
From Behavioral Theories to Econometrics:
Inferring Preferences of Human Agents from Data on Repeated Interactions

Gali Noti
Harvard University

The Hebrew University of Jerusalem
galinoti@gmail.com

Abstract

We consider the problem of estimating preferences of human
agents from data of strategic systems where the agents re-
peatedly interact. Recently, it was demonstrated that a new
estimation method called “quantal regret” produces more ac-
curate estimates for human agents than the classic approach
that assumes that agents are rational and reach a Nash equilib-
rium; however, this method has not been compared to meth-
ods that take into account behavioral aspects of human play.
In this paper we leverage equilibrium concepts from behav-
ioral economics for this purpose and ask how well they per-
form compared to the quantal regret and Nash equilibrium
methods. We develop four estimation methods based on es-
tablished behavioral equilibrium models to infer the utilities
of human agents from observed data of normal-form games.
The equilibrium models we study are quantal-response equi-
librium, action-sampling equilibrium, payoff-sampling equi-
librium, and impulse-balance equilibrium. We show that in
some of these concepts the inference is achieved analyti-
cally via closed formulas, while in the others the inference
is achieved only algorithmically. We use experimental data
of 2x2 games to evaluate the estimation success of these be-
havioral equilibrium methods. The results show that the es-
timates they produce are more accurate than the estimates
of the Nash equilibrium. The comparison with the quantal-
regret method shows that the behavioral methods have bet-
ter hit rates, but the quantal-regret method performs better in
terms of the overall mean squared error, and we discuss the
differences between the methods.

1 Introduction
Suppose that we are looking at data generated by several hu-
man agents repeatedly playing a game. In the data we can
observe the actions played by each player in each period of
play. However, the data do not contain the players’ true pref-
erences (“values”), which are the private information of each
player. In many multi-agent strategic applications there are
large amounts of such data (e.g., bidding data from online
auctions), and these private values of the agents, which ac-
tually drive the actions they choose to play, are required as a
crucial first step before performing any analysis on the data.
For example, the values are needed to determine whether the
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game results are efficient, whether the game rules can be im-
proved, or in order to test any theoretic behavioral model on
the data.

In order to draw estimates of the values from the data, it
is necessary to make assumptions about the way the players
behave. The classic approach to this econometric estimation
task is to assume that the players are in a Nash equilibrium.
This assumption provides mathematical equations that al-
low us to extract estimates for the parameters of interest.
However, behavioral studies have demonstrated how Nash
equilibrium does not always describe human play (see, e.g.,
(Kagel and Roth 2016; Goeree and Holt 2001)).

In a recent study, a new estimation method called “quantal
regret” was suggested as more suitable for the case of human
players (Nisan and Noti 2017b). While rational players are
expected to minimize their regret in the repeated game, the
quantal-regret method only assumes that players are more
likely to act in a way that gives them lower regret.1 The
authors demonstrated on data from controlled experiments
with human players—on the 2x2 game dataset of (Selten and
Chmura 2008) and on the auction dataset of (Noti, Nisan,
and Yaniv 2014)—that the quantal-regret method provides
significantly more accurate estimates than both the clas-
sic Nash equilibrium-based methods and the method that
assumes perfect regret minimization (Nekipelov, Syrgka-
nis, and Tardos 2015). The advantage of the quantal-regret
method over the regret-minimization method was further
confirmed on ad auction field data in (Noti and Syrgkanis
2021). See Appendix A for an overview of the Nash equi-
librium method and Appendix B for an overview of the
quantal-regret method.

In this work we study the benefits from using models of
behavioral equilibria for the purpose of the estimation task.
Similar to the classic approach of Nash equilibrium, the ap-
proach of using the behavioral equilibria assumes that the
players are at a stationary state; however, these stationary
states are defined in terms of behavioral considerations that
have been studied in the behavioral literature and shown
to describe human biases. Thus, these behavioral equilibria
have the potential to be suitable models for deriving esti-

1The regret is in the usual sense used in the regret-minimization
literature (Blum and Mansour 2007). This notion assumes that
players manage to achieve at least as much utility as they could
have gotten from playing any fixed action repeatedly.
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Figure 1: An example of the estimation task for a 2x2 game.
(1a) The utility matrix of Game 1 in Selten and Chmura
(2008), with the parameter that we wish to estimate hidden
by an x. The upper-left and lower-right corners in each cell
are the utilities of the row and column players, respectively.
(1b) The average empirical frequency that was obtained in
one of the sessions by human agents playing Game 1 repeat-
edly for 200 periods.

mates from data of human players. We develop new econo-
metric estimation methods that are based on behavioral equi-
librium models, and ask: How well do these behavioral esti-
mation methods succeed in providing accurate estimates of
the preferences of human players?

The concepts that we study are the four behavioral equi-
libria that were analyzed in (Selten and Chmura 2008): (1)
quantal-response equilibrium (QRE), which extends Nash
equilibrium by allowing the players to make mistakes (McK-
elvey and Palfrey 1995); (2) payoff-sampling equilibrium
(PSE), in which players optimize against samples of their
payoffs from each of their own pure strategies (Osborne and
Rubinstein 1998); (3) action-sampling equilibrium (ASE),
in which players optimize against samples of strategies
played by the other players (Selten and Chmura 2008); and
(4) impulse-balance equilibrium (IBE), in which players re-
spond to impulses of the difference between the payoff that
could have been obtained and the payoff that has been re-
ceived, such that for all players expected upward impulses
are equal to expected downward impulses (Selten, Abbink,
and Cox 2005).

(Selten and Chmura 2008) compared the ability of these
models to predict human behavior in repeated 2x2 games
with unique mixed strategy equilibria. They tested the dif-
ferent models on data from experiments of 2x2 games that
they ran with human participants. Two-player 2x2 games
are a simple strategic setting and serve as a natural test-
ing ground for a comparison of alternative models as they
have been shown to give rise to various behavioral biases
(Camerer 2011). The comparison of (Selten and Chmura
2008) showed that all four behavioral concepts predicted hu-
man play better than the Nash equilibrium model.

We develop four econometric estimation methods based
on each of the four behavioral equilibrium models. The esti-
mation task is defined for general normal-form games, sim-
ilar to the task considered in (Nisan and Noti 2017b) for
2x2 games: given the empirical frequencies of players’ ac-
tions when repeatedly playing a normal-form game, and
given the utilities defining the game except for a single un-
known utility of one of the players, we need to estimate

the remaining unknown utility. Figure 1 shows an example
of the estimation task for a 2x2 game. We show that for
the impulse-balance equilibrium and the quantal-response
equilibrium the estimation can be performed analytically via
closed formulas. By contrast, for the two sampling models—
the payoff-sampling equilibrium and the action-sampling
equilibrium—there is no closed expression for the estimated
utility. Thus, we suggest an algorithmic approach to per-
forming the estimation based on these two models.

We test the success of the behavioral estimation meth-
ods, in comparison with the quantal-regret and Nash equi-
librium methods, on the 2x2 game dataset from (Selten and
Chmura 2008). Specifically, we “hide from ourselves” the
utilities in the game, one at a time, estimate the hidden util-
ity from the observed data, and then compare the estimate to
the true value that was actually used in the experiment.2 The
results show that the behavioral equilibrium methods man-
age to produce better estimates than the Nash equilibrium
model that assumes rationality of the players. The compari-
son with the quantal-regret method shows differences in the
estimation-error patterns between the methods: on the one
hand, the four behavioral methods manage to have a higher
frequency of close hits than the quantal-regret method, but,
on the other hand, they also have a non-negligible number
of large errors that decrease their overall performance, lead-
ing to a better overall performance of quantal regret in terms
of mean squared error. These results suggest that combin-
ing the methods, perhaps by incorporating behavioral biases
into the quantal-regret method, can improve the estimation
results.

The contribution of the paper is twofold. The first contri-
bution is conceptual: the basic idea of using the four behav-
ioral equilibrium models to devise new methods to answer
econometric questions. While the behavioral literature ana-
lyzes and discusses these behavioral equilibrium concepts,
the novelty in the present paper is that they can be used in
the inverse direction for the econometric estimation purpose.
This paper develops four new econometric methods for es-
timating missing utilities in normal-form games, based on
four established behavioral equilibrium models, and exem-
plifies how to use these methods in 2x2 games. It shows that
behavioral theories can indeed be useful for econometrics—
definitely beating the classic rationality-based econometric
method (the Nash estimates), and also have an advantage
over the quantal-regret method in terms of hit rates. The sec-
ond contribution is the comparison between different mod-
eling concepts for the econometric estimation task when
the players are humans. Quantal regret is a new model and
method, and although it has been compared to rational mod-
els, it has not yet been compared to any behavioral models.
For a method that claims to be suitable for econometrics with
human players, the comparison with methods that are based
on leading behavioral models is called for, as they are the
“real competition.” In this paper we perform such a compar-
ison for the first time, and confirm, based on the same dataset

2Notice that such a comparison requires the use of experimental
data; it cannot be performed with real-world data, where the true
values of the players are unknown.
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and settings that were used to demonstrate the quantal-regret
method itself in (Nisan and Noti 2017b), that quantal regret
indeed works well for econometric estimation with human
players, even when compared to the behavioral models.

The rest of the paper is organized as follows. In the next
section we formally specify our setting and overview addi-
tional related literature. In Section 3 we describe in more
detail each of the behavioral equilibrium concepts that we
study and show how to derive its corresponding estimation
method. In Section 4 we evaluate the estimation success of
the methods on data from experiments with human players,
and conclude in Section 5.

2 Preliminaries
2.1 Setting
For the general estimation setting, consider n agents repeat-
edly playing a normal-form game. Denote by Ai the ac-
tion space of player i and by ati ∈ Ai the action played
by player i at period t. For all players i ∈ {1, ..., n},
we denote by mi = |Ai| the number of available actions.
The unknown information that we wish to estimate is cap-
tured by a parameter θ ∈ Θ ⊆ Rd, and the game is de-
fined by known utility functions ui(ai,~a−i, θ), where ~a−i
denotes an action profile of all the players except for player
i. We are given the empirical sequence of actions that the
players actually played in T repetitions of the game, i.e.,
ã = ((a11, ..., a

1
n), (a21, ..., a

2
n), ..., (aT1 , ..., a

T
n )). Our goal is

to estimate the unknown parameter θ from the observed be-
havior ã, the observed utility functions, and any prior p(θ)
we may have on the possible values of θ.

We will evaluate the estimation methods in the 2x2-game
setting, where the utility function is defined by a fixed 2x2
utility matrix, and there are two players—the row player and
the column player—who are repeatedly playing according to
this function (see example in Figure 1a). In each game pe-
riod, each player has a binary choice: the row player chooses
an action in Ar = {Up,Down} and the column player
chooses an action in Ac = {Left,Right}. We will also
use the abbreviations U,D,L,R to denote these pure strate-
gies (actions). The unknown information, which we wish to
estimate, is simply one of the eight parameters in the utility
matrix, e.g., the utility x of the row player from playing U
when the column player plays L (as in Figure 1a).

We denote by ~pi the mixed strategy of player i (i.e., ~pi
is a probability distribution over Ai) in which she plays
action j ∈ Ai with probability pij . Denote by ui(a, ~p−i)
the expected utility of player i from playing action a
when the other players play the mixed strategies ~p−i =
(~p1, ..., ~pi−1, ~pi+1, ..., ~pn). For 2x2 games, we denote by pU
the mixed strategy of the row player in which she plays U
with probability pU , and by pL the mixed strategy of the
column player in which she plays L with probability pL.

2.2 Estimation Framework
We define the econometric estimation task for normal-form
games, similar to the definition considered by (Nisan and
Noti 2017b) for 2x2 games for presenting the quantal-regret

method. Denote by x the utility of player 1 from the ac-
tion profile (a11, a21, ..., an1) in which each of the n players
plays her first action. For the special case of a 2x2 game,
x will denote the utility of the row player from the action
profile (U,L), as in Figure 1a. We describe each method for
the case of estimating x (the generalization to the estimation
of any of the other utilities in the game is straightforward),
such that each of the estimation methods can be fitted in the
following framework:

The Framework for the Estimation Methods:
Input:
1. The empirical frequencies p̃1, ..., p̃n in which each

player i played each of her possible actions (i.e., p̃i =
(p̃i1, ..., p̃imi)).

2. The utility matrix of the game except for the single
missing utility x = u1(a11, a21, ..., an1).

Output: an estimate x̂ of the missing utility x.

2.3 Additional Related Literature
The importance of behavioral modeling has been well recog-
nized in the AI literature in various contexts that involve hu-
mans, e.g., in the context of security games with bounded ra-
tional adversaries (Nguyen et al. 2013; Yang et al. 2013; Kar
et al. 2015), automated navigation amongst human agents
(Ziebart et al. 2009; Bera et al. 2017; Fisac et al. 2018),
modeling advertiser behavior in online advertising auctions
(Rong et al. 2016; Noti and Syrgkanis 2021), and human
computation systems (Kamar, Hacker, and Horvitz 2012;
Mao, Kamar, and Horvitz 2013; Yin and Chen 2015).

Settings of strategic interactions between human players
are widely studied in behavioral economics, and the sub-
field of behavioral game theory addresses the gap between
the standard game-theoretic modeling of rational utility-
maximizing agents and actual human behavior; for a broad
introduction to this literature, see (Camerer 2011; Kagel
and Roth 2016) and references therein. Works in behav-
ioral economics (Selten and Chmura 2008; Erev and Roth
1998; Camerer and Hua Ho 1999) and, more recently, in
the AI literature (Wright and Leyton-Brown 2010, 2019)
have studied the ability of behavioral models to predict ac-
tions of human players in games. In addition, a recent line
of work has studied the ability of machine-learning meth-
ods to predict human play in games (Hartford, Wright, and
Leyton-Brown 2016; Kolumbus and Noti 2019; Fudenberg
and Liang 2019; Noti et al. 2016; Plonsky et al. 2017). In the
prediction task considered in these works, all the game pa-
rameters are known and are used to predict players’ actions.
By contrast, in the econometric estimation task that we con-
sider the behavioral models are used in the inverse direction,
such that the actions played by the players are known and
are used to estimate unknown parameters of the game (and
in particular the players’ utilities in the game).

The task of learning game parameters from observed
data has primarily been studied under the standard game-
theoretic assumption that the players are in a Nash equi-
librium, e.g., in (Vorobeychik, Wellman, and Singh 2007;
Honorio and Ortiz 2015; Athey and Nekipelov 2010; Varian
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2007). (Nekipelov, Syrgkanis, and Tardos 2015) proposed
to estimate advertisers’ values from their bidding data in
sponsored search auctions by relying on a weaker rational-
ity assumption that the players minimize their regret over
time. (Nisan and Noti 2017a) experimentally evaluated this
“min-regret” method with human players and showed that
the regret-minimization assumption was sufficient to pro-
duce value estimates that are at least as accurate as the es-
timates of classic equilibrium-based methods; however, the
improvement was not significant, and players’ actions were
only partially consistent with the regret-minimization as-
sumption.

Relaxations of the rationality assumption, for the purpose
of learning game parameters from observed data, were con-
sidered in (Nisan and Noti 2017b) and (Ling, Fang, and
Kolter 2018). The QRE relaxation of the Nash equilibrium
model proposed by (McKelvey and Palfrey 1995) was used
in (Ling, Fang, and Kolter 2018) to learn game parame-
ters in zero-sum non-repeated games; however, their method
was not evaluated on real behavioral data and therefore it
remained unclear whether the QRE modeling is useful for
estimating parameters with human players. In (Nisan and
Noti 2017b), the quantal-regret method was proposed as
a general method that extends the min-regret method of
(Nekipelov, Syrgkanis, and Tardos 2015) by relaxing the
regret-minimization assumption, and was shown to signifi-
cantly improve the estimation performance on experimental
data with human players in comparison with the min-regret
and Nash equilibrium-based methods. However, the quantal-
regret method has not been compared with any behavioral
method that takes into account behavioral aspects of human
play. See Appendix B for an overview of the quantal-regret
method. As explained in Section 1, in this paper we lever-
age equilibrium concepts from behavioral economics for the
purpose of estimating game parameters from players’ ob-
served actions in repeated games, and evaluate their perfor-
mance in comparison with the quantal-regret and Nash equi-
librium methods on data from controlled experiments with
human players.

3 The Behavioral Estimation Methods
In this section we present the econometric methods that we
develop based on the behavioral equilibrium concepts, ac-
cording to the estimation framework described in Section
2.2.

3.1 Quantal-Response Equilibrium
The Logic: In quantal-response modeling players choose
with higher probabilities actions that give them higher ex-
pected payoffs. In the common exponential form of this
modeling it is assumed that players are exponentially more
likely to play actions with higher expected payoffs. The
model has a parameter λ, which multiplies the expected
payoff in the exponent. This parameter determines the ra-
tionality of the player: for λ → ∞ players become com-
pletely rational and choose the action that maximizes their
payoffs, while for λ close to zero the payoffs do not affect
their choice and they choose an action uniformly at random.

In a quantal-response equilibrium (QRE) (McKelvey and
Palfrey 1995), each player (correctly) takes the mistakes of
the others into account and quantally best responds to the be-
havior of the others. Therefore, in a quantal-response equi-
librium, the following equation holds simultaneously for all
players i and actions j ∈ Ai:

pij =
eλui(j,~p−i)∑

j′∈Ai
eλui(j

′ ,~p−i)
(1)

For example, for 2x2 games, where there are two players
and two actions for every player, the two following equa-
tions hold simultaneously in a quantal-response equilibrium:

pU =
eλur(U,pL)

eλur(U,pL) + eλur(D,pL)
(2a)

pL =
eλuc(L,pU )

eλuc(L,pU ) + eλuc(R,pU )
(2b)

For the 2x2 game experimental data of (Selten and
Chmura 2008) λ = 1.05 gave the best fit, i.e., minimized
the sum of mean squared distances from the empirical choice
frequencies over all games investigated in the experiment.3
The QRE Estimation Method: If we assume that the play-
ers were in a quantal-response equilibrium, then Equation 1
allows us to extract an estimate for x analytically, by substi-
tuting i = 1 and j = 1, as well as all the other terms that are
given in our estimation framework: the empirical frequen-
cies p̃−i of the other players, the other utilities of player 1,
and the model parameter λ. For example, for the case of 2x2
games, Equation 2a depends on x (since the expected utility
is ur(U, pL) = pL · x + (1 − pL) · ur(U,R))), and we can
extract an estimate for x by substituting all the other terms
as follows:

x̂ =
λ·(ur(D,L)·p̃L+ur(D,R)·(1−p̃L))−λ·ur(U,R)·(1−p̃L)+ln(

p̃U
1−p̃U

)

λp̃L

Similarly, the second equation (Equation 2b) can be used
to estimate each of the utilities of the column player.

3.2 Action-Sampling Equilibrium
The Logic: According to the action-sampling modeling,
each player takes a sample of observations of her opponents’
past actions and then best responds to this sample. If there
is more than a single best response, the player mixes with
equal probabilities all actions that are best responses to her
sample. An action-sampling equilibrium (ASE) describes a
stationary state of large populations, where each player takes
a sample and optimizes against it. The sample size ns is a pa-
rameter of this model. In the 2x2 game experiments of (Sel-
ten and Chmura 2008) the best fit was obtained for ns = 12.

We derive the action-sampling equilibrium equations for
general normal-form games, similar to the equilibrium de-
rived by (Selten and Chmura 2008) for 2x2 games. Denote
by si(~a−i) the number of times player i observed the ac-
tion tuple ~a−i of the other n − 1 players in her sample, and

3In (Selten and Chmura 2008) some of the model fits were in-
correct. In our analyses we use the corrected fits that were also
pointed out by (Brunner, Camerer, and Goeree 2011).
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denote by αij(si) the probability in which player i chooses
action j ∈ Ai after observing the given sample si. Since
each player best responds to her sample, we know that if
j ∈ M = arg maxa∈Ai

∑
~a−i∈A−i

si(~a−i)ui(a,~a−i) then
αij(si) = |M |−1, or otherwise αij(si) = 0. Then, the fol-
lowing equation describes the total choice probabilities (a
set of mi − 1 equations for each of the n players) in which
player i chooses action j ∈ Ai, and should hold simultane-
ously in equilibrium:

pij = Esi
[
αij(si)

]
(3)

For example, for 2x2 games (Selten and Chmura 2008)
derive the equations for αij as follows:

αrU (sr) =


1 if sr(L) ·

(
ur(U,L)− ur(D,L)

)
> (ns − sr(L)) ·

(
ur(D,R)− ur(U,R)

)
0.5 if sr(L) ·

(
ur(U,L)− ur(D,L)

)
= (ns − sr(L)) ·

(
ur(D,R)− ur(U,R)

)
0 otherwise

αcL(sc) =


1 if (ns − sc(D)) ·

(
uc(U,L)− uc(U,R)

)
> sc(D) ·

(
uc(D,R)− uc(D,L)

)
0.5 if (ns − sc(D)) ·

(
uc(U,L)− uc(U,R)

)
= sc(D) ·

(
uc(D,R)− uc(D,L)

)
0 otherwise

Then, for the 2x2 game, the expectation in Equation 3
takes the form of a binomial distribution as follows:

pU =

ns∑
k=0

(
ns
k

)
pkL(1− pL)ns−kαrU (sr) (4a)

pL =

ns∑
l=0

(
ns
l

)
plU (1− pU )ns−lαcL(sc) (4b)

where k = sr(L) and l = sc(D).
The ASE Estimation Method: We follow our estimation
framework (described in Section 2.2) and estimate the util-
ity x = u1(a11, a21, ..., an1) of player 1. From the set of
equations that Equation 3 specifies, the mi − 1 equations
for which i = 1 depend on x, and we use them for the es-
timation. Note that when the empirical distribution of play
is an exact equilibrium, all these equations yield the same
estimate for x, but when the empirical play is not an exact
equilibrium there may be different estimates from different
equations, and we set the final estimate for x as the aver-
age of these estimates. In this case, the standard deviation
of the estimates indicates how far the empirical distribution
was from an ASE and may be used for error estimation.

In contrast to the methods in Sections 3.1 and 3.4, our
sampling equations do not depend continuously on x, and
we cannot derive a closed expression for x. Therefore, we
take an algorithmic approach to estimate x. Specifically, x
is estimated as the value for which the mi − 1 equations of
Equation 3 with i = 1 are satisfied with the minimal error,
by carrying the following procedure:
For j ∈ {1, ...,m1− 1}, compute an estimate x̂j as follows:

1. Compute p̂1j(x) as the right-hand side of Equation 3 for a
grid of possible values of x, by substituting the available
empirical frequencies and the known utilities of player 1
(see the input description in Section 2.2).

2. Choose as the jth estimate x̂j the value of x that min-
imizes the distance from the empirical frequency, i.e.,
x̂j = arg minx |p̂1j(x)− p̃1j |. If the minimum is obtained
for a range of values choose the middle point.

Finally, set as the estimate x̂ the average over the m1 − 1
estimates x̂j .

Note that this algorithmic approach is similar to the
approach used for the quantal-regret estimate calculation
(Nisan and Noti 2017b), where the regret was computed
for the different values of the estimated parameter. See Ap-
pendix B for more details on the quantal-regret method.

For example, for a 2x2 game, we use Equation 4a to es-
timate the utility x = ur(U,L) of the row player algorith-
mically, as follows: compute p̂U (x) as the right-hand side
of Equation 4a for different possible values of x (and sub-
stitute the available empirical frequency p̃L and the three
known utilities of the row player), and finally choose x̂ =
arg minx |p̂U (x)− p̃U |.

3.3 Payoff-Sampling Equilibrium

The Logic: This concept is based on the assumption that
each player takes samples of equal size, one for each of her
own available actions, and then plays the action of the sam-
ple with the highest payoff sum (or chooses at random one of
the maximizing actions if there is more than one) (Osborne
and Rubinstein 1998). Similar to the sampling equilibrium
concept described in Section 3.2, the payoff-sampling equi-
librium (PSE) describes a stationary state of large popula-
tions in which each player optimizes against her samples.
The sample size ns is a parameter of this model. The value
ns = 6 for each of the samples gave the best fit for the ex-
perimental 2x2 game data of (Selten and Chmura 2008).

We can derive the equations for the payoff-sampling equi-
librium for general normal-form games, in a similar analy-
sis to that described in Section 3.2 for the ASE, and similar
to the PSE derived by (Selten and Chmura 2008) for 2x2
games. Specifically, let si(~a−i, j) be the number of times
player i observed the action tuple~a−i of the other n−1 play-
ers in her sample for her action j ∈ Ai. Similar to Section
3.2, we can specify the probability αij(si) in which player
i chooses action j ∈ Ai for the sample si of each of her
actions, based on the assumption that each player plays the
action with the highest payoff sum. Then, the total probabil-
ity in which player i chooses action j is the expectation over
the samples; this should hold simultaneously for all players
i and actions j ∈ Ai in equilibrium.

For example, for 2x2 games, the payoff-sampling equi-
librium for two specific players in two populations that
play the 2x2 game are as follows: let kU = sr(L,U) and
kD = sr(L,D) be the number of times the row player ob-
servedL in her sample for her actionsU andD, respectively,
and let lL = sc(U,L) and lR = sc(U,R) be the number
of times the column player observed U in her sample for
her actions L and R, respectively. Therefore, the following
equations describe the total choice probabilities of the two
players, and should hold simultaneously in equilibrium:
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pU =
∑ns

kU ,kD=0

(
ns

kU

)(
ns

kD

)
pkU+kD
L (1− pL)2ns−kU−kDαrU (sr)

(5a)
pL =

∑ns

lL,lR=0

(
ns

lL

)(
ns

lR

)
plL+lR
U (1− pU )2ns−lL−lRαcL(sc)

(5b)
The PSE Estimation Method: The estimation of x =
u1(a11, a21, ..., an1) (according to our estimation frame-
work) is performed similarly to the estimation method for
the action-sampling equilibrium described in Section 3.2,
since also here the equilibrium equations that depend on
x do not allow us to extract x analytically and instead re-
quire an algorithmic approach. Specifically, we estimate x
as the value for which the m1 − 1 equilibrium equations
for player 1 are satisfied with the minimal error, by car-
rying out the procedure described in Section 3.2: for j ∈
{1, ...,m1 − 1} compute x̂j from the equilibrium equation
for p1j for different possible values of x, and by choosing
x̂j = arg minx |p̂1j(x)− p̃1j |, and set the final estimate for
x as the average over x̂j . For example, for the 2x2 game, es-
timate x = ur(U,L) by computing p̂U (x) as the right-hand
side of Equation 5a for different possible values of x, and
then choose as the estimate x̂ = arg minx |p̂U (x)− p̃U |.

3.4 Impulse-Balance Equilibrium
The Logic: The impulse-balance equilibrium (IBE) was
proposed by (Selten, Abbink, and Cox 2005) and is a “semi-
quantitative” version of the learning direction theory of (Sel-
ten and Buchta 1999). According to the learning direction
theory, when a decision maker repeatedly makes choices
on the same parameter and receives feedback, she gets im-
pulses: if a higher (lower) parameter would have brought a
higher payoff she gets an upward (downward) impulse. The
theory assumes that the decision maker will tend to choose
in the direction of the impulse. An impulse-balance equilib-
rium is a stationary distribution, in which the expected up-
ward impulses are equal to the expected downward impulses
for each of the players simultaneously. To reflect loss aver-
sion as in prospect theory (Kahneman and Tversky 1979),
in this model losses are counted twice in the computation of
impulses: a loss is counted once as a part of the foregone
payoff and once more due to being a loss.

The IBE model is suitable for settings in which a deci-
sion maker repeatedly makes choices on the same parame-
ter, such as bidding in auctions or binary choice problems.
Therefore, we will focus on normal-form games withm = 2
actions for each player, where the probability of playing one
of the pure strategies is the parameter the players choose
(i.e., pi1 for each player i, and in two-player 2x2 games:
pU and pL for the row and column players, respectively).
As suggested by (Selten and Chmura 2008), the utility of
the pure strategy maximin—which is the “security level” a
player can ensure by playing a pure action no matter what
the other players do—may naturally serve as the reference
level for determining losses.
The IBE Estimation Method: The estimation of the util-
ity x = u1(a11, a21, ..., an1) of player 1 (according to our
estimation framework described above) is performed by de-
riving the equilibrium equations for player 1, which in turn

Figure 2: Construction of the transformed and impulse ma-
trices: (1) the original game; (2) the transformed form of the
game; (3) the impulse matrix of the game (based on an ex-
ample from Selten and Chmura (2008)).

requires computing the impulses from one action to another.
We compute the impulses by using the “transformed form”
of the game as suggested by (Selten and Chmura 2008).
Specifically, the estimation process involves four steps:

1. Construct the transformed game: Denote by si the secu-
rity level of player i. The transformed game matrix is con-
structed from the utility matrix of the game such that for
each player i and actions ai ∈ Ai and ~a−i ∈ A−i:

utri (ai,~a−i) =

{
ui(ai,~a−i) if ui(ai,~a−i) ≤ si
1
2

[
si + ui(ai,~a−i)

]
otherwise

Figure 2 exemplifies the construction for Game 3 from the
experiment of (Selten and Chmura 2008).

2. Construct the impulse matrix: Player i receives an im-
pulse in the direction of her other action if and only if
after a play she observes that she could have obtained a
higher utility by choosing her other action. The size of the
impulse is the foregone utility in the transformed game
(which thus gives the losses a double weight). That is, the
impulse matrix is computed such that for each player i
and actions ai ∈ Ai and ~a−i ∈ A−i:

impi(ai,~a−i) =


∆ = utri (Ai \ {ai},~a−i)−
utri (ai,~a−i) if ∆ > 0

0 otherwise

See the example in the second step of Figure 2.

3. Derive the impulse-balance equilibrium equations: The
equilibrium conditions require that for each of the play-
ers the expected impulses will be balanced. For example,
in the 2x2 game, for the row player in an impulse-balance
equilibrium the expected impulse from Up to Down is
equal to her expected impulse from Down to Up. That is,

pL · impr(U,L) + (1− pL) · impr(U,R) =

pL · impr(D,L) + (1− pL) · impr(D,R)

4. Extract an estimate for x by substituting the empirical fre-
quencies and the known utilities of player 1.

Note that the exact formula for x depends on the structure
of the game. The reason is that the transformed and impulse
matrices depend on the determination of the security level
si. Thus, in order not to assume any prior knowledge of the
structure of the game, the implementation of the estimation
process requires us to consider all the different cases that
result in different security levels.
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2x2 Games – Over All 108 Sessions
QR ASE PSE IBE QRE NE

RMSE 2.32 2.39 2.59 2.81 2.82 3.41
Average Error 2.09 2.04 2.18 2.44 2.25 2.99
Std Error 1.58 1.72 1.97 2.20 2.20 2.32
±3 Hit Rate 81.13% 85.42% 84.95% 82.06% 82.52% 68.87%

Table 1: Evaluation results of the six estimation methods over all 108 sessions of the 2x2 game dataset.

4 Experimental Evaluation
In this section we evaluate the estimation success of the four
behavioral econometric methods proposed in Section 3 in
comparison with the quantal-regret (QR) method and with
the method that is based on Nash equilibrium (NE).

We perform the evaluation by using the data from the ex-
periment of (Selten and Chmura 2008); the same dataset was
used both in (Selten and Chmura 2008) to evaluate the pre-
diction success of the behavioral equilibria models and in
(Nisan and Noti 2017b) to evaluate the estimation success of
the quantal-regret method. In the experiment, 12 2x2 games
were investigated. Each of the games had non-negative util-
ities and was “completely mixed,” i.e., had a unique equi-
librium in which each player plays each of her actions with
positive probability, according to all equilibrium concepts
discussed in the present paper. There were 12 independent
subject groups (“sessions”) for each of games 1–6, and 6 for
each of games 7–12, for a total of 108 sessions. In each ses-
sion there were 4 row players and 4 column players, who
repeatedly played a game over 200 periods. See (Selten and
Chmura 2008) for more details on the experimental setup
and for the utility matrices of the games. The data consist of
the utility matrices of the 12 games, as well as of the empir-
ical frequencies of play for each player over her 200 plays.
See illustration in Figure 1.

We applied each of the six methods to estimate the 8 pa-
rameters defining the game (4 utilities of the row player and
4 of the column player), one at a time, and compared the
estimates with the parameters that were actually used in the
experiment. As in (Selten and Chmura 2008) and (Nisan and
Noti 2017b), we consider the “session level” of the experi-
mental data. That is, for each independent session we es-
timate the 8 parameters by considering the average of the
empirical frequencies of play of the 8 players in the session.

We define the estimation error of an estimate x̂ for a utility
of which the true value is x as error(x̂) = |x̂−x|. Our main
measure of success is the root mean squared error (RMSE)
achieved by each method. Specifically, the RMSE of a set
of estimates S is RMSE(S) =

√
1
|S|
∑
x̂∈S error

2(x̂).
We also measure the “±3 hit-rate,” which is the percent-
age of estimates within a distance of 3 from the true value.
Note that in our estimation context exact hits are hard to
achieve, and thus some interval from the true value is taken.
We choose an interval of 3, which is about 15% of the utility
range of the games in our dataset, for the sake of compari-
son with the results of (Nisan and Noti 2017b) who used this
specific measure. To complete the picture, we also compare
the full distributions of the estimation errors of the methods.

In the implementation of the four behavioral methods we
use the same parameters as in (Selten and Chmura 2008;
Brunner, Camerer, and Goeree 2011). The values were λ =
1.05 for the QRE method, and the sampling sizes were
ns = 6 and ns = 12 for the PSE and ASE methods, re-
spectively. The implementation of the NE and the QR meth-
ods was according to the procedure described in (Nisan and
Noti 2017b). For the QR method, this includes a regret-
aversion parameter λ = 3 (according to their suggested rule
of thumb), and the same uniform prior over the parameter
range [0, 22] (in intervals of 0.01). We use the same prior
also for the two proposed algorithmic methods ASE and
PSE, and for a fair comparison we restrict the estimates of
the other methods to the same parameter range.4

Table 1 presents the estimation results over all 108 ses-
sions in the experiment for the six estimation methods. It
can be seen that in terms of RMSE the QR method performs
better than the four behavioral methods, which in turn out-
perform the NE method. Specifically, the RMSE of each of
the four behavioral methods is significantly lower than the
RMSE of the NE method (paired two-sided Wilcoxon signed
rank test, N = 108 sessions, p < 0.002), and the RMSE
using QR is lower than that of each of the four behavioral
methods, but the difference is statistically significant only
in comparison with the IBE method (p < 0.02). The gap
between QR and the behavioral methods is large except for
ASE whose RMSE is close to the QR method.

The comparison of the four behavioral methods shows
that the two sampling methods perform better than the IBE
and QRE methods. Over all 108 sessions, the RMSE of
each of the sampling equilibrium methods is significantly
lower than the RMSE of the IBE method (paired two-sided
Wilcoxon signed rank test, N = 108 sessions, p < 0.002),
but the difference from the QRE method is not statistically
significant. Note that this is different from the comparison
results of (Selten and Chmura 2008) who found that in the
context of the prediction task the four behavioral equilibrium
models underlying our econometric methods were not sig-
nificantly different. It is possible that the econometric task
studied in the present paper is more sensitive than the predic-
tion task to the differences between these models and allows
a better discrimination between them.

4The values 0 and 22 were the minimal and maximal utilities
(respectively) in all the games investigated in the experiment. We
also tried wider ranges of up to 40, which increased the errors for
all methods as could be expected. However, this did not change our
conclusions, except for the IBE method which was more sensitive
to the utilized prior and had a larger error than the NE method.
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Figure 3: Error distributions: Histograms of the estimation errors for each of the six estimation methods.

So far we have seen that the QR method, which uses the
rule-of-thumb regret-aversion parameter λ = 3, has bet-
ter RMSE than the methods that are based on behavioral
equilibria. We also tried another variant of the QR method
in which λ was directly learned from the data in cross-
validation. Specifically, for each of the 12 games we learned
λ by a direct fit of the empirical regret results obtained on
the other 11 games. This gave 12 values of λ with an aver-
age of 2.64 and a small standard deviation of 0.12. However,
using QR with this learned parameter for each game did not
change the results, and the QR method still outperformed the
four behavioral methods in terms of the RMSE.

Let us now take a closer look at the distributions of the es-
timation errors obtained by the six methods. Table 1 presents
the average and standard deviations of the distribution for
each of the methods, as well as their ±3 hit rates. Figure 3
plots the full distribution of the estimation errors. It can be
seen in the plots that the four behavioral methods very fre-
quently hit close to the target, but on the other hand have
a non-negligible frequency of large errors. By contrast, the
QR method less often hits the target exactly, but usually does
not go too far and does not make large errors. These shapes
of the distributions explain both the advantage of the QR
method in terms of RMSE and the standard deviation of the
errors, and the disadvantage in terms of hit rates, which are
presented in Table 1.

5 Conclusions
We have shown that it is possible to leverage equilibrium
concepts from behavioral economics to infer the preferences
of human players in normal-form games, and have shown
how to derive the econometric estimation methods from four
established behavioral equilibrium models. When the equi-
librium conditions did not provide a direct analytic solution,
we showed how to perform the estimation by taking an al-
gorithmic approach. In fact, the two behavioral algorithmic
methods that we proposed performed better than the analytic
ones. All four behavioral estimation methods that we stud-
ied outperformed the Nash equilibrium method that assumes
that the players are rational. This is consistent with previous
literature that suggests that these models better capture hu-

man behavior.
The comparison with the quantal-regret method high-

lights both the advantages of this method and the potential
for improvements based on behavioral considerations. First,
the success of the quantal-regret method shows that quan-
tal regret provides a suitable modeling for human strategic
behavior for the estimation task not only compared to ra-
tional models but also compared to well-studied behavioral
models. Furthermore, unlike the behavioral methods, the
quantal-regret method does not require any specific analysis
to the estimation setting and works exactly the same in other
settings such as auctions. Second, we observed some “trade-
off” between exact hits and low overall error: the quantal-
regret method does not make large errors, but on the other
hand has fewer exact hits. By contrast, the behavioral meth-
ods, which make more specific assumptions about the be-
havior of the players at stationary states, hit very frequently
close to the target, but on the other hand also make large
errors.

We believe that further research that will apply well-
established knowledge from behavioral disciplines has the
potential to improve the econometric analysis of game data
that are generated by human players. While we focused on
four behavioral equilibrium models it is interesting to study
the estimation performance of additional behavioral models
– both equilibrium models and dynamic learning models. It
is also interesting to extend the methods to more complex
game settings, where multiple equilibria may exist, such as
estimating players’ private values from auction data, or to
settings with more than a single unknown parameter, which
will require searching a larger space of values. Such research
can lead to an improved modeling that will break the trade-
off described above, i.e., a modeling that will have the high
hit rates of the behavioral methods while still avoiding large
errors like the quantal-regret method.
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Appendices
A The Nash Equilibrium Estimation Method
Nash equilibrium is a standard concept in game theory to
analyze game outcomes. It is a stationary state in which
each player perfectly best responds to the other players. That
is, Nash equilibrium is a strategy profile (~p1, ~p2, ..., ~pn), in
which ~pi maximizes the expected utility for each player
i, given the other players’ strategies ~p−i. Therefore, Nash
equilibrium provides a set of linear equations that allow to
extract an estimate for x by substituting the empirical fre-
quencies and the known utilities which are given in our esti-
mation framework that is described in Section 2.2.

For example, for the 2x2 game setting, a Nash equilibrium
is a strategy profile (pU , pL), in which pU and pL maximize
the expected utility of the row and the column players, re-
spectively, given the other player’s strategy, and the follow-
ing two equations (one for each of the two players) should
hold simultaneously:

pL =
ur(D,R)− ur(U,R)

x− ur(D,L) + ur(D,R)− ur(U,R)
(6a)

pU =
uc(R,D)− uc(L,D)

uc(L,U)− uc(R,U) + uc(R,D)− uc(L,D)
(6b)

Thus, if we assume that the players are in a Nash equilib-
rium, x can be estimated from equation 6a by substituting
the other terms (assuming that p̃L > 0), which are given in
the estimation framework.

B The Quantal Regret Estimation Method
The quantal regret modeling was suggested by (Nisan and
Noti 2017b). Its basic assumption is that players choose with
(exponentially) higher probabilities actions that give them
lower regret. This is instead of assuming perfect regret mini-
mization, which is expected from rational players. The regret
of a player in a repeated game is defined as the difference be-
tween the utility she could have obtained had she played the
best fixed strategy in hindsight and the utility she actually
obtained in the repeated game (Blum and Mansour 2007).

In our present estimation setting (as described in Sec-
tion 2.2), the quantal regret method for estimating x =
u1(a11, a21, ..., an1) first computes the regret of player 1 for
each possible value of x,5

regret1(x, ã) = 1
T

(
maxa′1∈A1

∑T
t=1 u1(a′1, ã

t
−1, x)−

∑T
t=1 u1(ãt1, ã

t
−1, x)

)
Then, it sets the estimate as the weighted average of the pos-
sible values of x, with weights that are exponentially de-
creasing with the regret. Specifically, assuming a prior of a
uniform distribution, the estimate is:

x̂ =

∑
x e
−λ·regret1(x,ã) · x∑
x e
−λ·regret1(x,ã)

5The calculation is performed for some grid of values of x, in
some valuation range. See (Nisan and Noti 2017b) for more details.

This estimator is the one that minimizes the expected
squared error for the basic quantal regret modeling assump-
tion. The constant λ is the “regret aversion” parameter; as λ
grows larger, the quantal regret estimate approaches the min-
regret estimate suggested by (Nekipelov, Syrgkanis, and Tar-
dos 2015).
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