h ex-
cept when both λ and T assume small values, while the loss
ofMC w.r.t. ESoES-SS is negligible. Furthermore, the two
losses converge to two constants as λ and T increase. This
shows that, even if there are some special settings where
ESoES-SS performs better than MC, the improvement is
negligible. Instead, mechanism MC, which is designed to
deal with stochastic arrivals, provides a very significant im-
provement. In particular, we observe that the difference be-
tween the revenue provided by ESoES-SS and that provided
byMC is maximized for small values of v close to 1, while
betweenMC and ESoES-SS for large values of v close to h.

Conclusion and Future Works
We study distribution-free posted-price mechanisms in or-
der to sell a unique item within a finite time period. In our
model, the agents arrive online according to a Poisson pro-
cess, and their valuations for the item are discounted over
time. Following a worst-case competitive analysis, we de-
sign a mechanismMC providing an optimal competitive ra-
tio in the identical valuation setting. Then, as for the random
valuation setting, we analyze the performances ofMC and
of a new mechanismMPC that is constrained to set constant
prices during time intervals having a given minimum length.
We prove that both mechanisms achieve a competitive ratio
that is constant with respect to the actual valuation when the
distribution of the valuations has a monotone hazard rate.
This shows that our mechanisms are robust even in non-
stationary markets subject to arbitrary distribution changes
preserving the same support.

In future, we will investigate hybrid settings in which our
robust mechanisms can be combined with machine learning
tools. For instance, data could be used to learn a class of
distributions, and we could design a mechanism robust with
respect to all the distributions of that class.
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Ethics Statement
Posted-price mechanisms are widely adopted in real-world
economic transactions, thanks to their simplicity: a seller
posts prices and buyers arrive sequentially, deciding whether
to accept the offer or not. Nowadays, most e-commerce web-
sites implement this form of interaction with their users. Our
mechanisms apply to concrete scenarios where the probabil-
ity distribution of buyers’ valuations is unknown, the value
of item for sale may decrease over time, and buyers’ arrivals
are stochastic. In these settings, our mechanisms can make
economic transactions more efficient and robust, allowing
agents (buyers and sellers) to find better economic agree-
ments. As we argued in the paper, our mechanisms provide
theoretical guarantees in terms of online worst-case perfor-
mance. This could have an arguably positive societal impact
when applied to real-world economic problems. However,
further research in this direction is required to prevent sce-
narios with an unbalanced reward structure, where agree-
ments may just award one side (buyers or sellers) with the
largest utilities at the expense of the others.
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Mason, R.; and Välimäki, J. 2011. Learning about the arrival
of sales. Journal of Economic Theory 146(4): 1699 – 1711.
Mohri, M.; and Munoz, A. 2014. Optimal regret minimiza-
tion in posted-price auctions with strategic buyers. In Ad-
vances in Neural Information Processing Systems, 1871–
1879.
Parkes, D. C. 2007. Online mechanisms. Cambridge Uni-
versity Press.
Romano, G.; Tartaglia, G.; Marchesi, A.; and Gatti, N. 2020.
Online Posted Pricing with Unknown Time-Discounted Val-
uations. arXiv preprint arXiv:2012.05774 .
Rong, J.; Qin, T.; and An, B. 2018. Dynamic pricing for
reusable resources in competitive market with stochastic de-
mand. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 4718–4726.
Rosenthal, E. C. 2011. A Pricing Model for Residential
Homes with Poisson Arrivals and a Sales Deadline. The
Journal of Real Estate Finance and Economics 42(2): 143–
161.
Rubinstein, A. 1982. Perfect Equilibrium in a Bargaining
Model. Econometrica 50(1): 97–109.
Seifert, S. 2006. Posted price offers in internet auction mar-
kets, volume 580. Springer Science & Business Media.
Shah, V.; Johari, R.; and Blanchet, J. 2019. Semi-Parametric
Dynamic Contextual Pricing. In Advances in Neural Infor-
mation Processing Systems, 2363–2373.
Wang, R. 1993. Auctions versus posted-price selling. The
American Economic Review 838–851.

5689


