
Fair and Efficient Allocations with Limited Demands

Sushirdeep Narayana, Ian A. Kash
Department of Computer Science, University of Illinois at Chicago, USA

snaray25@uic.edu, iankash@uic.edu

Abstract

We study the fair division problem of allocating multiple re-
sources among a set of agents with Leontief preferences that
are each required to complete a finite amount of work, which
we term “limited demands.” We examine the behavior of the
classic Dominant Resource Fairness (DRF) mechanism in
this setting and show it is fair but only weakly Pareto op-
timal and inefficient in many natural examples. We propose
as an alternative the Least Cost Product (LCP) mechanism,
a natural adaptation of Maximum Nash Welfare to this set-
ting. We characterize the structure of allocations of the LCP
mechanism in this setting, show that it is Pareto efficient, and
that it satisfies the relatively weak fairness property of sharing
incentives. While we prove it satisfies the stronger fairness
property of (expected) envy freeness in some special cases,
we provide a counterexample showing it does not do so in
general, a striking contrast to the “unreasonable fairness” of
Maximum Nash Welfare in other settings. Simulations sug-
gest, however, that these violations of envy freeness are rare
in randomly generated examples.

Introduction
Large computational tasks, including those found in cloud
computing systems, data centers, and high-performance
computing clusters, require multiple heterogeneous re-
sources such as CPU, memory, and network bandwidth. For
these systems to be effective, it is important that these and
other resources be allocated among various tasks in a fair
and efficient manner.

One popular approach to resource allocation in this set-
ting is the Dominant Resource Fairness (DRF) mechanism,
which achieves a number of desirable properties including
efficiency (Pareto optimality), fairness (sharing incentives
and envy-freeness), and strategy-proofness (Ghodsi et al.
2011; Parkes, Procaccia, and Shah 2015). However, these
results are obtained under the assumption that the utility of
each task is determined by the amount of resources it re-
ceives. We argue that a more natural model for many appli-
cations is that they have limited demands: each task has a
finite amount of work to do and would like to complete as
soon as possible. Such a model can be applied to the frame-
works of job schedulers of modern computing clusters such

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as those used in Hindman et al. (2011), Vavilapalli et al.
(2013), and Grandl et al. (2016).

The addition of limited demands does not change the fair-
ness and incentive properties, but has a substantial effect
on efficiency. Consider the following simple example. There
are two agents and one (divisible) resource, and each agent
needs a single unit of the resource to complete its task. The
DRF allocation evenly shares the resource between the two
agents, so both complete at time 2. Instead, a shortest job
first approach will have one agent complete at time 1 and
the other complete at time 2. This makes one agent strictly
better off and the other no worse off showing that the re-
sult of DRF is no longer Pareto optimal in this setting. Of
course, this allocation is not envy-free, as the agent sched-
uled second envies the agent scheduled first. Nevertheless,
if we randomize which agent is scheduled first, it would be
envy-free in expectation.

While shortest job first is envy-free in expectation and
Pareto efficient, with multiple resources it too can pass up
opportunities to make desirable trade-offs. Consider two
tasks of similar length: one memory-limited and one CPU-
limited. Shortest job first will pass up the opportunity to run
both at the same time, which would slightly slow down the
first completion time but substantially speed up the second.
By most metrics of interest (e.g. mean completion time or
makespan) this is an improvement.

Thus, a natural goal is an algorithm that can provide a
trade off between sharing and shortest job first to achieve ef-
ficiency as well as fairness. Prior systems work (Grandl et al.
(2016)) has developed heuristic solutions to this problem;
our contribution is a principled fair division approach. We
propose the Least Cost Product (LCP) mechanism, which
minimizes the product of completion times (costs) in the
same way Maximum Nash Welfare (MNW) mechanisms
maximize the product of utilities.1 We provide a charac-
terization of the structure of solutions it finds and show
that the LCP mechanism satisfies sharing incentives and is
Pareto optimal but not strategy-proof. We show that it satis-
fies envy-freeness in expectation for two special cases: when
there is only a single resource or when there are only two
agents. When more agents or resources are involved, we

1In fact, if utility is defined to be the reciprocal of completion
time, our mechanism chooses exactly the MNW solution.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5620



present an example of an LCP allocation with envy. This
is a striking contrast to the fairness properties satisfied by
the Maximum Nash Welfare allocations in other settings.
All adaptations of Maximum Nash Welfare we are aware of
in divisible settings, such as Competitive Equilibrium with
Equal Incomes (CEEI) for dividing divisible goods with lin-
ear additive utilities (Varian 1974; Moulin 2004) and Leon-
tief utilities (Ghodsi et al. 2011; Goel, Hulett, and Plaut
2019); the competitive rule for dividing bads with linear ad-
ditive disutilities (Bogomolnaia et al. 2019); and competitive
allocations for dividing mixed manna with concave, con-
tinuous and 1-homothetic (dis)utilities (Bogomolnaia et al.
2017) satisfy strong envy-freeness guarantees. We believe
our setting of “limited demands” is the first natural divisi-
ble setting where an adaptation of Maximum Nash Welfare
has resulted in allocations not being envy-free. However, we
show in simulations on randomly generated instances that
the LCP allocations that violate envy-freeness are rare.

Related Work
Ghodsi et al. (2011) introduced the Dominant Resource Fair-
ness (DRF) mechanism for allocation of resources when
the agents have Leontief preferences. Parkes, Procaccia, and
Shah (2015) generalized the DRF mechanism to more ex-
pressive settings and established stronger fairness properties
like Group Strategy-Proofness. Kash, Procaccia, and Shah
(2014) extended the DRF mechanism for dynamic settings.
These works do not consider any notion of a limited amount
of resource required by an agent to complete its work.

Varian (1974) explored the CEEI mechanism which is a
market-based interpretation to allocate goods and showed
that the allocations are envy-free and Pareto efficient. Arrow
and Intriligator (2000) found that the CEEI allocations coin-
cide with allocations where the objective is to maximize the
Nash welfare. Caragiannis et al. (2016) showed that for allo-
cating indivisible items the maximum Nash welfare (MNW)
solution achieves both EF1 (envy-freeness up-to one good)
and Pareto optimality simultaneously, motivating them to
call it unreasonably fair. For a survey, see Moulin (2019).
Conitzer, Freeman, and Shah (2017) worked on the fair divi-
sion problem for public decision making and showed that the
MNW solution approximates or satisfies various notions of
proportionality. Conitzer et al. (2019) introduced the notion
of group fairness which generalizes envy freeness to groups
of agents. They showed that locally optimal Nash welfare al-
locations satisfy ”up-to one good” style relaxations of group
fairness. These works illustrate the promising nature of max-
imizing Nash welfare. However, none of these works ob-
serve the failures of fairness we do.

More closely related to our work, Friedman and Hender-
son (2003) analyzed the problem of single resource alloca-
tion when agents with jobs that required different service
times arrived in an online manner. They proposed the Fair
Sojourn Protocol which is more efficient and fair compared
to the Shortest Remaining Processing Time and Processor
Sharing protocols (corresponding to Shortest Job First and
DRF in our setting respectively). We explore a generalized,
but offline version of their problem where agents have de-
mands on multiple heterogeneous resources.

Grandl et al. (2016) proposed an altruistic two-level
scheduler called Carbyne that schedules jobs demanding
multiple resources where each job takes the form of a
Directed Acyclic Graph (DAG) with vertices representing
tasks, and edges denoting dependencies. They show that ex-
perimentally Carbyne performs better than the DRF and the
Shortest Job First (SJF) when evaluating inter-job fairness,
performance and cluster efficiency. This work inspired our
examination of limited demands.

Finally, Bogomolnaia et al. (2017) generalized the com-
petitive division mechanism for the fair division of mixed
manna where items are goods to some agents, but bads or
satiated to others. They prove that when the items consist
of only bad utility profiles, the competitive profiles are the
critical points of the product of disutilities on the efficiency
frontier. Our characterization of the LCP mechanism, which
is also an allocation of bads, has a similar flavor.

Preliminaries
Let N = {1, 2, 3, ..., n} denote the set of agents and
R = {1, 2, ...,m} denote the set of heterogeneous resources
available in the system. The resources are assumed to be di-
visible. Each resource in the set R has a unit capacity. An
agent in the system demands various resources be allocated
to it in fixed proportions, known as Leontief preferences. Let
D represent the demands of all the agents with each element
dir denoting the fraction of resource r required by agent i.
We assume these are normalized so that the demand vector
for agent i denoted by di = 〈di1, di2, ..., dim〉 has dir = 1
for some r. The number of tasks that are required to be com-
pleted by an agent i is ki and is represented by an n × n
diagonal matrix K with the i-th diagonal element equal to
ki.2 The amount of resources that needs to be consumed by
an agent i in order to complete its job is given by wi = kidi.
In matrix notation, this becomes W = KD.

Definition 1. An instantaneous allocation A ⊆ Rn×m al-
locates a portion Air of resource type r to agent i subject
to the feasibility conditions,

∑
i∈N

Air ≤ 1, ∀r ∈ R; and

Ai = λidi, ∀i ∈ N and for some λi ∈ R≥0.

Definition 2. A resource allocation mechanism is a function
f that takes as inputs the amount of resources W that are re-
quired by the agents and maps them to allocations as outputs,
that is, f : Rn×m → (Rn×m)R≥0 such that fi(W) = Ai(·),
where Ai(t) denotes the allocation of agent i at time t,
which we refer to as its instantaneous allocation.

This definition assumes that resources are fully divisible,
which is not necessarily true in real systems. In practice this
can be handled by keeping allocations as close as possible
to the divisible ideal over time (Hindman et al. 2011).

The cost of an agent characterizes the loss suffered by that
agent and is equal to the completion time of the agent for its
resource allocation. The cost ci(fi(W)) = ti for an agent
i under the allocation mechanism f can be calculated as the
value of ti that solves wi =

∫ ti
0

Ai(t)dt.

2The normalization of di means that ki need not be an integer.

5621



In order to evaluate and compare the allocations produced
by various resource allocation mechanisms, we define four
standard fairness and efficiency properties for our setting:

• Pareto Optimality (PO): An allocation A(·) is said to be
Pareto optimal if there is no alternative allocation A

′
(·)

which can make at least one agent strictly better off with-
out making any other agent worse off. Formally,
∀A′(·), (∃i ∈ N , ci(A

′

i(·)) < ci(Ai(·)))
=⇒ (∃j ∈ N , cj(A

′

j(·)) > cj(Aj(·))).
An allocation A(·) is weakly Pareto optimal if there is no
alternative allocation A

′
(·) which would strictly benefit

all the agents. That is,
@A′(·), where ∀i ∈ N , ci(A

′

i(·)) < ci(Ai(·))
• Sharing Incentives (SI): By abuse of notation, we will re-

fer to ASI(·) = ASI = 〈 1n ,
1
n , ...,

1
n 〉 as the instantaneous

allocation that splits all the m resources equally among all
the agents. An allocation mechanism satisfies Sharing In-
centives if, ci(Ai(·)) ≤ ci(ASI) = n · ki, ∀i ∈ N .
In other words, if the cost for each agent’s allocation un-
der the allocation mechanism is at-most the cost encoun-
tered when there is an equal split of the resources among
agents, the allocation mechanism satisfies SI.

• Envy-Freeness (EF): An allocation mechanism is envy-
free (EF) if ∀i, j ∈ N , ci(Ai(·)) ≤ ci(Aj(·)).
That is, each agent would never strictly prefer the resource
allocation received by another agent.
A randomized allocation mechanism is envy-free in ex-
pectation if, ∀i, j ∈ N , E[ci(Ai(·))] ≤ E[ci(Aj(·))],
where the expectation is taken over the randomness of the
mechanism. In particular, when there are multiple agents
with the same amount of work, the allocation mechanism
may have multiple optimal solutions. In these cases, as
in the example in the introduction, each individual choice
has envy but a uniform random selection from them will
be envy-free in expectation.

• Strategy-Proofness (SP): An allocation mechanism is
strategy-proof (SP) if an agent can never benefit from re-
porting a false demand, regardless of the demands of the
other agents. Given the demands D and the number of
tasks K, let f(KD) be the resulting allocation due to the
mechanism f. Suppose an agent i ∈ N changes to an un-
truthful demand d

′

i while the demands of the other agents
and the number of tasks K stay the same. The new de-
mand matrix is denoted by D

′
. The allocation mechanism

f is said to be SP if,
∀i ∈ N , ∀di, ci(fi(KD)) ≤ ci(fi(KD

′
)),

where D =


d1

...
di
...
dn

, and D
′
=


d1

..

d
′

i
..
dn

.

Definition 3. An allocation is defined to be a fixed allocation
when the resources allocated to each agent are fixed over
the intervals determined by the different completion times of
the agents. The time intervals are given by a sorted order of

completion times of the agents (where agents are numbered
in increasing order of completion time) [ta, tb), where ta ∈
{0, t1, t2, ..., tn} and tb = min

i∈N
{ti : ti > ta}.

Proofs omitted from this and subsequent sections can be
found in the full version of this paper.

Lemma 1. Given any resource allocation A(·), there exists
an equivalent fixed allocation Afixed(·) where all the agents
have the same costs/utilities.

Hence, without loss of generality, we will consider only
fixed allocations for the remainder of the paper.

Dominant Resource Fairness with Work
The DRF-W mechanism is an adaptation of the DRF mecha-
nism (Ghodsi et al. 2011; Parkes, Procaccia, and Shah 2015)
to our setting. The DRF mechanism generalizes max-min
fairness to settings with multiple goods and Leontief utili-
ties. It terms the resource satisfying, r∗ = argmax

r
dir the

dominant resource of an agent i. The shareAir∗ of dominant
resource allocated to agent i is its dominant share. The DRF
mechanism chooses the allocation that equalizes the dom-
inant shares of all the agents and is efficiently computable
even at large scale (Kash, O’Shea, and Volos 2018).

The mechanism fDRF-W initially allocates resources to all
the agents using the same resource allocation policy used
for DRF until one of the agents completes its job. After each
agent finishes its work, fDRF-W mechanism reruns DRF on
the remaining agents. Thus, at time t the DRF-W allocation
assigns each agent λ(t) of the agent’s dominant resource and
corresponding amounts of the other resources where λ(t) is
the solution to the linear program,

maxλ(t)

subject to
∑

i∈N (t)

λ(t) · dir ≤ 1, ∀r ∈ R.

Here, N (t) denotes the set of agents that have not yet com-
pleted at time t.

We illustrate the DRF-W mechanism with an example.

Example 1. Consider a set of two agents where one agent
requires 1 GB RAM (resource r1) and 0.5 Mbs network
bandwidth (resource r2) and the other agent requires 0.25
GB RAM and 1 Mbs network bandwidth. Both agents have
one unit of task to complete. In our notation this becomes

D =

1 1

2
1

4
1

 , K =

[
1 0
0 1

]
, and W =

1 1

2
1

4
1

.

The DRF-W allocation at the first interval is obtained by
solving the following linear program,

max λ

subject to λ · 1 + λ · 1
4
≤ 1,

λ · 1
2
+ λ · 1 ≤ 1

5622



where λ is the dominant share of both the agents in the first

time period. Solving the above linear program gives λ =
2

3
,

and the DRF-W allocations as

ADRF-W
1 (t) = 〈2

3
,
1

3
〉, ∀t ∈ [0,

3

2
]

ADRF-W
2 (t) = 〈1

6
,
2

3
〉, ∀t ∈ [0,

3

2
]

Both the agents complete at time
3

2
.

As discussed in the introduction, DRF-W is not Pareto op-
timal. When compared to the LCP solution given in Example
2 in the next section, this example provides another illustra-
tion of this phenomenon. However, DRF-W is weakly Pareto
optimal, in that it is not possible for an alternate allocation
to make all agents strictly better off. The following theorem
shows that it satisfies this as well as several other desiderata.

Theorem 1. DRF-W satisfies weak-PO, SI, EF, and SP.

Least Cost Product Mechanism
The Least Cost Product (LCP) mechanism chooses resource
allocations such that the product of the costs for the alloca-
tions given to agents is the minimum. That is,

fLCP(W) ∈ argmin
A(·)

∏
i∈N

ci(Ai(·)).

Example 2. We illustrate the LCP mechanism with the same
example used in the previous section. Consider the same in-
stances of D, K, and W used in Example 1 described
in the previous section. The completion time of the first

agent is given by t1 =
k1
λ1,1

, where λ1,1 is the dominant

share of the first agent. The completion time of the sec-
ond agent is expressed in terms of the work remaining for
the second agent to complete after the completion of the
first agent. In the upcoming subsection, we give a more
detailed description of expressing the completion time of
an agent in Equation (1). The cost of the second agent is

t2 =
k2
λ2,2
− k1
λ1,1
· λ2,1
λ2,2

+
k1
λ1,1

, where λ2,1 and λ2,2 are the

dominant shares of the second agent at the first and second
time intervals respectively. The LCP allocation is obtained
by solving the following optimization problem,

min
1

λ1,1
·
(
1− λ2,1

λ1,1
+

1

λ1,1

)
subject to λ1,1 · 1 + λ2,1 ·

1

4
≤ 1,

λ1,1 ·
1

2
+ λ2,1 · 1 ≤ 1

where we have substituted λ2,2 = 1 since there are only
two agents. Solving the above optimization problem gives

us λ1,1 =
6

7
, λ2,1 =

4

7
. The LCP allocations are as follows,

ALCP
1 (t) = 〈6

7
,
3

7
〉, ∀t ∈ [0,

7

6
)

ALCP
2 (t) =


〈1
7
,
4

7
〉, ∀t ∈ [0,

7

6
)

〈1
4
, 1〉, ∀t ∈ [

7

6
,
3

2
]

In comparison to the DRF-W allocation in Example 1, this
example illustrates the opportunity for improving the wel-
fare of one agent at no cost to the other.

Before characterizing the behavior of LCP, we observe
that it satisfies Pareto optimality and sharing incentives.
Theorem 2. The LCP mechanism satisfies PO.

Proof. Suppose for contradiction the allocation output
ALCP(·) from the LCP mechanism is not PO. Then, there
exists an alternative allocation A

′
(·) that decreases the cost

of at least one agent without increasing the cost of any other
agent. This implies

∏
i∈N

ci(A
′

i(·)) <
∏
i∈N

ci(A
LCP
i (·)) which

contradicts the optimality of the LCP solution.

Theorem 3. The LCP mechanism satisfies SI.

Structure of LCP Allocations
In this subsection, we characterize the structure of LCP allo-
cations. We show that, apart from the possibility of ties, they
consist of allocations where on each time interval the allo-
cation is an extreme point of the Pareto frontier. For most
instances, this suffices to reduce finding the exact allocation
to examining a finite number of cases. This characterization
is used for several of our subsequent results and forms the
basis of our simulations.

Let N = {1, 2, ..., n} denote the set of agents where the
agents are numbered as per their completion times under the
LCP mechanism, that is, agent 1 finishes first, agent 2 sec-
ond, and so on. The cost product of the agents under the
LCP mechanism is expressed as, CP (ALCP(·)) =

∏
i∈N ti

where ti denotes the completion time of agent i ∈ N . Let
λi,j denote the dominant share allocated to agent i during the
time interval where agent j completes its work. The comple-

tion time of agent 1 is given by, t1 =
k1
λ1,1

, and for agents

i > 1 the completion time is expressed recursively as,

ti =

ki −
i−1∑
j=1

((tj − tj−1) · λi,j)

λi,i
+ ti−1 (1).

For example, the completion time of agent 2 is given by,

t2 =
k2 − t1 · λ2,1

λ2,2
+ t1 =

k2 −
k1
λ1,1

· λ2,1

λ2,2
+

k1
λ1,1

.

Now, we analyze the cost product of the LCP mech-
anism CP (ALCP(·)) by studying the cost product as

5623



a function of the parameters of the i-th time interval,
CPi(λi,i, λi+1,i, λi+2,i, · · · , λn,i) while taking the other
allocation parameters as constants. That is, CPi(λ) =
CP (Aλ), where Aλ is the modified LCP allocation with
the λ parameters for the i-th time interval.
Lemma 2. CPi(λi,i, λi+1,i, λi+2,i, · · · , λn,i) is a Quasi-
concave function.

Proof. First, we show that the product of the completion
time of an agent with the dominant share allocated to the i-th
completing agent is affine. Then, we apply this property to
transform the cost product to a univariate function. Finally,
we show this univariate function is Quasiconcave.

Without loss of generality, when we analyze
CPi(λi,i, λi+1,i, λi+2,i, · · · , λn,i) we assume that
agents {1, 2, , · · · , i − 1} have completed their tasks
resulting in completion times of agents t1, t2, · · · , ti−1
to be regarded as constants. In the i-th time interval, an
updated tasks matrix is obtained as K

′
where k

′

j = 0
for agents 1 ≤ j ≤ i − 1 since the tasks for set of
agents {1, 2, · · · , i − 1} have already been completed, and
0 ≤ k

′

j ≤ kj for agents i ≤ j ≤ n. That is, agents in
N ′

= {i, i + 1, · · · , n} have not completed their tasks but
may have made some progress in earlier intervals.

Let uj = tj · λi,i. We show by induction that uj
is affine. In the base case we have j = i, for which
ui = tiλi,i = k

′

i + λi,iti−1. This is affine as ti−1
is a constant. Assume ui, ui+1, · · · , uj−1 are affine func-
tions of λi,i; λi,i, λi+1,i; · · · ; λi,i, ..., λj−1,i respec-
tively. We now show that uj is an affine function of
λi,i, λi+1,i, ..., λj−1,i, λj,i.

uj = tj · λi,i

=


k
′

j −
j−1∑
a=i

(ta − ta−1) · λj,a

λj,j
+ tj−1

 · λi,i

=
k
′

j

λj,j
λi,i −

1

λj,j

j−1∑
a=i

(ua − ua−1) · λj,a + uj−1

=
k
′

j

λj,j
λi,i −

k
′

i

λj,j
λj,i −

j−1∑
a=i+1

(ua − ua−1)λj,a

λj,j
+ uj−1

The first term is linear with respect to λi,i. The sec-
ond term is linear with respect to λj,i. The last term of
the expression is uj−1 which is affine with respect to
λi,i, λi+1,i, · · · , λj−1,i. The expression in the third term, re-
sults in a linear combination of ui, ui+1, · · · , uj−1. Hence,
uj is an affine function of λi,i, λi+1,i, · · · , λj,i.

Let us call λ = (λi,i, λi+1,i, ..., λn,i) a valid allocation
of n − i + 1 agents in the i-th time interval if λj,i ≥ 0 for
all 1 ≤ i ≤ j ≤ n, and

∑
j∈N ′

λj,i · dj,r ≤ 1 for all r ∈ R.

Let λ and λ
′

represent any two valid allocations of the
n − i + 1 agents in the i-th time interval. We transform the
cost product during the i-th time interval into a univariate
function fCPi

(θ) for 0 ≤ θ ≤ 1. Let,
fCPi

(θ) = CPi(θ · λ+ (1− θ) · λ
′
) ; or

fCPi
(θ) =

∏
j∈N ′

uj(θ · λ+ (1− θ) · λ
′
)

(θ · λi,i + (1− θ) · λ′i,i)

Now, CPi(λ) is Quasiconcave if and only if the univari-
ate function fCPi(θ) is Quasiconcave for all such λ and λ

′
.

Since, uj is an affine function of λ,

fCPi
(θ) =

∏
j∈N ′

θuj(λ) + uj(λ
′
)− θuj(λ

′
)

θλi,i + λ
′
i,i − θλ

′
i,i

=
∏
j∈N ′

θaj + bj
θa0 + b0

(2)

where the following substitutions are made at Equation (2),
aj = uj(λ) − uj(λ

′
) , bj = uj(λ

′
) , a0 = λi,i − λ

′

i,i ,
and b0 = λ

′

i,i. By construction, bj , b0 ≥ 0. Without loss of
generality, we assume aj ≥ 0.

We analyze the logarithm of fCPi(θ) instead of fCPi(θ)
since Quasiconcavity is preserved under monotonic trans-
formations. Lemma 3 below shows log(fCPi

(θ)) is Quasi-
concave, so CPi(λ) is a Quasiconcave function.

Lemma 3. Let f(θ) =
∏
j∈N ′

θaj + bj
θa0 + b0

. Suppose f(θ) > 0

for θ ∈ [0, 1]; a0, b0 ≥ 0; and bj ≥ 0 for j ∈ N ′ ⊆ N .
Then, log(f(θ)) is Quasiconcave on [0, 1].

We will show that the set of allocations, considered for
each period is convex. Since the minimum of a function on a
convex set is at one of the extreme points, Lemma 2 tells us
we can restrict to examining these, of which there are a fi-
nite number (holding the parameters for other periods fixed).
We know that LCP allocations are Pareto optimal from The-
orem 2. Hence, we must look at the extreme points that lie
on the Pareto frontier for every combination from the set of
N agents. The Pareto frontier is determined by the capacity
of a resource,

∑
i∈N λi · dir ≤ 1, ∀r ∈ R where λi

denotes the instantaneous allocation of agent i, and dir cor-
responds to the demand of agent i for resource r. The Pareto
frontier is the boundary defined by at most m hyperplanes
where each hyperplane corresponds to a resource r ∈ R
getting saturated. The extreme points are defined by the rel-
evant intersections of these hyperplanes, i.e. points where at
least two resources are saturated as well as points where a
single agent is allocated. This characterization is similar in
spirit to the result obtained by Bogomolnaia et al. (2017)
that an allocation is competitive when dividing a set of bads
if and only if the utility profile is negative and the allocation
is a critical point of the product of the absolute values of the
utilities in the negative efficiency frontier.

However, our setting has one additional complication not
present in their setting. In addition to resource constraints,

5624



since our optimization is based on optimizing on one period
while holding the others constant we also have constraints to
ensure that all agents finish in the correct order. There may
be extreme points of the feasible set where these constraints
are tight, which represent ties. We give such an example in
the full version of this paper.
Theorem 4. An LCP allocation ALCP(·) consists of at most
n time interval allocations. Unless two agents tie in com-
pletion time, the allocation of agents in each interval is an
extreme point of the Pareto frontier.

Proof. Let the LCP solution be given, with agents ordered
by their completion time. Since this minimizes the cost prod-
uct, it must also do so when we only optimize over the allo-
cation in one time period, holding all the others fixed.

We know from Lemma 2 that the cost product func-
tion at the i-th time interval expressed as a function of the
allocation of n − i + 1 agents left to finish their work
CPi(λi,i, λi+1,i, · · · , λn,i) is Quasiconcave. The mini-
mum of a Quasiconcave function over a closed convex set is
attained at the extreme points of that closed convex set.

Our optimization problem over (λi,i, λi+1,i, · · · , λn,i)
has three types of constraints. The first two, λj,i ≥ 0 and∑
j∈N λj ·djr ≤ 1 are non-strict linear inequalities, so their

intersection is a closed convex set. The third ensures that
agent j is in fact the j-th agent to finish, i.e., tj ≤ tj+1 for
all j. As shown in the proof of Lemma 2, the uj (which are
a monotone transformation of the tj) are affine functions,
so each of these constraints defines a closed convex set. Our
feasible set represents the intersection of these constraints as
well and hence, it is closed and convex.

We also know from Theorem 2 that the LCP allocations
are Pareto optimal. Thus, we only need to consider extreme
points which lie on the Pareto frontier. If these extreme
points are defined only by the first two types of constraints,
then they are extreme points of the Pareto frontier itself. Oth-
erwise, they include a constraint of the third type being tight,
i.e. there are two agents with a tie in completion time.

Lemma 4. The LCP mechanism violates SP.

Envy-freeness of LCP
In all prior settings we are aware of with divisible goods, so-
lutions based on maximizing Nash welfare have been envy-
free (Varian 1974; Moulin 2004; Bogomolnaia et al. 2017,
2019; Goel, Hulett, and Plaut 2019). Even in non-divisible
settings, it has strong envy-freeness properties that have led
it to be described as ”unreasonably fair” (Caragiannis et al.
2016). Surprisingly, we show in our setting that the LCP so-
lution is not envy-free, even in expectation.
Lemma 5. The LCP mechanism does not satisfy EF (even
in expectation) when the resource allocation involves three
or more agents and two or more resources.

Consider an example of three agents requiring two
resources that have the demand matrix D, and K as follows,

D =

[
1 1
1 ε
ε 1

]
, K =

[
1 0 0
0 1 0
0 0 k3

]
,

R1

time t

Allocation Ai1(t)

00 1

1

2 + ε

1

1 + ε

1 + ε+ k3

ε

R2

time t

Allocation Ai2(t)

0
0

1

1

2 + ε

ε

1 + ε

1 + ε+ k3

Agent 1
Agent 2
Agent 3

Figure 1: Example where LCP has envy

where ε << 1 and k3 > 2.
Figure 1, shows the form of the LCP allocation for the

above demands D, and K. In this example, the first and
second agents have the same dominant resource and are re-
quired to complete the same amount of work. Also, the first
agent demands more of the second resource compared to the
second agent while, the third agent has a different dominant
resource when compared to the second agent. As illustrated
by Figure 1, the LCP mechanism would be lowering the cost
product by first completing the allocation of the first agent
and then allowing the second and third agents to share their
allocations. This allocation is efficient but the second agent
would envy the first agent. A more detailed description of
the example is given in the full version of this paper.

While these examples rule out envy-freeness in general,
they seem to be relatively rare in randomly generated exam-
ples as our simulations show.

The requirement of three agents and two goods is tight.
We show in the full version that with only two agents or a
single resource the LCP allocation is EF in expectation.
Lemma 6. For single resource allocations, the LCP mech-
anism allocates the resource in the form of the Shortest Job
First (SJF) and the allocations are envy-free in expectation.
The LCP allocations are envy-free in expectation when allo-
cating multiple resources for two agents.

Simulation Results
We simulate the LCP and DRF-W mechanisms on randomly
generated problem instances in order to better understand
the trade-off between fairness and efficiency. The simulation
varies the number of agents from 2 to 5. For each number of
agents, 2000 examples were generated. The number of re-
sources for each example was chosen uniformly at random
between 1 to 10. The demand vector of an agent was gener-
ated using a uniform distribution on (0.0, 1.0]. The demand
vector was then normalized for each agent. The amount of
work ki required for agent i to complete was chosen uni-
formly at random from (0.0, 100.0]. Using uniform ran-
domness tends to make it harder for the LCP mechanism
when compared to more realistic distributions, since if some

5625



Evaluation metrics Mechanism Number of agents n
n = 2 n = 3 n = 4 n = 5

Envy-freeness LCP-X 100 % 99.95 % 99.95 % 99.90 %
DRF-W 100 % 100% 100 % 100%

Sharing-Incentives LCP-X 100 % 100% 100 % 100 %
DRF-W 100 % 100 % 100 % 100 %

Lower LCP-X 2.1 % 3.6 % 4.7 % 5.1 %
Makespan DRF-W 58.3 % 73.6 % 76 % 78.6 %

LCP-X equals DRF-W 39.6 % 23.4 % 19.3 % 16.3 %
Lower mean LCP-X 95.65 % 99.3 % 100 % 100 %
completion time DRF-W 4.35 % 0.7 % 0 % 0 %

LCP-X Pareto dominates DRF-W 39.6 % 24 % 20.3 % 18.15 %

Table 1: Comparison of LCP-X and DRF-W on 2000 instances for each n

resources are globally more desired than others or if there
are large disparities in ki then there are effectively fewer re-
sources or agents to consider.

The DRF-W allocation is straightforward to compute as
a DRF allocation among agents over each interval. Theo-
rem 4, characterizes the structure of LCP allocations, but
the possibility of ties makes an exact computation challeng-
ing. Instead, we consider only the main branch of the char-
acterization, where in each period the allocation is an ex-
treme point of the Pareto frontier. We refer to the algorithm
that considers only such candidates as LCP-X. With this re-
striction, we can compute the LCP-X allocation by enumer-
ation, which is polynomial in the number of resources but
exponential in the number of agents. While LCP-X does not
immediately inherit the properties of LCP, the LCP-X allo-
cation is based on the same principle as the LCP mechanism
and is substantially easier to compute because the LCP-X
minimizes over a restricted set that excludes certain types of
ties. Our simulations show that despite this restriction, the
LCP-X generally satisfies the same desiderata as the LCP.

Table 1 summarizes the results of the comparisons be-
tween the DRF-W allocation and the LCP-X allocation.
Consistent with our theoretical results for LCP, the LCP-X
allocations always satisfied SI and were EF with two agents.
Rare instances showed envy for LCP-X with more than two
agents, but upon inspection these were instances where LCP
would have envy as well. This suggests that, at least for ran-
domly generated instances, we should expect the LCP mech-
anism to almost always satisfy EF. Our use of a continuous
distribution for the amount of work each agent has ensured
that ties in ki did not occur. Thus, there were no instances
that would have satisfied EF in expectation but not EF.

We also compare DRF-W and LCP-X in terms of their
makespan and average completion time, metrics commonly
used in the systems settings which inspired our work (Grandl
et al. 2016). The makespan is the completion time of the
last agent to complete its work and can be interpreted as
a fairness property. We observe that the DRF-W allocation
typically has a lower makespan than the LCP-X allocation.
Since each agent makes equal progress in the DRF-W al-
location, with more agents the makespan of the DRF-W
mechanism decreases at a faster rate compared to the LCP
mechanism. In the instances where the LCP-X allocation

had a lower makespan, the LCP-X shares more aggressively,
slightly slowing down the initial agents relative to the DRF-
W allocation while speeding up the later agents.

The mean completion time of an agent represents an esti-
mate of how fast an agent is expected to complete its work
under the allocation and is an efficiency property. For most
cases, the LCP-X allocation has a lower mean completion
time because of its higher efficiency. In the examples where
the DRF-W allocation had a lower mean completion time,
we found that the LCP-X allocation takes the form of the
shortest job first allocation whereas the sharing of the DRF-
W allocation does a better job at minimizing the makespan
thereby lowering the mean completion time.

Finally, we examined if the LCP-X allocation Pareto dom-
inated the DRF-W allocation. From Table 1, we see that the
percentage of instances where the LCP-X allocation Pareto
dominates the DRF-W allocation decreases as the number
of agents increase from n = 2 to n = 5. This decrease is
largely accounted for the increase in the percentage of in-
stances the DRF-W allocation has a lower makespan than
the LCP-X allocation.

Conclusion
We studied fair division for agents with limited demands.
DRF-W allocations exhibit several fairness properties but
are in general inefficient. LCP allocations are highly effi-
cient but have relatively weak fairness properties. We be-
lieve this is a reasonable trade-off because in system settings
(e.g. Grandl et al. (2016), Hindman et al. (2011), Vavilapalli
et al. (2013)), the primary objection to DRF is its lack of ef-
ficiency. In contrast, LCP yields substantial efficiency gains
and in simulations still appears to generally be fair despite
the existence of non-EF examples. For future work, based
on our observation that there is room to improve the effi-
ciency of DRF at essentially no cost to fairness which was
motivated by Grandl et al. (2016), we plan to explore LCP
on jobs composed of subtasks with a DAG structure. An-
other direction would be to investigate a market interpreta-
tion of the LCP similar to the works of Goel, Hulett, and
Plaut (2019), and the Eisenberg-Gale convex program. One
issue here is that usually EF can be shown from the convex
program but we know that the LCP does not satisfy EF.

5626



References
Arrow, K.; and Intriligator, M. 2000. Handbook of mathe-
matical economics. Technical report, Elsevier.

Bogomolnaia, A.; Moulin, H.; Sandomirskiy, F.; and
Yanovskaia, E. 2019. Dividing bads under additive utilities.
Social Choice and Welfare 52(3): 395–417.

Bogomolnaia, A.; Moulin, H.; Sandomirskiy, F.; and
Yanovskaya, E. 2017. Competitive division of a mixed
manna. Econometrica 85(6): 1847–1871.

Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.;
Shah, N.; and Wang, J. 2016. The Unreasonable Fairness
of Maximum Nash Welfare. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16,
305–322. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450339360. doi:10.1145/2940716.
2940726. URL https://doi.org/10.1145/2940716.2940726.

Conitzer, V.; Freeman, R.; and Shah, N. 2017. Fair Public
Decision Making. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, EC ’17, 629–646.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450345279. doi:10.1145/3033274.3085125.
URL https://doi.org/10.1145/3033274.3085125.

Conitzer, V.; Freeman, R.; Shah, N.; and Vaughan, J. W.
2019. Group fairness for the allocation of indivisible goods.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 1853–1860.

Friedman, E.; and Henderson, S. 2003. Fairness and effi-
ciency in processor sharing protocols to minimize sojourn
times. In Proceedings of ACM SIGMETRICS, 229–337.

Ghodsi, A.; Zaharia, M.; Hindman, B.; Konwinski, A.;
Shenker, S.; and Stoica, I. 2011. Dominant Resource Fair-
ness: Fair Allocation of Multiple Resource Types. In Pro-
ceedings of the 8th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’11, 323–336. USA:
USENIX Association.

Goel, A.; Hulett, R.; and Plaut, B. 2019. Markets Beyond
Nash Welfare for Leontief Utilities. Web and Internet Eco-
nomics .

Grandl, R.; Chowdhury, M.; Akella, A.; and Anantha-
narayanan, G. 2016. Altruistic Scheduling in Multi-
Resource Clusters. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16),
65–80. Savannah, GA: USENIX Association. ISBN 978-
1-931971-33-1. URL https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/grandl altruistic.

Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.;
Joseph, A. D.; Katz, R.; Shenker, S.; and Stoica, I. 2011.
Mesos: A Platform for Fine-Grained Resource Sharing in
the Data Center. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation,
NSDI’11, 295–308. USA: USENIX Association.

Kash, I.; Procaccia, A. D.; and Shah, N. 2014. No agent left
behind: Dynamic fair division of multiple resources. Journal
of Artificial Intelligence Research 51: 579–603.

Kash, I. A.; O’Shea, G.; and Volos, S. 2018. DC-DRF:
Adaptive multi-resource sharing at public cloud scale. In
Proceedings of the ACM Symposium on Cloud Computing,
374–385.
Moulin, H. 2004. Fair Division and Collective Welfare, vol-
ume 1 of MIT Press Books. MIT Press, 1 edition. ISBN
0262633116.
Moulin, H. 2019. Fair division in the internet age. Annual
Review of Economics 11: 407–441.
Parkes, D. C.; Procaccia, A. D.; and Shah, N. 2015. Beyond
dominant resource fairness: Extensions, limitations, and in-
divisibilities. ACM Transactions on Economics and Compu-
tation (TEAC) 3(1): 3.
Varian, H. R. 1974. Equity, envy, and efficiency. Jour-
nal of Economic Theory 9(1): 63 – 91. ISSN 0022-
0531. doi:https://doi.org/10.1016/0022-0531(74)90075-
1. URL http://www.sciencedirect.com/science/article/pii/
0022053174900751.
Vavilapalli, V. K.; Murthy, A. C.; Douglas, C.; Agarwal, S.;
Konar, M.; Evans, R.; Graves, T.; Lowe, J.; Shah, H.; Seth,
S.; et al. 2013. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing, 1–16.

5627


