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Abstract

Game theory has been increasingly applied in settings where
the game is not known outright, but has to be estimated by
sampling. For example, meta-games that arise in multi-agent
evaluation can only be accessed by running a succession of
expensive experiments that may involve simultaneous de-
ployment of several agents. In this paper, we focus on α-rank,
a popular game-theoretic solution concept designed to per-
form well in such scenarios. We aim to estimate the α-rank
of the game using as few samples as possible. Our algorithm
maximizes information gain between an epistemic belief over
the α-ranks and the observed payoff. This approach has two
main benefits. First, it allows us to focus our sampling on the
entries that matter the most for identifying the α-rank. Sec-
ond, the Bayesian formulation provides a facility to build in
modeling assumptions by using a prior over game payoffs.
We show the benefits of using information gain as compared
to the confidence interval criterion of ResponseGraphUCB,
and provide theoretical results justifying our method.

1 Introduction
Traditionally, game theory is applied in situations where
the game is fully known. More recently, empirical game
theory addresses the setting where this is not the case, in-
stead, the game is initially unknown and has to be interacted
with by sampling (Wellman 2006). One area in which this
is becoming increasingly common is the ranking of trained
agents relative to one another. Specifically, in the field of
Reinforcement Learning game-theoretic rankings are used
not just as a metric for measuring algorithmic progress
(Balduzzi et al. 2018), but also as an integral component
of many population-based training methods (Muller et al.
2020; Lanctot et al. 2017; Vinyals et al. 2019). In particu-
lar, for ranking, two popular solution concepts have recently
emerged: Nash averaging (Balduzzi et al. 2018; Nash 1951)
and α-rank (Omidshafiei et al. 2019).

In this paper, we aim to estimate the α-rank of a game us-
ing as few samples as possible. We use the α-rank solution
concept for two reasons. First, it admits a unique solution
whose computation easily scales to K-player games. Sec-
ond, unlike older schemes such as Elo (Elo 1978), α-rank
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is designed with intransitive interactions in mind. Because
measuring payoffs can be very expensive, it is important to
do it by using as few samples as possible. For example, play-
ing a match of chess (Silver et al. 2017) can take roughly 40
minutes (assuming a typical game-length of 40 and up to 1
minute per move as used during evaluation), and playing a
full game of Dota 2 can take up to 2 hours (Berner et al.
2019). Our objective is thus to accurately estimate the α-
rank using a small number of payoff queries.

Rowland et al. (2019) proposed ResponseGraphUCB
(RG-UCB) for this purpose, inspired by pure exploration
bandit literature. RG-UCB maintains confidence intervals
over payoffs. When they don’t overlap, it draws a conclu-
sion about their ordering, until all comparisons relevant for
the computation of α-rank have been made. While this is
provably sufficient to determine the true α-rank with a high
probability in the infinite-α regime, their approach has two
important limitations. First, since the frequentist criterion is
indirect, relying on payoff ordering rather than the α-rank,
the obtained payoffs aren’t always used optimally. Second,
it is nontrivial to include useful domain knowledge about the
entries or structure of the payoff matrix.

To remedy these problems, we propose a Bayesian ap-
proach. Specifically, we utilize a Gaussian Process to main-
tain an epistemic belief over the entries of the payoff ma-
trix, providing a powerful framework in which to supply do-
main knowledge. This payoff distribution induces an epis-
temic belief over α-ranks. We determine which payoff to
sample by maximizing information gain between the α-rank
belief and the obtained payoff. This allows us to focus our
sampling on the entries that are expected to have the largest
effect on our belief over possible α-ranks.

Contributions: Theoretically, we justify the use of in-
formation gain by showing a regret bound for a version of
our criterion in the infinite-α regime. Empirically, our con-
tribution is threefold. First, we compare to RG-UCB on styl-
ized games, showing that maximizing information gain pro-
vides competitive performance by focusing on sampling the
more relevant payoffs. Second, we evaluate another objec-
tive based on minimizing the Wasserstein divergence, which
offers competitive performance while being computationally
much cheaper. Finally, we demonstrate the benefit of build-
ing in prior assumptions.
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2 Background
Games and α-Rank A game with K players, each of
whom can play Sk strategies is characterized by its expected
payoffs M ∈ RS1×...×SK (Fudenberg and Tirole 1991).
Letting S = S1 × ... × SK be the space of pure strategy
profiles, the game also specifies a distribution over the pay-
offs associated with each player when s ∈ S is played. The
α-rank of a game is computed by first defining an irreducible
Markov Chain whose nodes are pure strategy profiles in S .
We denote the stochastic matrix defining this chain as C.
The transition probabilities of the chain C are calculated as
follows: Let σ, τ ∈ S be such that τ only differs from σ in
a single player’s strategy and let η = (

∑K
k=1(|Sk| − 1))−1

be the reciprocal of the total number of those distinct τ . Let
Mk(σ) denote the expected payoff for player k when σ is
played. Then, the probability of transitioning from σ to τ
which varies only in player k’s strategy is

Cσ,τ =

{
η 1−exp(−α(Mk(τ)−Mk(σ)))

1−exp(−αm(Mk(τ)−Mk(σ))) if Mk(τ)6=Mk(σ),

η
m otherwise.

Cσ,υ = 0 for all υ that differ from σ in more than a single
player’s strategy, Cσ,σ = 1 −

∑
τ 6=σ Cσ,τ to ensure a valid

transition distribution, and α ≥ 0,m ∈ N>0 are parame-
ters of the algorithm. We define the α-rank r ∈ R|S| as the
unique stationary distribution of the chain C (Omidshafiei
et al. 2019; Rowland et al. 2019) as α → ∞. In practice, a
large finite value of α is used, or a perturbed version of the
transition matrix C is used with an infinite α to ensure the
resulting Markov Chain C is irreducible.

Single Population α-Rank In this paper we focus on the
infinite-α regime and restrict our attention to the 2-player
single population case of α-rank which differs slightly from
above. Importantly, our method can be easily applied to mul-
tiple populations as described above in a straightforward
way, but we focus on the single population case for sim-
plicity. Let S = S1 and M(σ, τ) denote the payoff when the
first player plays σ and the second player plays τ . Note that
S1 = S2 since the single population case considers a player
playing a game against an identical player. In this particu-
lar setting, the α-rank r ∈ R|S| and the perturbed transition
matrix C ∈ RS×S is calculated as follows:

Cσ,τ =

(|S| − 1)−1(1− ε) if M(τ, σ) > M(σ, τ),

(|S| − 1)−1ε if M(τ, σ) < M(σ, τ),

0.5(|S| − 1)−1 if M(τ, σ) = M(σ, τ),

for σ 6= τ . Cσ,σ = 1 −
∑
τ 6=σ Cσ,τ again to ensure a valid

transition distribution and ε is a small perturbation to ensure
irreducibillity of the resulting chain. We abstract the above
computation into the α-rank function f :M→R|S|, where
M is the space of 2-player payoff matrices with S strategies
for each player.

Wasserstein Divergence Let p and q be probability dis-
tributions supported on X , and c : X × X → [0,∞) be a

distance. Define Π as the space of all joint probability dis-
tributions with marginals p and q. Wasserstein divergence
(Villani 2008) with cost function c, is defined as:

Wc(p, q) := minπ∈Π

∫
X×X c(x, y)dπ(x, y).

In this paper, we will utilize the Wasserstein distance be-
tween our belief distributions over α-rank, and so we set
X = ∆S−1, the (S − 1) probability simplex, and use
c(x, y) = 1

2‖x − y‖1, i.e. the total variation distance. We
will drop the suffix and denote this simply asW .

3 Related Work
There are many methods related to the ranking and eval-
uation of agents in games. Elo (Elo 1978) and TrueSkill
(Herbrich, Minka, and Graepel 2007; Minka, Cleven, and
Zaykov 2018) both quantify the performance of an agent
using a single number, which means they are unable to
model intransitive interactions. Chen and Joachims (2016)
extend TrueSkill to better model such interactions, while
Balduzzi et al. (2018) do the same for Elo, improving its
predictive power by introducing additional parameters. Bal-
duzzi et al. (2018) also re-examines the use of Nash equilib-
rium, proposing to disambiguate across possible equillibria
by picking the one with maximum entropy. However, it is
well known that computing the Nash equilibrium is com-
putationally difficult (Daskalakis, Goldberg, and Papadim-
itriou 2009) and only computationally tractable for restricted
classes of games. In this paper, we focus on α-rank (Omid-
shafiei et al. 2019) since it has been designed with intransi-
tive interactions in mind, it is computationally tractable for
N -player games and shows considerable promise as a com-
ponent of self-play frameworks (Muller et al. 2020).

Empirical Game Theory (Wellman 2006) is concerned
with situations in which a game can only be interacted
with through sampling. The most related work to ours in-
vestigates sampling strategies and concentration inequalities
for the Nash equilibrium as opposed to the α-rank. Walsh,
Parkes, and Das (2003) introduce Heuristic Payoff Tables
(HPTs) in order to choose the samples that provide the most
information about the currently chosen Nash equilibrium,
where information is quantified as the reduction in estimated
error. This differs from our approach both in the use of α-
rank as opposed to the Nash equilibrium as our solution con-
cept, and in the criterion used to select the observed payoff.
Tuyls et al. (2020) provide concentration bounds for esti-
mated Nash equilibria. Jordan, Vorobeychik, and Wellman
(2008) find Nash equilibria from limited data by using infor-
mation gain on distributions over strategies, a concept differ-
ent from our information gain on distributions over ranks.
We also utilize α-rank as the solution concept, rather than
Nash equilibria.

Muller et al. (2020) utilise α-rank as part of a PSRO
(Lanctot et al. 2017) framework. They do not use an adap-
tive sampling strategy for deciding which entries to sam-
ple, but are a natural application for applying our algorithm
(and RG-UCB). Yang et al. (2019) introduce an approximate
gradient-based algorithm which does not require access to
the entire payoff matrix at once in order to compute α-rank.
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Although their method does not require the entire payoff ma-
trix at every iteration, it is not designed for operating in the
same incomplete information setting that we explore in this
paper since they assume every entry can be cheaply queried
with no noise. Srinivas et al. (2009) prove regret bounds for
Bayesian optimization with GPs. We use their concentration
result to derive our bounds as well as as inspiration for our
information gain criterion.

ResponseGraphUCB
Closest to our work is ResponseGraphUCB (RG-UCB) in-
troduced by Rowland et al. (2019), which can be viewed
as a frequentist analogue to our method which also oper-
ates in the infinite-α regime. RG-UCB first specifies an error
threshold δ > 0 and then samples payoffs until a stopping
criteria determines the estimatedα-rank is correct with prob-
ability at least 1− δ. A key observation that RG-UCB relies
on, is that in the infinite-α regime only the ordering between
relevant payoffs is important. e.g. For pure strategy profiles
σ and τ (with payoffs Mk(σ) and Mk(τ) respectively) that
are used in the computation of the Markov Chain transi-
tion probabilities, determining whether Mk(σ) > Mk(τ) or
Mk(σ) < Mk(τ) is enough to know the transition probabil-
ity accurately (their magnitude difference |Mk(σ)−Mk(τ)|
is unimportant). RG-UCB maintains (1 − δ) confidence in-
tervals for all values of Mk(σ), and determines the ordering
between σ and τ is correct when they do not overlap. A strat-
egy profile is chosen to be sampled until all of its ordering
are correctly determined. When all orderings are correctly
determined the algorithm terminates.

Since the confidence intervals are constructed using fre-
quentist concentration inequalities, we refer to RG-UCB
as being a frequentist algorithm. In contrast, our Bayesian
perspective provides a principled method for incorporating
prior knowledge into our algorithm whereas it is much more
difficult to encode modelling assumptions and prior knowl-
edge with RG-UCB. The second important difference be-
tween our work and RG-UCB is that our information gain
criterion is a direct objective, which selects the payoffs to
sample based on how likely the received sample is to affect
the α-rank. On the other hand, RG-UCB works indirectly,
reducing uncertainty about the orderings between individual
payoffs without considering their impact on the final α-rank,
which makes it less efficient. Rowland et al. (2019) also the-
oretically justify the use of RG-UCB in the infinite-α regime
by proving sample complexity results, whereas we provide
asymptotic regret bounds for our approach which are com-
monly used to justify the sample efficiency of a Bayesian
algorithm (Srinivas et al. 2009). Rowland et al. (2019) ad-
ditionally provide a method for obtaining uncertainty esti-
mates in the infinite-α regime, which is, however, not used
as part of an adaptive sampling strategy.

4 Method
On a high level, our method works by maintaining an epis-
temic belief over α-ranks and selecting payoffs that lead to
the maximum reduction in the entropy of that belief. Fig-
ure 1 provides a pictorial overview. In the middle of the fig-
ure, we maintain an explicit distribution over the entries of

Figure 1: On the left, a belief over α-ranks is induced by a
belief over the payoff matrix shown in the middle. A hallu-
cinated belief distribution is shown on the right.

the payoff matrix. This payoff distribution induces a belief
over α-ranks, shown on the left. When deciding which pay-
off to sample, we examine hypothetical belief states after
sampling, striving to end up with a belief with the lowest
entropy. One such hypothetical, or ‘hallucinated’ belief is
shown on the right. We now describe our method formally,
first describing the probabilistic model and then the imple-
mentation.

Payoffs: Ground Truth and Belief We denote the un-
known true payoff matrix asM?. To quantify our uncertainty
about what this true payoff is, we employ a Gaussian Pro-
cess M , which also allows us to encode prior knowledge
about payoff dependencies. Our framework is sufficiently
general to allow for other approaches such as Bayesian Ma-
trix Factorization (Salakhutdinov and Mnih 2008) or prob-
abilistic methods for Collaborate Filtering (Su and Khosh-
goftaar 2009) to be used. We choose to use Gaussian Pro-
cesses due to their flexibility in encoding prior knowledge
and modelling assumptions, and their ubiquity throughout
literature.

The GP models noise in the payoffs as M̃ = M+ε, where
ε ∼ N (0, Iσ2

A). When interacting with the game sequen-
tially, the received payoffs are assumed to be generated as
mt = M?(at) + ε′t. Here, ε′t are i.i.d. random variables with
support on the interval [−σA, σA]. While it may at first seem
surprising that we use Gaussian observation noise in the GP
model, while assuming a truncated observation noise for the
actual observation, this does not in fact affect our theoret-
ical guarantees. We provide more details in Section 6. We
denote the history of interactions at time t by Ht. Because
of randomness in the observations, Ht is a random variable.
The sequence of random variables H1, H2, . . . forms a fil-
tration. We use the symbol ht to denote particular realization
of history so that ht = a1,m1, . . . , at−1,mt−1.

Belief over α-ranks Our explicit distribution over the en-
tries of the payoff matrix M induces an implicit belief dis-
tribution over the α-ranks. For all valid α-ranks r, P (r) =
P (M ∈ f−1(r)) where f−1 denotes the pre-image of r un-
der f . In other words, the probability assigned to an α-rank
r is the probability assigned to its pre-image by our belief
over the payoffs. Since r is represented implicitly, we can-
not query its mass function directly. Instead, we access r
via sampling. This is done by first drawing a payoff from
m ∼M and then computing the resulting α-rank f(m).
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Picking Payoffs to Query At time t, we query the payoff
that provides us with the largest information gain about the
α-rank. Formally,

at = arg max
a

I(r ; (M̃t(a), a) | Ht = ht)

= arg max
a

H (r | Ht = ht)

− E
m̃t∼M̃t(a)

[
H
(
r | Ht = ht, At = a, M̃t(a) = m̃t

)]
(1)

= arg min
a

E
m̃t∼M̃t(a)

[
H
(
r | Ht = ht, At = a, M̃t(a) = m̃t

)]
(2)

In Equation (1), H (r | Ht = ht) is the entropy of our cur-
rent belief distribution over α-ranks, which does not depend
on a and can be dropped from the maximization, producing
Equation (2). The expectation in (2) has an intuitive interpre-
tation as the expected negative entropy of our hallucinated
belief, i.e. belief obtained by conditioning on a sample m̃t

from the current model. In essence, we are pretending to re-
ceive a sample for entry a, and then computing what our
resulting belief over α-ranks will be. By picking the entry as
in (2), we are picking the entry whose sample will lead to the
largest reduction in the entropy of our belief over α-ranks in
expectation.

Algorithm 1 αIG algorithm. αIG(NSB) and αIG(Bin) vari-
ants differ in entropy estimator (Line 7).
1: for t = 1, 2, . . . T do
2: for a = 1, 2, . . . |S| do
3: for i = 1, 2, . . . Ne do
4: m̃t ∼ M̃t(a) . ‘Hallucinate’ a payoff.
5: Obtain hallucinated posterior payoff:

P (M̂t|Ht = ht, At = a, M̃t(a) = m̃t)

6: D = {r1, . . . , rNb}, where ri ∼ f(M̂t) i.i.d.
7: ĥi

a = ESTIMATE-ENTROPY( D )
8: end for
9: ĥa = 1

Ne

∑Ne
i=1 ĥ

i
a

10: end for
11: Query payoff at = arg mina ĥa . Implements Eq. (2).
12: end for

Implementation Our algorithm, which we refer to as αIG,
is summarized in Algorithm 1. At a high-level, αIG selects
an action/payoff to query at each timestep (Line 1). In order
to select a payoff to query as in Equation (2), we must ap-
proximate the expectation for each payoff (Line 2). In Line
4, we use our epistemic model to obtain a ‘hallucinated’ out-
come m̃t, as if we received a sample from selecting payoff a
at timestep t. In Line 5, we condition our epistemic model on
this ‘hallucinated’ sample m̃t in order to obtain our ‘halluci-
nated’ posterior over payoffs M̂t. In Line 7, we empirically
estimate the entropy of the resulting induced belief distri-
bution over α-ranks. To approximate the expectation in (2),
we average out entropy estimates obtained from Ne differ-
ent possible hallucinated payoffs in Line 9. Finally, in Line

11, we use these estimates to perform query selection as in
(2) to select a payoff to query at timestep t.

Our algorithm depends on an entropy estimator
ESTIMATE-ENTROPY, used in Line 7. We present re-
sults for 2 different entropy estimators: simple binning and
NSB. The simple binning estimator estimates the entropy
using a histogram. For comparison, we also used NSB
(Nemenman, Shafee, and Bialek 2002), an entropy estima-
tor designed to produce better estimates in the small-data
regime.

Computational Requirements The main computational
bottleneck of our algorithm is the calculations of α-rank in
Line 6 of Algorithm 1. In order to perform query selection
as in (2), we must compute the α-rank |S|×Ne×Nb times.
For our experiments on the 4x4 Gaussian game this results
in 16× 10× 500 = 80, 000 computations of α-rank (setting
Ne = 10, Nb = 500), to select a payoff to query. Rela-
tive to ResponseGraphUCB, our method thus requires sig-
nificantly more computation in order to select a payoff to
query. However, in Empirical Game Theory, it is commonly
assumed that obtaining samples from the game is very com-
putationally expensive (which is true in many potential prac-
tical applications (Berner et al. 2019; Silver et al. 2017;
Vinyals et al. 2019)). The increased computation required
by our method to select a payoff to sample should then have
a negligible impact to the overall computation time required,
but the increased sample efficiency could potentially lead to
large speed-ups.

We perform two simple optimizations when deploying the
algorithm in practice. To save computational cost, we ob-
serve the same payoff Nr times in Line 11 rather than once,
similar to rarely-switching bandits (Abbasi-yadkori, Pál, and
Szepesvári 2011). Moreover, the number of samples Nb we
can use to estimate the entropy is limited due to the compu-
tational cost of computing α-rank. In order to obtain better
differentiation between the entropy of beliefs arising from
sampling different payoffs, we heuristically perform condi-
tioning in Line 5Nc times. See Appendix for a more detailed
discussion on this.

5 Query Selection by Maximizing
Wasserstein Divergence

While the query objective proposed in (2) is backed both by
an appealing intuition and a theoretical argument (see Sec-
tion 6), it can be expensive to evaluate due to the cost of ac-
curate entropy estimation. To address this difficulty, we also
investigate an alternative involving the Wasserstein distance.
The objective we consider is

arg max
a

Em̃t∼M̃t
[W(P (r|Ht = ht),

P (r|Ht = ht, At = a, M̃t(a) = m̃t))]. (3)

Since the computation of Wasserstein distance from empiri-
cal distributions can be achieved by solving a linear program
(Bonneel et al. 2011), Equation (3) naturally lends itself to
being approximated via samples. In our implementation, we
use POT (Flamary and Courty 2017) to approximate this dis-
tance.
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Figure 2: Diagram depicting the current belief (Blue) and 2
different hallucinated beliefs (Red). We are assuming a dis-
crete distribution over α-ranks, where the belief is uniform
across the relevant circles.

The Wasserstein distance is built on the notion of cost,
which allows a practitioner the opportunity to supply addi-
tional prior knowledge. In our case, since α-ranks are prob-
ability distributions, a natural way to measure accuracy is
to use the total variation distance, which corresponds to set-
ting the cost to c(x, y) = 1

2‖x − y‖1. On the other hand,
in cases where we are interested in finding the relative or-
dering of agents under the α-rank, an alternative cost such
as the Kendall Tau metric (Fagin et al. 2006) could be used.
While we emphasize the ability of the Wasserstein diver-
gence to work with any cost, we leave the empirical study of
non-standard costs for future work.

It is important to note that the objective in (3) is quali-
tatively different to the information gain objective proposed
in (2). Figure 2 provides a diagram illustrating a major dif-
ference between the two objectives. The entropy for both
belief distributions shown in red is the same. In contrast,
the Wasserstein distance in (3) between the current belief in
blue and the hallucinated belief in red is much smaller for
the distribution on the left compared to the distribution on
the right.

6 Theoretical Results
Notions of Regret We quantify the performance of our
method by measuring regret. Our main analysis relies on
Bayesian regret (Russo and van Roy 2018), defined as

JBt = 1− Eht
[P (r = r?|Ht = ht)] , (4)

where we used r? to denote the α-rank with the highest prob-
ability under r at time t. In (4), the expectation is over real-
izations of the observation model. Since JBt , like all purely
Bayesian notions, does not involve the ground truth pay-
off, we need to justify its practical relevance. We do this by
benchmarking it against two notions of frequentist regret.
The first measures how accurate the probability we assign to
the ground truth rGT = f(M?) is

JFt = 1− Eht
[P (r = rGT|Ht = ht)] . (5)

The second measures if the mean of our payoff belief, which
we denote Mµ, evaluates to the correct α-rank

JMt = 1− Eht

[
δ
[
f(Mµ) = rGT

]]
, (6)

where the symbol δ
[
predicate

]
evaluates to 1 or 0 depending

on whether the predicate is true or false. In Section 7, we
empirically conclude that these three notions of regret are
closely coupled in practice, changing at a comparable rate.

Regret Bounds As an intermediate step before discussing
information gain on the α-ranks, we first analyze the behav-
ior of a query selection rule which maximizes information
gain over the payoffs.

πIGM(a|Ht = ht) = arg max
a

I(M̃t ; (M̃t(a), a) | Ht = ht).

(7)

The following result shows that using sampling strategy
πIGM for T timesteps leads to a decay in regret of at least
TeO(− 3√

∆2T ), proving it will incur no regret as T →∞.
Proposition 1 (Regret Bound For Information Gain on Pay-
offs). If we select actions using strategy πIGM, the regret at
timestep T is bounded as

JB
T ≤ JF

T = 1− EhT [P (r = rGT|HT = hT )] ≤ Teg(T ) (8)

where g(T ) = O(− 3
√

∆2T ).

The proof, and an explicit form of g are found in sup-
plementary material. We now proceed to our second result,
where we maximize information gain on the α-ranks di-
rectly. Consider a querying strategy that is an extension of
(1) to T -step look-ahead, defined as

πIGR = arg max
a1,...,aT

I(r ; (M̃1(a1), a1), . . . , (M̃T (aT ), aT )). (9)

We quantify regret achieved by πIGR in the proposition be-
low.
Proposition 2 (Regret Bound For Information Gain on Be-
lief over α-Ranks). If we select actions using strategy πIGR,
regret is bounded as

JBT = 1− P (r = r?|HT = hT )→ 0 as T →∞.

Proposition 2 provides a theoretical justification for
querying the strategies that maximize information gain on
the α-ranks. A more explicit regret bound (similar to Propo-
sition 1) and the proof are provided in Appendix. In practice,
to avoid the combinatorial expense of selecting action se-
quences using πIGR, we use the greedy query selection strat-
egy in equation (1). While the regret result above does not
carry over, this idealized setting at least provides some jus-
tification for information gain as a query selection criterion.

7 Experiments
In this section, we describe our results on synthetic games,
graphing the Bayesian regret JBt described in Section 6.
We also justify the use of Bayesian regret, showing that it
is highly coupled with the ground truth payoff. We bench-
mark two versions of our algorithms, αIG (Bins) and αIG
(NSB), which differ in the employed entropy estimator. We
compare to three baselines: RG-UCB, a frequentist bandit
algorithm (Rowland et al. 2019), Payoff, which maximizes
the information gain about the payoff distribution, and Uni-
form, which selects payoffs uniformly at random. RG-UCB
represents the current SOTA in this domain, Payoff repre-
sents the performance of a Bayesian method that does not
take into account the structure of the mapping between pay-
offs and α-ranks, and Uniform provides a point of reference
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Figure 3: Payoff matrices for 2 Good, 2 Bad (Left) and 3
Good, 5 Bad (Right). Best viewed in color.

as the simplest/most naive method1. A detailed explanation
of the experimental setup2 and details on the used hyperpa-
rameters are included in Appendix.

Good-Bad Games To investigate our algorithm, we study
two environments whose payoffs are shown in Figure 3. We
start with the relatively simple environment with 4 agents.
Figure 3 (Left) shows the expected payoffs, which we can in-
terpret as the win-rate. Samples are drawn from a Bernoulli
distribution with the appropriate mean. We refer to the envi-
ronment as ‘2 Good, 2 Bad’ since agents 1 and 2 are much
stronger than the other 2 agents, winning 100% of the games
against them. Since the ordering between agents 3 and 4
has no effect on the α-rank, gathering samples to determine
this ordering (highlighted in Purple) does not affect the be-
lief distribution over α-ranks. Furthermore, since we treat
this as a 1-population game, the entries highlighted in Green
where each agent plays against themselves do not affect the
α-rank. Entries that are necessary to determine the ordering
between agents 1 and 2 are the most relevant for the α-rank
and are highlighted in Red. Since agent 2 is slightly better
than agent 1, the true α-rank is (0, 1, 0, 0). However, it can
be difficult to determine the correct ordering between agents
1 and 2 without drawing many samples from these entries.
The game thus provides a model for the common scenario
of agents with clustered performance ratings.

Focusing on Relevant Payoffs Figure 4 presents the be-
havior of our method and RG-UCB on this task. As ex-
pected, RG-UCB splits its sampling between the Red entries
and the Purple entries, whereas our method concentrates its
sampling much more significantly on the relevant entries,
determining the ordering between agents 1 and 2. This is
because, in contrast to our method, RG-UCB aims to cor-
rectly determine the ordering between all entries used in the
calculating of α-rank, irrespective of whether they matter for
the final outcome.

Wasserstein Payoff Selection Does Well Comparing the
Wasserstein Criterion with Information Gain payoff section,
we can see that it enjoys better concentration of the sampling
on the Red entries, and improved performance towards the
end of training. Appendix provides a more detailed analysis
of this.

1We do not include Uniform on the regret graphs, since there is
no reasonable value we could compute for it.

2Code is available at github.com/microsoft/InfoGainalpharank.

Bayesian and Frequentist Regret Go Down Figure 5
shows the resulting performance of the methods on this task,
measured by the regret. Due to the relative simplicity of the
game, there is limited benefit to our method over RG-UCB,
but there is a clear benefit over more naive methods that sys-
tematically or uniformly sample the entries. We can see that
the Bayesian regret JBt and Frequentist regrets JFt and JMt
are highly correlated, providing empirical justification for
minimizing JBt and validating that our method is concen-
trating on the ground truth.

Comparing Entropy Estimators We also investigate a
larger scale version of 2 Good, 2 Bad with 3 good and 5
bad agents. Figure 6 shows the results, demonstrating a clear
benefit for our method using the Binning estimator for the
Information Gain or the Wasserstein objective. The perfor-
mance of the NSB entropy estimator is not surprising given
the significantly larger nature of this task compared to ‘2
Good, 2 Bad’. A necessary part of the NSB estimator is
an upper-bound on the total number of atoms in the dis-
tributions, for which we only have a crude approximation
that grows exponentially with the size of the payoff matrix.
Figure 7 shows the proportion of entries sampled for αIG
(Bins), the Wasserstein objective, and RG-UCB. Once again,
RG-UCB spends a significant part of its sampling budget de-
termining the ordering between agents that do not have an
effect on the α-rank of the game (in this task agents 3 to
8). In contrast, our methods concentrate their sampling on
the Red entries that determine the payoffs between the top 3
agents, and hence the true α-rank. In general, our algorithm
does not depend as much on accurate estimates on entropy
but on identifying the distribution with a lowest entropy, for
which the NSB estimator isn’t tuned.

Incorporating Prior Knowledge A large benefit of our
Bayesian-based approach is the ability to incorporate prior
knowledge and modelling assumptions into our model in a
principled manner. To demonstrate the benefits, we incorpo-
rate the following prior knowledge into both our algorithm
and RG-UCB: 1) M(σ, τ) + M(τ, σ) = 1. 2) Entries in
their respective blocks are equal to each other (except for
the top left block). A detailed description of the setup is in-
cluded in Appendix. Figure 8 compares the performance of
αIG, αWass, and RG-UCB on 3 Good, 5 Bad when utilizing
this prior knowledge. We can see that our approach signif-
icantly outperforms RG-UCB on this task, further demon-
strating the importance of our direct information gain ob-
jective. The results also show significantly improved sample
efficiency over the results in Figure 6, demonstrating that our
αIG and αWass are able to efficiently take advantage of the
prior knowledge supplied.

8 Conclusions
We described αIG, an algorithm for estimating the α-rank
of a game using a small number of payoff evaluations. αIG
works by maximizing information gain. It achieves compet-
itive sample efficiency and allows a way of building in prior
knowledge about the payoffs.
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Figure 4: Proportion of entries sampled on 2 Good, 2 Bad for different methods and objectives.

Figure 5: Results for 2 Good, 2 Bad. Graphs show the mean and standard error of the mean over multiple runs (shown in
brackets) of 10 repeats each.

Figure 6: Results for 3 Good, 3 Bad. Graphs show the mean and standard error of the mean over multiple runs (shown in
brackets) of 10 repeats each.

Figure 7: Proportion of entries sampled on 3 Good, 5 Bad.

Figure 8: Results on 3 Good, 5 Bad when incorporating prior knowledge into the models.
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