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Abstract

We consider approval-based committee elections, in which a
size-k subset of available candidates must be selected given ap-
proval sets for each voter, indicating the candidates approved
by the voter. A number of axioms capturing ideas of fairness
and proportionality have been proposed for this framework.
We argue that even the strongest of them, such as priceability
and the core, only rule out certain undesirable committees,
but fail to ensure that the selected committee is fair in all
cases. We propose two new solution concepts, stable price-
ability and balanced stable priceability, and show that they
select arguably fair committees. Our solution concepts come
with a non-trivial-to-construct but easy-to-understand market-
based explanation for why the chosen committee is fair. We
show that stable priceability is closely related to the notion of
Lindahl equilibrium from economics.

Introduction
A committee election is a scenario where a group of
individuals–called voters—collectively selects a size-k subset
of available candidates, for a given k. The model of commit-
tee elections describes real-life situations such as selecting
political representatives for a group of voters, selecting fi-
nalists or laureates in a contest (where voters correspond to
judges or experts who collectively select a subset of contes-
tants), deciding on locations of public facilities (Farahani and
Hekmatfar 2009; Skowron, Faliszewski, and Lang 2016), and
selecting validators in the blockchain protocol (Amoussou-
Guenou et al. 2020a,b).

A committee election rule is a function specifying how
voters’ preferences map to the collective decision on which
candidates should be selected. We focus on the model of
approval preferences, in which each voter approves a subset
of the candidates. A number of different committee election
rules have been proposed for this model (Faliszewski et al.
2017; Lackner and Skowron 2020). In order to choose the
right rule for a given scenario, one needs to be able to reason
about these rules in a principled way. Various approaches
have been proposed for this purpose. A compelling one is
the axiomatic approach, in which one formulates desirable
mathematical properties and asks which voting rules satisfy
them.

Copyright © 2021, Association for the Advancement of Artificial
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For approval-based committee elections, axioms that cap-
ture how well minorities of voters with common interests are
represented have received considerable attention in recent
years (Aziz et al. 2017; Brill et al. 2017; Sánchez-Fernández
et al. 2017; Lackner and Skowron 2018; Peters and Skowron
2020). The starting point of our discussion is that even the
strongest of these axioms fail to ensure that the selected com-
mittee is intuitively fair or proportionally representative on all
instances. We explain this via the example of the core (Aziz
et al. 2017; Fain, Munagala, and Shah 2018; Cheng et al.
2019; Jiang, Munagala, and Wang 2019; Peters and Skowron
2020).

Outcomes in the Core do not Have to be Fair
Assume that there are n voters. Each voter i specified a sub-
set of candidates Ai that she approves, and the goal is to
select a committee of exactly k candidates. The high-level
idea behind the core is that a group of voters S should be
able to decide on at least b|S|/n · kc candidates in the elected
committee. Formally, we say that a committee W is in the
core if there exists no group of voters S and no subset of
candidates T such that |T | 6 |S|/n · k and each voter from S
prefers T over W (i.e. approves more candidates in T than in
W ). The core is a very strong concept. It implies a number of
weaker properties, such as extended justified representation
(EJR) (Aziz et al. 2017), proportional justified representa-
tion (PJR) (Sánchez-Fernández et al. 2017), and justified
representation (JR) (Aziz et al. 2017). In fact, the core is so
strong that, for the time being, it is not known whether there
always exists a committee in the core for approval-based
elections. However, even this strong property can sometimes
allow dramatically unfair committees, as the example below
illustrates.
Example 1. Fix an integer L. Consider the following in-
stance with n = kL voters. Voters 1, . . . L approve can-
didates c1, . . . , ck. For each i ∈ {1, 2, . . . , k − 1} voters
iL+1, . . . , iL+L− 1 approve candidate ck+i. The remain-
ing k − 1 voters approve candidates c2k, . . . , c3k−2, each
voter approving a different candidate. This instance is de-
picted in Figure 1. The candidates correspond to the boxes;
each candidate is approved by the voters who are below the
corresponding box.

For this instance, the committee W1 = {c1, . . . , ck} (the
committee marked green) is in the core. In fact this committee
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Figure 1: The illustration of Example 1.

would be uniquely selected by the following natural rule:
“among all committees in the core (assuming it is non-empty),
select the one that maximizes the total number of approvals”.
This committee gives zero satisfaction to a majority of the
voters. One can argue that a committee that consists of the
blue candidates, along with one green candidate, e.g., W2 =
{c1, ck+1, . . . , c2k−1}, is a much fairer choice.

Similar observations have been made by Bredereck et al.
(2019) for the axiom of extended justified representation
(EJR). They observe that in practice many very different
committees satisfy EJR, and concluded that EJR on its own
does not guarantee a sensible selection of committees.

Priceability and Evidence of Fairness
The problem illustrated in Example 1 is that properties like
the core (and also EJR, PJR and JR) prevent specific patho-
logical situations, but beyond their definitions, do not provide
intuitive justifications for why a committee they allow should
be selected. In this paper, we take a different approach and
aim for solution concepts that provide explicit and intuitive
explanations for why the chosen committee is fair.

In their recent paper, Peters and Skowron (2020) intro-
duced the concept of priceability. Intuitively, it decides on a
fixed price that it will cost to add a candidate, endows each
voter with a fixed amount of virtual money, and allows voters
to spend money on buying candidates they like. Candidates
are added to the committee when voters collectively pay the
price. Priceability seeks committees which can be explained
via this process, and under which no group of voters have so
much money left over so that they could collectively buy one
more candidate. The latter condition ensures that voters were
able to spend a large chunk of their money, and may thus al-
ready have derived sufficient satisfaction from the candidates
they purchased.

This is a step in the right direction: the individual pay-
ments that voters make towards buying approved candidates
constitute an intuitive explanation and serve as evidence that
the chosen committee is fair. However, this explanation is
weak: it only requires that voters have limited leftover money,
but not that their money is spent wisely. We add a stability
condition: informally, voters should not want to change how
their money is spent. We borrow the idea of making payments
stable from the classic economic concept of Lindahl equi-
librium for public economies (Foley 1970), which ensures
fair outcomes in a model with divisible goods (Fain, Goel,
and Munagala 2016). In fact, we show that one of the two

notions we propose is closely related to (a discrete version
of) Lindahl equilibrium.

Our Contribution
We introduce two solution concepts: stable priceability (SP)
and balanced stable priceability (BSP).

SP strengthens the concept of priceability by Peters and
Skowron (2020). We show that it is a strong fairness notion.
It logically implies both the core and priceability, and also
guarantees a higher proportionality degree (Skowron 2018)
than both. In contrast to the core, whether a committee satis-
fies SP can be checked in polynomial time. We also present a
compact integer linear program for finding SP committees.

We show that, unfortunately, SP committees do not always
exist. However, through a series of extensive experiments,
we argue that “almost SP” committees often do (specifically
ones whose size is very close to k); see Appendix D for
details. Finally, we adapt the notion of Lindahl equilibrium to
the committee election context, and show that SP is closely
related to it.

One potential source of unfairness under stable priceability
is that two voters may be paying different amounts of virtual
money for the same candidate that they both approve. Our
notion of balanced stable priceability (BSP) addresses this by
requiring that any two voters paying for a candidate must pay
the same amount. We uniquely characterize BSP committees
as those returned by a variant of the recently introduced Rule
X (Peters and Skowron 2020). Similarly to SP, we show
that BSP committees do not always exist, but “almost BSP”
committees often do.

Due to space constraints, we must defer almost all proofs
to the supplementary material.

Preliminaries
For t ∈ N, let [t] = {1, 2, . . . , t}. An election is a tuple
(C,N, {Ai}i∈N , k), where:
1. C = {c1, . . . , cm} and N = [n] are sets of m candidates

and n voters, respectively;
2. For each voter i ∈ N , Ai ⊆ C denotes the set of

candidates approved by i. Conversely, for a candidate
c ∈ C, we denote by N(c) the set of voters who approve
c: N(c) = {i ∈ N : c ∈ Ai}. For clarity of presenta-
tion, we define the utility function of each voter i ∈ N
as ui(T ) = |Ai ∩ T | for all subsets of candidates (also
referred to as committees) T ⊆ C. For simplicity, for each
c ∈ C, we write ui(c) ∈ {0, 1} instead of ui({c});

3. k ∈ [m] is the number of candidates to be selected. We
say that committee W ⊆ C is feasible if |W | = k.

Proportionality of Election Rules
An election rule, or in short a rule, is a function that for each
election returns a nonempty set of feasible committees, called
winning committees.1 This paper studies group-fairness of
election rules in the approval-based model. One such concept
of fairness is the core.

1Typically, a rule selects a single winning committee; however,
we allow the possibility of ties.
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Definition 1 (The Core). Given an election, we say that a
committee W ⊆ C is in the core, if for each S ⊆ N and
T ⊆ C with |T |/k 6 |S|/n, there exists i ∈ S such that
ui(W ) > ui(T ). We say that an election ruleR satisfies the
core property if for every electionE, each winning committee
W ∈ R(E) is in the core.

Two other well-established properties in the literature—the
proportionality degree (Sánchez-Fernández et al. 2017; Aziz
et al. 2018; Skowron 2018) and extended justified representa-
tion (EJR) (Aziz et al. 2017, 2018)—provide guarantees for
cohesive groups of voters. A group S ⊆ N is `-cohesive if it
is large enough (|S| > ` · n/k) and if its members approve at
least ` common candidates (|

⋂
i∈S Ai| > `).

Definition 2 (Extended Justified Representation). A ruleR
satisfies extended justified representation (EJR) if for every
election E, each winning committee W ∈ R(E), and each
`-cohesive group of voters S, there exists a voter i ∈ S who
approves at least ` members of W .
Definition 3 (Proportionality Degree). Let f : N → R. We
say that a rule R has the proportionality degree of f , if for
every election E, each winning committee W ∈ R(E), and
each `-cohesive group of voters S, the average number of
committee members a voter from S approves is at least f(`),
that is., (1/|S|) ·

∑
i∈S ui(W ) > f(`).

It is known that EJR implies a proportionality degree of at
least f(`) = `−1

2 , and that a proportionality degree of more
than f(`) = `− 1 implies EJR (Aziz et al. 2018).

Priceability
Peters and Skowron (2020) define the concept of price sys-
tems and the related property of priceablity. A price sys-
tem is a pair ps = (p, {pi}i∈N ), where p ∈ R+ is the
price of electing one candidate, and for each voter i ∈ N ,
pi : C → [0, p] is a payment function that specifies the
amount of money a particular voter pays for the elected can-
didates. Formally, a committee W is supported by a price
system ps = (p, {pi}i∈N ) if the following conditions hold:
(C1). A voter only pays for candidates she approves, so that
pi(c) = 0 for each i ∈ N and c /∈ Ai.

(C2). Each voter has the same initial budget of 1 unit of a
virtual currency:

∑
c∈C pi(c) 6 1 for each i ∈ N .

(C3). Each elected candidate gathers a total payment of p:∑
i∈N pi(c) = p for each c ∈W .

(C4). Voters do not pay for non-elected candidates:∑
i∈N pi(c) = 0 for each c /∈W .

(C5). For each unelected candidate, her supporters have an
unspent budget of at most p: formally,

∑
i∈N(c) ri 6 p for

each c /∈W , where for each i ∈ N :
ri = 1−

∑
c′∈W pi(c

′). (1)

Given a payment function pi, it will be useful to write
pi(W ) =

∑
c∈W pi(c) for sets W ⊆ C.

A committee W is said to be priceable if there exists a
price system ps = (p, {pi}i∈N ) that supportsW (i.e., that sat-
isfies conditions (C1)–(C5)). For each k ∈ N, a feasible price-
able committee always exists; for example, Phragmén’s se-
quential rule always returns one (Peters and Skowron 2020).

Note that two voters might pay different amounts of money
for the same candidate. Further, we will consider so called
balanced price systems where this is not allowed.

Stable Price Systems
While priceability is an intuitively appealing property, on its
own it does not imply other desired fairness-related proper-
ties (except for the rather weak PJR property, see Peters and
Skowron 2020). For example, consider what we will call the
Utilitarian Priceable Rule (UPR) which picks, among price-
able committees, those that maximize the utilitarian social
welfare, i.e., total number of approvals from voters. UPR fails
EJR. In fact, as we show in Proposition 1, the proportional
degree of UPR is at most 2, which means that UPR does not
even approximate EJR up to a sublinear factor.2 Intuitively,
this means priceability provides a very weak proportionality
guarantee for cohesive groups of voters. Because the core
implies EJR, UPR also violates the core.

Proposition 1. The proportionality degree of Utilitarian
Priceable Rule is at most 2.

Corollary 1. In the approval-based committee-election
model, the Utilitarian Priceable Rule violates EJR; in fact, it
does not approximate EJR by a factor better than /̀4.

The price system constructed in the priceability definition
serves as some evidence that the committee selected is fair
to groups: no group of voters can use their leftover money
to buy a new candidate, and hence that group must already
have used most of their money to buy approved candidates.
However, this is weak evidence because the definition does
not require that the money already spent by the voters is spent
wisely. This is why priceability, on its own, does not imply
strong fairness guarantees.

In this paper, we enhance the definition of priceability by
replacing (C5) with a stronger condition which requires that
voters’ money be spent wisely. Later, we show that this is
strong enough to imply a high proportionality degree and the
core (and therefore EJR too).

Let � be a linear order over N× R+ defined as follows:

(x, p) � (y, q) ⇐⇒ x > y or (x = y and p < q). (2)

We will use (x, p) � (y, q) to model a voter who “prefers”
to pay p dollars for a committee where she approves x can-
didates than pay q dollars for committee with y approved
members. Thus, under this linear order, the voter “prefers” to
maximize her utility for the committee, and only in case of
a tie, prefers to pay less. We note that these are not the true
preferences of the voters, but rather an artificial relation that
helps us formulate our definition of stable priceability.

We say that a price system ps = (p, {pi}i∈N ) is stable if
it satisfies (C1)–(C4), and:

(S5). Condition for Stability: There exists no coalition of
voters S ⊆ N , no subset W ′ ⊆ C \W , and no collections
{p′i}i∈S (p′i : W

′ → [0, 1]) and {Ri}i∈S (with Ri ⊆ W
for all i ∈ S) such that all the following conditions hold:

2See the work of Skowron (2018) for more on EJR approxima-
tion.
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1. For each c ∈W ′:
∑

i∈S p
′
i(S) > p.

2. For each i ∈ S: pi(W \Ri) + p′i(W
′) 6 1.

3. For each i ∈ S:(
ui(W \Ri ∪W ′),pi(W \Ri) + p′i(W

′)
)
�(

ui(W ),pi(W )
)
.

A committeeW is said to be stable priceable if there exists
a stable price system ps = (p, {pi}i∈N ) that supportsW (i.e.,
that satisfies conditions (C1)–(C4) and (S5)).

In order to better understand the condition, assume (S5)
is not satisfied. Then, each voter i ∈ S can find a set Ri of
currently approved candidates such that she would “prefer” to
stop paying for Ri and to pay for W ′ instead (i.e. she would
be at least as “happy”, according to �, with (W \Ri) ∪W ′
and the new payments than withW and the old payments). In
addition, the total amount paid by the voters from S to each
candidate in W ′ would exceed the price p of a candidate.

Let us explain why we require a strict inequality in the first
condition of (S5). This way, our definition is consistent with
the standard definition of priceability; this also allows us to
deal with tie-breaking issues that lead to nonexistence of sta-
ble priceable committees in very small symmetric instances
(see Theorem 2). We note that we can use other possible
linear orders � in the definition of stable priceability; we
discuss one such alternative in Appendix B.

A Simpler Formulation of SP
Condition (S5) can be formulated in a simpler and rather
more concise form. Consider the following inequality:

∀c/∈W
∑

i∈N(c)

max

(
max
a∈W

(pi(a)) , ri

)
6 p. (3)

Here, ri is as defined in (1). Condition (3) is similar to
(S5), but only prevents a group of voters from paying for
a single new candidate. For example, we can easily observe
that (S5) for |W ′| = 1 implies (3). Indeed, assume (S5),
take c /∈ W , let W ′ = {c}, and consider i ∈ N(c). If
ri > maxa∈W (pi(a)), then set Ri = ∅ and p′i(c) = ri;
otherwise, let c′ = argmaxa∈W (pi(a)), set Ri = {c′} and
p′i(c) = pi(c

′). In both cases, voter i weakly prefers to re-
place Ri with W ′, and i can exchange Ri for W ′ within her
budget. Thus, by (S5) we to have that p >

∑
i∈S p

′
i(c):

p >
∑
i∈S

p′i(c) >
∑

i∈N(c)

max

(
max
a∈W

(pi(a)) , ri

)
.

We show the other implication in the proof of Theorem 1.
At first, it might seem that restricting to |W ′| = 1 makes

the condition weaker. For example, inequality (3) does not
imply (C1), as takingW ′ = ∅ is no longer possible. However,
surprisingly, it turns out that this is the only difference: allow-
ing |W ′| > 1 does not increase the strength of the condition.
We will show that (3) together with (C1) is equivalent to (S5).
Thus, every price system satisfying (3) is SP.

Theorem 1. Inequality (3) together with condition (C1) is
equivalent to condition (S5).

An important consequence of Theorem 1 is that (C1)–(C4)
and (3) can be formulated as a linear program, and thus, we
can efficiently check whether a given committee is SP.
Corollary 2. Given election and a committee W , it can be
checked in polynomial-time whether there exists a stable
price system supporting W .
This is in contrast to many other group fairness properties,
which are coNP-hard to check (Aziz et al. 2018). Further, one
can formulate a compact integer linear program for finding
SP committees (see Appendix C.1).

The most pressing question is whether SP committees exist
for all elections. The answer is negative. The counterexample
is provided in Appendix A.
Theorem 2. There exists an election for which no feasible
commitee is supported by a stable price system.

In Appendix D we describe the results of experiments
that we conducted for synthetic distributions of voters’ pref-
erences and for real datasets. There, we assumed that we
are allowed to return committees that are slightly smaller
or slightly larger than k. We found that it is almost always
possible to find a committee, large part of which is SP (thus,
even if an SP committee does not exist we have means to find
a committee which is “almost” SP). Conversly, our experi-
ments suggest it is possible to select an SP committee that
exceeds the desired size k only by a small magnitude.

SP versus Priceability and the Core
Stable priceability obviously implies priceability. The follow-
ing result shows that it also implies the core, and therefore,
in turn, EJR.
Theorem 3. A feasible SP committee is in the core.
Corollary 3. SP implies EJR.

The core on its own is already a formidable axiom, and
not known to be achievable in all elections. Are there any
advantages to considering an axiom that further strengthens
the core, and also strengthens priceability? We argue that
there are several advantages.

As already mentioned, a first advantage that SP has over
the core is that whether a committee is SP can be checked in
polynomial time (Corollary 2), whereas the same question
is known to be difficult for the core (see, e.g., the proof of
Theorem 2 of Aziz and Monnot 2020). Additionally, in elec-
tions like Example 1 presented in the introduction, the core
allows apparently unfair solutions (such as the committee of
all green candidates), while SP rules them out and allows
only fairer solutions (such as the committee of all blue candi-
dates and one green candidate). Moreover, an advantage that
SP has over priceability is that SP implies the core, and in
turn, EJR (Theorem 3), whereas priceability does not even
imply EJR (Corollary 1). Finally, one advantage that SP has
over both the core and priceability is that SP implies a high
proportionality degree, as the following result shows.
Theorem 4. SP implies a proportionality degree of `− 1.
In contrast, it is known that EJR only implies a proportion-
ality degree of `−1

2 (Skowron 2018), and priceability does
not imply a proportionality degree better than 2 (see Proposi-
tion 1).
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SP and Lindahl Equilibrium

The concept of (stable) priceability suggests there might ex-
ist a relation between our voting model and classic market
models for economies with public goods. In this section we
explain this relation in more detail, focusing on the most
influential equilibrium concept from the literature on pub-
lic goods—the Lindahl equilibrium, which was formalized
by Foley (1970). The relation that we explain in this sec-
tion: (i) gives additional insights into the concept of SP, and
(ii) explains the key differences that prohibit one to use the
concepts from the public economics directly for designing
voting systems.

The public economics (PE) model for committee elections
(CE), adapted from Foley (1970), is set up as follows. Each
voter is endowed with 1 dollar; thus, the total endowment
is n dollars. We imagine that there is a producer who will
set up the committee in exchange for money. The production
function π : 2C → R+ assigns to each committee W ⊆ C
the cost to the producer of producing W .3 We assume the
cost of producing a candidate is the same for all candidates,
so we use π(W ) = |W | · p for some p ∈ R+ and all W ⊆ C.

A PE price system is a collection {γi}i∈N , where each γi
is a payment function (see the definitions at the beginning of
this section). PE price systems differ from the previously con-
sidered price systems which we now call CE price systems.
In PE price systems, the endowments are fixed, while in CE
price systems they are allowed to vary. To avoid confusion
we use different symbols to denote PE and CE price system
(γi and pi, respectively).

A committeeW is in Lindahl equilibrium if there is a price
system {γi}i∈N such that the following conditions hold:

(Lin-PM). Profit maximization: For each W ′ ⊆ C it holds
that:∑
c∈W

∑
i∈N

γi(c)︸ ︷︷ ︸
total payments for the
produced public goods

− π(W )︸ ︷︷ ︸
total cost

of production

>
∑
c∈W ′

∑
i∈N

γi(c)− π(W ′).

Note that since π(∅) = 0 the above condition implies a
feasibility condition:

∑
c∈W

∑
i∈N γi(c) > π(W ) (the

total payments payed to W are sufficient to produce W ).

(Lin-UM). Utility maximization: voters spend their money
to maximise their utility. For each voter i we have that:

(a)
∑

c∈W γi(c) 6 1 (feasibility), and

3In Foley’s model (Foley 1970), the production function specifies
how private goods can be transformed into public goods. In our case,
we assume there is only one private good, money (which represents
voting power); the candidates are the public goods. Thus, as in
Foley’s model, the production function describes how private goods
can be transformed into public goods. A crucial difference to Foley’s
model is that we use an indivisible model, where each candidate
can be either bought (elected) or not, and there are no intermediate
states. Due to indivisibilities, Foley’s existence proof does not apply.
Further, in our model each candidate is available in a single copy,
which can affect decisions of the producers, and thus the prices.

(b) there is no committee W ′ with
∑

c∈W ′ γi(c) 6 1 and:(
ui(W

′),
∑
c∈W ′

γi(c)

)
�

(
ui(W ),

∑
c∈W

γi(c)

)
.

In the definition above, the relation � can be defined
arbitrarily—however, we further assume that it is equivalent
to the one defined in (2).

In the divisible PE model (where we can elect candidates
fractionally) the conditions (Lin-PM) and (Lin-UM) are al-
ways satisfiable, and the resulting committee is guaranteed
to be in the core (Foley 1970). For us, neither is true. We
start by providing an example of a profile where a Lindahl
equilibrium is not Pareto optimal.
Example 2. There are 3 candidates C = {a, b1, b2}, and 2
voters:

A(1) = {a, b1} A(2) = {a, b2}.
Assume the price for each candidate is p = 2/3 (as each voter
has 1 dollar, we can buy at most 3 candidates). Consider the
following price system:

γ1(a) = 2/3− 3/1000 γ2(a) = 2/3− 3/1000

γ1(b1) = 2/3− 2/1000 γ2(b1) = 1/1000

γ1(b2) = 1/1000 γ2(b2) = 2/3− 2/1000.

This price system witnesses that {a} is a Lindahl equilibrium.
Intuitively, the producer wants to produce a and does not
want to produce b1 nor b2. Also, each voter prefers to spend
her money on a than on b1 or b2, and cannot buy both. Yet,
{a} is Pareto-dominated by {a, b1, b2}.

The problem underlying Example 2 is that the producer
gets paid less than the cost of b1 and b2 if the producer
chooses to produce these candidates. In contrast, the pro-
ducer receives a payment of almost double the cost of a for
producing a. Thus, in this equilibrium, the producer is bet-
ter off at the cost of consumers. In the divisible model this
issue never appears: in every Lindahl equilibrium the total
payment to the producer for producing a unit of candidate c
is always equal to the cost of producing that unit. (Otherwise,
the producer would want to produce an unlimited amount of
c.) Since this equality is implied in the divisible model, it is
natural to add it as an additional property to our definition of
Lindahl equilibrium in the indivisible model.

We say that a committee W is a cost-efficient Lindahl
equilibrium (CELE) if there exists a price system {γi}i∈N
that satisfies (Lin-PM), (Lin-UM), and:

(Lin-CE). Cost-Efficiency:
∑

c∈W
∑

i∈N γi(c) 6 π(W ).

By (Lin-PM), the condition in (Lin-CE) could also be written
as an equality. Further, by (Lin-PM) and (Lin-CE) we can
infer a seemingly stronger condition, that for each c ∈W :∑

i∈N γi(c) = π(c).

Theorem 5, below, shows a close relationship between
stable priceability and Lindahl equilibrium. Let us slightly
adapt condition (S5), by making the first inequality weak,
and the third inequality strict. We refer to this condition as
(S5*) and call the resulting solution concept strict SP.
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Proposition 2. Every strict SP committee is SP.

We chose SP based on (S5) as our official definition, be-
cause strict SP does not exist even on very simple instances,
as illustrated in Example 3 below.

Example 3. Consider an election with two voters and two
candidates, a and b, both approved by one voter. The goal
is to select a committee of size k = 1. It is straighforward
to check that the only strict SP committees are ∅ and {a, b},
both of which are not feasible.

As one of our main results, we can prove that strict SP
coincides with cost-efficient Lindahl equilibrium.

Theorem 5. Cost-efficient Lindahl equilibrium results in the
same fairness notion as strict SP for the same price p.

Based on this equivalence, we can immediately deduce
several other properties of cost-efficient Lindahl equilibria.

Corollary 4. Cost-efficient Lindahl Equilibria are SP.

Corollary 5. Every feasible committee that is in a cost-
efficient Lindahl equilibrium is in the core.

The latter result mirrors Foley’s theorem in the classical
model (Foley 1970).

Summarizing, the idea of SP is very close to the idea of
Lindahl equilibrium. The key conceptional difference is that
in the public economics model, the price of the candidates
is a fixed element of the model. In our case, the price is an
adjustable part of price systems—the voters do not truly have
money, they only have preferences, and money is a virtual
concept that we use to ensure that public decisions are fair.

Balanced Price Systems
So far we have considered priceability notions where two
voters could face significantly different prices for the same
candidate. This can seem unnatural—why does one voter
need to pay much more for the same thing as another?—
and might thereby limit the usefulness of using these price
systems as explanations. Here, we will study what happens if
we insist that all voters pay the same price.

As before, we assume that in order to be selected, a can-
didate needs to collect a total payment of some value p that
is identical across candidates. Previously, we implicitly as-
sumed that whenever a candidate c is picked, all the voters
obtain utility from c’s election. Now, we will assume that vot-
ers only appreciate candidates when they had to pay for them.
More concretely, in this section we consider price systems
where for each candidate c there is one individual price ρc. A
voter i, in order to be able to derive utility from the elected
candidate c, needs to pay ρc dollars.

Motivation
As we have argued in the previous section, there is convincing
evidence that stable priceability gives strong fairness guaran-
tees. However, as we just noted, when voters pay different
prices for the same candidate, there can be cases where even
stable priceable committees can be argued to not be entirely
fair.

v1 v2 v3 v4 v5 v6 v7 v8 v9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

(a)

v1 v2 v3 v4 v5 v6 v7 v8 v9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

(b)

Figure 2: The illustration of Example 4

Example 4. Consider an election with 12 candidates and
9 voters. The voters have the following approval sets. All
9 voters approve candidates c1, c2, and c3. Further, voters
v1, v2, v3 approve c4, c5, and c6; voters v4, v5, v6 approve
c7, c8, and c9; and voters v7, v8, v9 approve c10, c11, and c12.
The committee size is k = 9. The election is depicted in
Figure 2.

Here, the committee marked green in the left-hand side
of the figure is SP. The corresponding price system can be
the following: The price is p = 1

3 . Each from the last three
voters (v7, v8 and v9) pays 1/3 for each commonly approved
candidate (c1, c2 and c3). The voters v1, v2, v3 pay 1/3 for
candidates c4, c5, and c6; the voters v4, v5, v6 pay 1/3 for
candidates c7, c8, and c9. However, the committee is arguably
not fair. A much better choice would be to pick the committee
marked blue in the right-hand side part of the figure.

The reason why the SP solution from Example 4 is not
fair is that the candidates who are approved by all the voters
(candidates c1, c2, and c3), are paid for by only a small subset
of them. Example 4 shows that the properties of committees
supported by stable price systems very much depend on the
structure of payment functions. Specifically, in Example 4
the payment functions were very unbalanced. Even though
all voters approved c1, only v7, v8, and v9 payed for it. In
a way, the mechanism “stole money” from v7, v8, and v9,
depriving them the possibility of paying for other candidates.

This example suggests that in an ideally-fair price system,
all voters who enjoy the same utility from the same candidate
should pay the same amount of money for it. We call such
price systems balanced.

Formal Definition
The notion of balanced stable priceability differs from the
notion of stable priceability in two main aspects. First,
we require that any two voters, i and j, who decide to
pay for a given candidate c must pay the same price, i.e.,
pi(c) = pj(c). Second, we allow a voter not to pay for
some elected candidates—but then the voter takes no utility
from an approved candidate, even if the candidate is elected.
This affects how we represent the committees. Now, a com-
mittee is a pair (W, {ui}i∈N ), where ui : W → {0, 1} is
a binary utility function denoting whether voter i can use
candidate c. We assume that, for each i ∈ N and c ∈ W ,
c /∈ Ai =⇒ ui(c) = 0 (voters are never interested in using
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candidates they do not approve). For convenience, we extend
the utility function to sets: for each i ∈ N and X ⊆W , we
set ui(X) =

∑
c∈X ui(c).

We say that a committee (W, {ui}i∈N ) is supported by a
balanced stable price system (BSP) ps = (p, {pi}i∈N ) if ps
satisfies conditions (C2)–(C4), and:

(E1). Balanced payments: For each c ∈ W , there exists
a value ρc such that either pi(c) = ρc, or ui(c) = 0.
Equivalently, pi(c) = ui(c) · ρc.

(E5). Condition for Stability: There exists no coalition of
voters S ⊆ N , no committee (W ′, {u′i}i∈N ) (W ′ ⊆ C \
W ) and no collections {p′i}i∈S (p′i : W

′ → [0, 1]) and
{Ri}i∈N , (with Ri ⊆ W for each i ⊆ N ) such that all
the following conditions hold:

1. For each c ∈ W ′, there exists a value ρc such that
p′i(c) = u′i(c) · ρc

2. For each c ∈W ′:
∑

i∈S p
′
i(c) > p.

3. For each i ∈ S: pi(W \Ri) + p′i(W
′) 6 1.

4. For each i ∈ S:(
ui(W \Ri) + u′i(W

′),pi(W \Ri) + p′i(W
′)
)
�(

ui(W ),pi(W )
)
.

Intuitively, (E1) implies (C1) and requires that all the vot-
ers using a candidate c pay the same for c. (E5) is similar to
(S5) with the additional requirement that the new payments
that witness breaking the stability must also be balanced.

The green committee in Example 4 is not BSP. The price
system given in the example violates condition (E5): all the
voters would prefer to share the cost of candidate c1 (W ′ =
{c1} and ρ′(c1) = 1/9). The first three voters would prefer to
pay for c1 instead of c4 (W ′i = {c1}, Ri = {c4}), since then
the number of their representatives would not change—recall
that according to our definition of stability, a voter cannot be
represented by a candidate for whom she does not pay—but
they would need to pay for them a smaller amount of money
(they would need to pay 1/9 dollars for c1 versus 1/3 dollars
for c4). Similarly, voters v4, v5, and v6 would prefer to pay
for c1 instead of c7 (W ′i = {c1}, Ri = {c7}). Finally, the
last 3 voters would be happy with the change (W ′i = {c1},
Ri = {c1}) since the individual price they would need to pay
for c1 would be lower (1/9 instead of 1/3).

Besides being an intuitively appealing property, BSP also
implies some other well-known fairness properties, like EJR.

Proposition 3. Every feasible BSP committee satisfies EJR.

A Characterization of BSP Committees
Like in the case of SP, imposing |W ′| 6 1 in the definition
of BSP does not reduce the strength of the notion. Indeed,
below we present the analogue of Theorem 1 for (E5), (E1)
and a suitably modified inequality (3):

∀c/∈W∀S⊆N(c)|S|min
i∈S

max

(
max
c′∈W

(pi(c
′)) , ri

)
6 p (4)

Theorem 6. Inequality (4) together with condition (E1) is
equivalent to condition (E5).

This result allows us to prove that BSP committees can
be found and verified in polynomial time, as stated in the
following theorem:
Theorem 7. It can be verified in polynomial time whether a
given committee is BSP. Besides, for given election instance
and price p, a BSP committee can be found in polynomial
time.

We discuss this issue in detail in Appendix A.10—
intuituvely, we design a voting rule computable in polynomial
time characterizing the set of BSP committees. This rule is
a slight modification of a rule that was recently proposed by
Peters and Skowron (2020) under the name of Rule X.

Basing on the characterization, in Appendix C.2 we de-
scribe a polynomial-time heuristic algorithm for finding BSP
committees of a specified size k.

Existence
Like for SP, one could wonder whether BSP committees
always exist, that is exist for every size k. The answer again
is negative.
Theorem 8. There exists an election for which no feasible
committee is supported by an BSP price system.

Using heuristic algorithms, we can show that in practice,
committees which are “almost” BSP exist. In Appendix D
we describe experiments that provide quantive arguments for
the viability of this approach.

Conclusion
In this paper we have introduced two market-based solution
concepts that allow to reason about, explain, and justify fair-
ness of the outcome of an election to voters. We specifically
focussed on approval-based committee elections, though our
concepts generalize to participatory budgeting with cardinal
utilities (we discuss this generalization in Appendix E). We
have shown relations between our notions of stable price-
ability and known concepts of fairness and stability from the
literature, such as EJR, core, proportionality degree, and Lin-
dahl equilibrium. We have characterized the stable-priceable
outcomes using simpler formulas, which allowed us to ob-
tain more efficient algorithms for finding stable-priceable
outcomes. As a consequence, we have characterized a close
variant of Rule X as the only rule that returns BSP commit-
tees. Although SP/BSP committees do not always exist, our
algorithms allow to find committees which are close to be-
ing SP/BSP—through extensive experiments we have shown
that these algorithms can effectively find stable-priceable
committees which are almost feasible.
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