
On the Approximation of Nash Equilibria in Sparse Win-Lose Multi-player Games

Zhengyang Liu, 1 Jiawei Li,2 Xiaotie Deng 2

1 Beijing Institute of Technology
2 CFCS, Peking University

zhengyang@bit.edu.cn, davidlee1999@pku.edu.cn, xiaotie@pku.edu.cn

Abstract

A polymatrix game is a multi-player game over n players,
where each player chooses a pure strategy from a list of its
own pure strategies. The utility of each player is a sum of pay-
offs it gains from the two player’s game from all its neighbors,
under its chosen strategy and that of its neighbor. As a natural
extension to two-player games (a.k.a. bimatrix games), poly-
matrix games are widely used for multi-agent games in real
world scenarios.
In this paper we show that the problem of approximating a
Nash equilibrium in a polymatrix game within the polyno-
mial precision is PPAD-hard, even in sparse and win-lose
ones. This result further challenges the predictability of Nash
equilibria as a solution concept in the multi-agent setting. We
also propose a simple and efficient algorithm, when the game
is further restricted. Together, we establish a new dichotomy
theorem for this class of games. It is also of independent inter-
est for exploring the computational and structural properties
in Nash equilibria.

Introduction
Nash equilibrium models and predicts the strategic behav-
ior of selfish yet rational agents. Essentially, at any Nash
equilibrium, the strategy of each agent is the best response
with respect to the strategies from other agents. The cele-
brated Nash Theorem (Nash 1951, 1950) establishes the ex-
istence of such an equilibrium solution in every finite game,
by leveraging fixed-point theorems. Due to its simplicity and
elegance, Nash equilibrium has been widely applied to eco-
nomics and political sciences, and to Internet studies in the
fast growth human activities over it.

However, most of the Nash equilibrium results studied un-
der variant settings are non-constructive, which means we
cannot find such a stable state efficiently. Despite much ef-
fort made to develop algorithms to tackle this fundamen-
tal problem (Kuhn 1961; Lemke and J. T. Howson 1964;
Janovskaya 1968; Wilson 1971; Howson Jr 1972; Garcia,
Lemke, and Luethi 1973; Shapley 1974), the most widely
used algorithm till now still needs an exponential time in the
worst case (Savani and von Stengel 2006).

In his seminal work to characterize the proof structure
of equilibrium problems (Papadimitriou 1994), Papadim-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

itriou introduced the complexity class of PPAD, and proved
that many equilibrium-related problems are contained in
this class. The next major breakthrough (Daskalakis, Gold-
berg, and Papadimitriou 2009) developed Nash equilibrium
in graphical games, simulation of arithmetic, logic opera-
tions and Brouwer’s fixed points. This reduction allowed
for a proof of finding an exponentially close approximate
Nash equilibrium in a game over four or more players being
PPAD-complete. Ultimately in the two player case, finding
a polynomially small approximate solution is shown to be
PPAD-complete by Chen et al. (Chen and Deng 2006; Chen,
Deng, and Teng 2009).

This work studies the polynomial precision approxima-
bility issue for the problem of approximating a Nash equi-
librium in a polymatrix game, focusing on the sparse and
win-lose games. We restrict our discussion to games with a
succinct representations. In particular, we focus on polyma-
trix games with n players where each player has two strate-
gies. Each pair (i, j) of players play a small (2× 2) bimatrix
sub-game. The payoff of a player is the sum of the payoffs
she gains in each sub-game, by its given strategy (the same
strategy against all its opponents). We use a 2n × 2n ratio-
nal matrix P for a polymatrix game. For the PPAD-hardness
result we obtain here, the restriction of the two by two pair-
wise subgame between every pair of players can easily be
extended to more general m by m bimatrix subgame case
for the same complexity result.

The polymatrix game model is much more important and
interesting for two key points in equilibrium computation.

1. From the viewpoint of economics, bimatrix game is not
the best suitable model in today’s complicated environ-
ment, such as over the Internet connected society. The
user profiling approach can allow us to model a wholistic
agent action space. Such a real life observation motivates
the adoption of the polymatrix game model in our study.

2. For the computational complexity issue, polymatrix
games serves as the base from which further PPAD-
hardness results are derived, such as other succinct
games (Chen, Durfee, and Orfanou 2015), market equi-
librium (Chen, Paparas, and Yannakakis 2017) and com-
petitive equilibrium (Babichenko, Papadimitriou, and Ru-
binstein 2016).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5557

Our Contributions We study a simple class of polymatrix
games, called Sparse Win-Lose polymatrix (SWLP) games.
Informally, given two positive integers a and b, an (a, b)-
SWLP game is a polymatrix game if the payoff matrix sat-
isfies the followings: Each row contains at most a ones, and
each column contains at most b ones; the other entries are
all zeros. In this paper, we establish a dichotomy theorem
for Nash equilibrium computation of SWLP games. For the
intractable aspect, we show that the problem of finding a
Nash equilibrium in (2, 2)-SWLP games with polynomial
(in terms of the number of players) precision is PPAD-hard.
This surprising result strongly challenges the predictability
of Nash equilibrium in the multi-agent setting due to the
computational hardness in this extremely simple setting. For
the positive part, we provide an efficient algorithm to com-
pute an exact Nash equilibrium for other cases, i.e., (1, n) or
(n, 1)-SWLP games.

Related Work
Polymatrix games were introduced by (Janovskaya 1968)
and its approximate computational complexity, within an
exponentially small factor, was shown PPAD-hard implic-
itly, in the result of Daskalakis et al (Daskalakis, Gold-
berg, and Papadimitriou 2009). The approximation constant
was relaxed further to be polynomially small (Chen, Deng,
and Teng 2009). The followup work (Chen, Paparas, and
Yannakakis 2017; Rubinstein 2015) improved the result by
showing that the circuit problem is still hard even the pre-
cision is further relaxed. Chen et al. (Chen, Paparas, and
Yannakakis 2017) proved that finding a 1/n-well-supported
Nash equilibrium in a polymatrix game is hard. It is worth
mentioning that Rubinstein (Rubinstein 2015) showed that
even if the polymatrix game is sparse and the precision
parameter is an absolute constant, the result still holds. It
is quite different from the bimatrix game setting (Lipton,
Markakis, and Mehta 2003), unless PPAD can be solved
within quasi-polynomial time. Very recently, Deligkas et
al. (Deligkas, Fearnley, and Savani 2020) proved that find-
ing a Nash equilibrium in tree polymatrix games with twenty
actions per player is PPAD-hard.

However, the above complexity work didn’t care about
the simplicity of the payoff matrix. As we know, for two-
player games, the hardness result depends on not only the
sparsity (Chen, Deng, and Teng 2006) but also the simplic-
ity of the payoff entries (Chen, Teng, and Valiant 2007)(Bilò
and Mavronicolas 2019). Liu and Sheng (Liu and Sheng
2018) proved similar results to two-player games, they intro-
duced chasing game as their base game, making the previous
framework go through. For two-player games, base games
like matching pennies game (Chen and Deng 2006; Chen,
Deng, and Teng 2009; Daskalakis, Goldberg, and Papadim-
itriou 2009) and chasing game (Liu and Sheng 2018), en-
force the sum of probabilities of every two successive strate-
gies to be approximately equal. It is the crucial property to
encode variables in the reductions. Considering the structure
of a polymatrix game, it is natural that each player plays the
same probability (that is exactly 1) on its own strategy set.
To the end, we can avoid the logarithmic barrier in the poly-
matrix case. Note that the equilibrium computation of sparse

win-lose bimatrix games still remains open.
From the positive result side, Deligkas et al. (Deligkas

et al. 2017) showed that (0.5 + δ)-approximate Nash equi-
librium could be computed in time polynomial in the in-
put size and 1/δ, with gradient descent method. Deligkas
et al. (Deligkas, Fearnley, and Savani 2017) provided a
deterministic QPTAS for polymatrix games with bounded
treewidth and with logarithmically many actions per player.
Barman et al. (Barman, Ligett, and Piliouras 2015) devel-
oped a quasi-polynomial time algorithm for approximating a
Nash equilibrium in polymatrix games over trees. Ortiz and
Irfan (Ortiz and Irfan 2017) provided an FPTAS for com-
puting an approximate mixed-strategy Nash equilibrium in
graphical multi-hypermatrix games. Efficient algorithms for
win-lose games have also been studied in several settings,
e.g., see (Chen, Deng, and Teng 2006)(Codenotti, Leoncini,
and Resta 2006)(Datta and Krishnamurthy 2011)(Addario-
Berry, Olver, and Vetta 2007).

Preliminaries
Notation. Throughout this paper, we use [n] to denote the
integer set {1, . . . , n}, and denote by x = a±ε the constraint
that x ∈ [a − ε, a + ε]. All the vectors and matrices are in
bold-face letters. We also use 0 to represent all zeros matrix
of appropriate dimension. Given a matrix A ∈ Rm×n, we
denote by Ai the i-th column of A; given a vector x ∈ Rn,
we use xi to denote the i-th coordinate of x.

An n-player two-action polymatrix game can be de-
scribed by a 2n × 2n payoff matrix P, which is composed
of n × n block matrices where each block is of size 2 × 2.
The (i, j)-th block matrix represents the payoff for player j
when playing the subgame with player i. The payoff for any
player i is the sum of the payoff in n sub-games with all n
players. As usual, we assume that the (i, i)-th matrix is zero
matrix for any i ∈ [n].

A strategy profile is represented by a rational-numbered
vector x = (x1, . . . , x2n) ∈ R2n

+ , where x2i−1, x2i are the
probabilities for player i to choose its first, second action
respectively. We always have x2i−1 + x2i = 1, for any i ∈
[n]. The expected payoff for player i choosing its first and
second action are

u(2i− 1,x) :=xT ·P2i−1,

u(2i,x) :=xT ·P2i,

where the Pt is the t-th column of P.
For the rest of this paper, we use polymatrix games to

denote two actions polymatrix games for brevity.
Instead of exact equilibrium, we introduce the well-

supported Nash equilibrium. This solution concept allows
us to compare a pair of strategies, approximately.
Definition 1 (ε-well-supported Nash Equilibrium). A strat-
egy profile x is an ε-well-supported Nash equilibrium for the
polymatrix game (n,P) if and only if for any i ∈ [n]:

x2i−1 = 0, when u(2i− 1,x) < u(2i,x)− ε;
x2i = 0, when u(2i,x) < u(2i− 1,x)− ε.

We study the equilibrium computation of a very simple
class of polymatrix games, named sparse win-lose polyma-
trix (SWLP) games.

5558

Definition 2 ((a, b)-Sparse Win-Lose Polymatrix Game).
An (a, b)-sparse win-lose polymatrix game is a polymatrix
game (n,P) with following conditions:

1. The payoff matrix P has at most a non-zero entries in
each row and at most b non-zero entries in each column.

2. Each entry in P is zero or one.
The starting point in our reduction is a well-known prob-

lem, named GCIRCUIT, which is proved to be PPAD-hard.
Definition 3 (GCIRCUIT (Chen, Deng, and Teng 2009)).
The input of GCIRCUIT is a pair (V, T), in which V is a
set of nodes and T is a set of gates. Each gate T ∈ T is a
5-tuple T = (G, v1, v2, v, α), in which

1. G ∈ {G+, G−, G=, G<, G¬, Gζ , G×ζ , G∨, G∧} is the
type of the gate.

2. Nodes v1, v2 ∈ V ∪ {nil} are the input of the gate, and
v1 6= v2 unless they are both nil.

3. The node v ∈ V is the output of the gate, and v /∈
{v1, v2}. We assume that each node can be used as output
at most once.

4. α ∈ [0, 1] is a constant that will be used in gatesGζ , G×ζ .
Each node v ∈ V also corresponds to a real value vari-

able x[v] ∈ [0, 1]. We also called x[v] as the value of
node v.1 Each type of gate defines a constraint with re-
spect to the value of input nodes, output node and approxi-
mate parameter ε. All the constraints are summarized in Ta-
ble 1. For some cases that is not specified in Table 1, e.g.
|x[v1]− x[v2]| < ε for the G< gate, the value of the output
node could be arbitrary between 0 and 1.

The output of this problem is an assignment of x that sat-
isfies all the ε-approximate gate constraints.

In this paper, we reduce an instance of GCIRCUIT to a
(2, 2)-SWLP game, such that given any ε-well-supported
Nash equilibrium, we can convert it to a valid output of
the GCIRCUIT instance. We know that GCIRCUIT is PPAD-
complete.
Lemma 1. (Chen, Deng, and Teng 2009) Given a GCIR-
CUIT (V, T), and ε = 1

K3 , where K = |V |, calculating an
ε-approximate solution for (V, T) is PPAD-complete.

Review of the Former Proof
To make this paper self-contained, we briefly review the
reduction from the GCIRCUIT problem to the polymatrix
game in (Chen, Paparas, and Yannakakis 2017).

Let (V, T) be a GCIRCUIT instance, where |V | = K.
Let C be a one-to-one mapping from V to [K], i.e. C(v)
is an index of vertex v. Let n = 2K denote the number of
players. For each gate T ∈ T , we define two gadget matrices
L[T],R[T] ∈ [0, 1]n×n, which simulate the functionality
of the gate T . Then we construct the payoff matrix P as
follows:

P =

(
0 B
A 0

)
,

1We abuse the notation x for both the value of a node in GCIR-
CUIT and the strategy profile of all players in polymatrix game.
When referring to the value of the node v, we will use square
bracket to index it, like “x[v]”, to highlight the difference.

Given T = (G, v1, v2, v, α) ∈ T , ε ≥ 0
x[v] ∈ [0, 1] for any v ∈ V

G+ : x[v] = min(x[v1] + x[v2], 1)± ε
G− : x[v] = max(x[v1]− x[v2], 0)± ε
G= : x[v] = x[v1]± ε
Gζ : x[v] = α± ε
G×ζ : x[v] = αx[v1]± ε

G< :

{
x[v] = 1± ε if x[v1] < x[v2]− ε
x[v] = 0± ε if x[v1] > x[v2] + ε

G¬ :

{
x[v] = 1± ε if x[v1] ≤ ε
x[v] = 0± ε if x[v1] ≥ 1− ε

G∨ :

{
x[v] = 1± ε if x[v1] ≥ 1− ε or x[v2] ≥ 1− ε
x[v] = 0± ε if x[v1],x[v2] ≤ ε

G∧ :

{
x[v] = 1± ε if x[v1],x[v2] ≥ 1− ε
x[v] = 0± ε if x[v1] ≤ ε or x[v2] ≤ ε

Table 1: Constraints for gates in GCIRCUIT

where A,B ∈ [0, 1]n×n, A =
∑
T∈T L[T] and B =∑

T∈T R[T]. One can show that the final matrix P can sat-
isfy all the constraints of gates in T . We omit the original
constructions of L[T],R[T] here, and defer our new ones
when used instead.

Let (x∗,y∗) ∈ R4K be an ε-well-supported Nash equilib-
rium of polymatrix game P, where x∗,y∗ ∈ R2K represent
the strategy of the first and the last K players respectively.
Then we take the value of node x[v] = x∗2C(v)−1 for all
node v ∈ V . One can show that x[v] defined by the formula
above is indeed an ε-approximate solution of GCIRCUIT in-
stance (V, T).

PPAD-hardness
In this section, we will prove our main theorem.
Theorem 2. Finding any 1

n4 -well-supported Nash equilib-
rium in an n players (2, 2)-SWLP games is PPAD-hard.

The reduction consists of three stages. We first show
the hardness result for the case of (3, 2)-sparse polymatrix
game. In this stage, we follow the techniques of (Chen,
Deng, and Teng 2006) for 2-player games and (Chen, Pa-
paras, and Yannakakis 2017) for polymatrix games. Note
that the above instance is not “win-lose”, i.e., the payoff ma-
trices contain entries that are neither “0”s nor “1”s. We refine
the constructions of our gadgets to be “win-lose” ones, while
keeping the resulting instances still (3, 2)-sparse. The final
step is to fine-tune the GCIRCUIT, amortizing the number of
“1”s in odd and even numbered rows of the payoff matrix P,
such that each row has at most two “1”s.

Make It Sparse
In the original proof of (Chen, Paparas, and Yannakakis
2017), the payoff matrix P is not that sparse due to two is-
sues.

5559

For the GCIRCUIT instance, some nodes serve as an in-
put node of several gates simultaneously. In the original
construction, this case will introduce many non-zero en-
tries in the corresponding row of the resulting polyma-
trix game. Fortunately, it can be avoided easily by simu-
lating the large out-degree nodes with a technical compo-
nent “copy network” in (Chen, Deng, and Teng 2006). For-
mally, for each node v with out-degree at least three, we
should invoke COPY(T ; v) in Procedure 1. The sub-routine
INSERT(T , T = (G, v1, v2, v3, v, α)) adds a new gate T
to the collection T , and REPLACE(T, v, v′) will replace the
node v in the gate T with the node v′.

Lemma 3. (Chen, Deng, and Teng 2006) [essentially]
GCIRCUIT with max out-degree 2 is still PPAD-Complete.

Procedure 1 COPY(T ; v)

1: let node v be the input node of gates T1, . . . , Tl.
2: Pick unused nodes v1, . . . , vl−1.
3: INSERT(T , (G=, v, nil, nil, v1, nil)).
4: for all i ∈ [l − 2] do
5: INSERT(T , (G=, vi, nil, nil, vi+1, nil)).
6: end for
7: for all i ∈ [l − 1] do
8: REPLACE(Ti+1, v, vi).
9: end for

The other issue is about the constructions of game gad-
gets. The game gadgets for G∨, G∧, Gζ in the previous
works are not column sparse. The remaining part is devoted
to our modifications of these gadgets.

We introduce a new game gadget GH to simplify the
constructions of G∨, G∧, Gζ . Informally, GH is used to
generate the constant 1/2 approximately. To plug GH into
a gate G ∈ {G∨, G∧, Gζ}, we extend the definition 3
by adding an auxiliary input node v3 ∈ V ∪ {nil}, i.e.,
(G, v1, v2, v3, v, α), where v3 is used to pass the constant
1/2 as an input of the gate. To ensure the sparsity, for each
G∨, G∧, Gζ type gate T , we need to pick an unused node u
as the output node of a new GH gate. We set u as the auxil-
iary input v3 in T . For any other type of gates, the auxiliary
input v3 is set to nil.

All the game gadgets are summarized in Table 2. A spe-
cial gate G′= will be defined and used in the following sec-
tion, but we also put its game gadget here for convenience.

Next we prove that the resulting polymatrix game P sat-
isfy all the constraints in the instance of GCIRCUIT listed in
Table 2.

Lemma 4. Given any ε-well-supported Nash equilibrium
(x∗,y∗) of the polymatrix game (n,P), for any gate T ∈ T ,
the construction in Table 1 satisfies the corresponding con-
straint in Table 2.

Proof. Since each node cannot be taken as the output nodes
of different gates, it is sufficient to show that each indi-
vidual constraint is satisfied by our construction. Here we
only prove the correctness of our newly constructed game
gadget for GH as an example. The correctness for other

Matrices L[T], R[T], where T = (G, v1, v2, v3, v, α)
Initialize L[T],R[T] as zero matrix.
Denote Li,j := L[T]i,j , Ri,j := R[T]i,j , k := C(v), k1 :=
C(v1), k2 := C(v2), k3 := C(v3)

G+ :

{
L2k−1,2k−1 = L2k,2k = 1

R2k1−1,2k−1 = R2k2−1,2k−1 = R2k−1,2k = 1

G− :

{
L2k−1,2k−1 = L2k,2k = 1

R2k1−1,2k−1 = R2k2−1,2k = R2k−1,2k = 1

G= :

{
L2k−1,2k−1 = L2k,2k = 1

R2k1−1,2k−1 = R2k−1,2k = 1

G< :

{
L2k−1,2k = L2k,2k−1 = 1

R2k1−1,2k−1 = R2k2−1,2k = 1

G¬ :

{
L2k−1,2k = L2k,2k−1 = 1

R2k1−1,2k−1 = R2k1,2k = 1

GH :

{
L2k−1,2k = L2k,2k−1 = 1

R2k−1,2k−1 = R2k,2k = 1

Gζ :

{
L2k−1,2k = L2k,2k−1 = 1

R2k−1,2k−1 = 1/2, R2k3−1,2k = α

G×ζ :

{
L2k−1,2k−1 = L2k,2k = 1

R2k−1,2k = 1, R2k1−1,2k−1 = α

G∨ :

{
L2k−1,2k−1 = L2k,2k = 1

R2k1−1,2k−1 = R2k2−1,2k−1 = R2k3−1,2k = 1

G∧ :


L2k−1,2k−1 = L2k,2k = 1

R2k3−1,2k = 1

R2k1−1,2k−1 = R2k2−1,2k−1 = 1
3

G′= :

{
L2k−1,2k = L2k,2k−1 = 1

R2k1,2k−1 = R2k,2k = 1

Table 2: Polymatrix game gadgets for GCIRCUIT gates

game gadgets follows similar argument, and one can refer
to (Chen, Paparas, and Yannakakis 2017; Chen, Deng, and
Teng 2006).

Let’s denote T = (G, v1, v2, v3, v, α), k = C(v), k1 =
C(v1), k2 = C(V2), k3 = C(V3). Let (x∗,y∗) ∈ R4K be
an ε-well-supported Nash equilibrium of polymatrix game
P, where x∗,y∗ ∈ R2K represent the strategy profiles of the
first and the last K players respectively. Recall that we have
the value of node x[u] = x∗2C(u)−1 for each node u ∈ V .

Given a gate GH , we consider the difference ∆k between
the utility of two actions of the (K + k)-th player

∆k := x∗T (R[T]2k−1 −R[T]2k) = x∗2k−1 − x∗2k.
If ∆k > ε, we have y∗2k−1 = 1 by the definition of ε-well-
supported Nash equilibrium. It then follows that x∗2k = 1,
hence x∗2k−1 = x∗2k + ∆k > 1, which is a contradiction!
Now we assume ∆k < −ε, then we have y∗2k = 1. This
leads to x∗2k−1 = 1, hence x∗2k = x∗2k−1 −∆k > 1. Finally,
we have |∆k| ≤ ε, and x[v] = x∗2k−1 = (1± ε)/2.

5560

After discussing the correctness of these new game gad-
gets, we move to show that the sparsity constraint is also
satisfied under our construction.
Lemma 5. The payoff matrix P constructed from GCIR-
CUIT (V, T) by game gadgets in Table 1 is (3, 2)-sparse.

Proof. Recall that P =

(
0 B
A 0

)
, and A =

∑
T∈T L[T],

B =
∑
T∈T R[T]. We only need to show the sparsity of

A,B respectively.
For each index k = C(v) ∈ [K], where v ∈ V , there is

at most one gate Tv ∈ T such that v is the output node of
T . Also note that the only possible non-zero entries in rows
and columns 2k − 1, 2k of A is due to L[Tv], that contains
exactly two “1”s on two different rows and columns in the
(k, k)-th 2× 2 block. Thus, A is (1, 1)-sparse.

Next we consider the matrix B. The only possible non-
zero entries in columns 2k − 1, 2k of B are due to R[Tv],
which contains at most two “1”s in each column 2k− 1, 2k.
For the rows 2k − 1, 2k, recall that v has out-degree at most
two due to the “copy network”, so v appears in at most two
gates T1, T2 as input nodes and one gate Tv as the output
node. Each of R[T1],R[T2],R[Tv] adds at most one “1” in
rows 2k − 1, 2k. Therefore, B is (3, 2)-sparse. Hence the
lemma holds.

Make It “Win-Lose”
The gadgets forG∧, Gζ , G×ζ gates in the previous step con-
tain entries that are not zeros or ones. In this section, we
simulate these gates with others which contain only zeros
and ones.

First we can replace the AND gate G∧ with three G¬
gates and one G∨ gate by De Morgan’s Laws, i.e., x ∧ y =
¬((¬x) ∨ (¬y)) for any Boolean values x and y. One can
see that the error of the new AND gate is still ε, since the
values of nodes used here are all Boolean.

For the gate G×ζ , we have the following observation,
showing that a simpler version of G∗×0.5, which outputs
nearly half of its first input, is enough for our use.
Observation 1. During the reduction from BROUWER to
GCIRCUIT in (Chen, Deng, and Teng 2009), establishing
the PPAD-hardness of GCIRCUIT problem, the constant α
in G×ζ only needs to be one of {1/2, 1/4, 1/8}.

Hence, we can implement G×ζ in the reduction from
BROUWER to GCIRCUIT with at most three gates G∗×0.5.

Procedure 2 HALF(T ; v; v1)

1: Pick an unused node v2 ∈ V .
2: INSERT(T , (G−, v, v2, nil, v1, nil)).
3: INSERT(T , (G=, v1, nil, nil, v2, nil)).

For convenience, we construct the gate G∗×0.5 with the
combination of one gate G− and one gate G=, as the sub-
routine HALF listed in Procedure 2. In detail, if we want to
let x[v1] = x[v]/2 ± ε, we could use one additional unused

node v2, such that x[v1] = max(0,x[v] − x[v2]) ± ε. We
next use a G= gate to enforce that x[v2] = x[v1] ± ε. It’s
straightforward to verify the following lemma.

Lemma 6. G∗×0.5 is implemented by HALF with error ε.

For the gates G×ζ where ζ = 1/4, 1/8, the errors are
accumulated to 2ε, 3ε respectively.

The last one is Gζ gate, which could be simulated by G+

and G∗×0.5 gates, based on the following observation.

Observation 2. During the reduction from BROUWER to
GCIRCUIT (Chen, Deng, and Teng 2009), establishing the
PPAD-hardness of GCIRCUIT problem, the constants α in
Gζ only have values in {1/2, 1/4, 1/8} ∪ {k/(8K) : k ∈
[N3]}, where N is a parameter in the BROUWER, satisfying
that K ≥ N12 and K is a power of 2.

We construct a sub-routine GENCONST(T ; v; vhk; t) in
Procedure 3, which can generate any constant α = k/2t

given any positive integers k and t.

Procedure 3 GENCONST(T ; v; k; t)

1: Pick unused node v1, . . . , vt, w1, . . . , wk ∈ V .
2: INSERT(T , (GH , nil, nil, nil, v1, nil)).
3: for i from 1 to t− 1 do
4: HALF(T , vi, vi+1).
5: end for
6: INSERT(T , (G=, vt, nil, nil, w1, nil)).
7: for i from 1 to k − 1 do
8: INSERT(T , (G+, wi, vt, nil, wi+1, nil)).
9: end for

Now all game gadgets are of value zeros and ones. Recall
that we have K ≥ N12, and by Observation 2, GENCONST
needs O(N3) unused nodes. Hence we have enough unused
nodes.

Notice that GENCONST may incur a large out-degree of
the agent vt, we still need to apply the “copy-network” struc-
ture after replacing Gζ , G×ζ and G∧, to make sure that the
out-degree of any node is at most two. In the construction,
we keep all new game gadgets in Table 2 and only apply old
gadgets to simulate all non-0/1 gates, so by the same argu-
ment in Lemma 5, we can show that P is still (3, 2)-sparse.

Reduction to (2, 2)-SWLP Games
Towards an optimal upper bound for the non-zero entries
in each row, we need a more elaborate analysis. Intuitively,
it’s not difficult to notice that the number of “1”s appear-
ing in rows 2k − 1 is more than “1”s appearing in rows 2k
for any k = C(v), v ∈ V in the most of the game gadgets
summarized in Table 2. Specifically, we have the following
observation.

Observation 3. Let v ∈ V be a node in the GCIRCUIT and
k = C(v), we have:

1. If v is the output node of a gate T ∈ T , then row 2k is an
all-zeros vector in R[T], unless the gate of T is GH .

2. If v is one of the input nodes of a gate T ∈ T , then row
2k is all-zeros vector in R[T], unless the gate of T is G¬.

5561

Algorithm 4 Balancing Nonzero Entries

Input: GCIRCUIT instance (V, T).
1: for all node v with out-degree 2 do
2: Pick two unused nodes v′, v′′.
3: INSERT(T , (G′=, v, nil, nil, v′, nil)).
4: INSERT(T , (G′=, v, nil, nil, v′′, nil)).
5: Let T1, T2 be the two gates that v is one of their input

nodes.
6: REPLACE(T1, v, v

′).
7: REPLACE(T2, v, v

′′).
8: end for
9: return T

3. No single gadget for any gate has at least two “1”s on
one row.

The observation above suggests that the distribution of
“1” is very unbalanced between odd and even numbered
rows. Therefore, we propose a new type of gate G′=, which
is equivalent to G=, with a slightly different game gadget
listed in the Table 2. Both input and output nodes v, v1 of
a G′= gate will have one “1” in row 2k, 2k1 instead of row
2k− 1, 2k1 − 1 respectively, where k = C(v), k1 = C(v1).
Intuitively, G′= could be used to transport the “1” from the
“crowded” odd number row to the “spare” even number row.
The detailed process is summarized in the Algorithm 4 be-
low.
Lemma 7. By applying the Algorithm 4, the payoff matrix
P is (2, 2)-sparse.

Proof. Let v ∈ V be a node in the GCIRCUIT and k =
C(v). We make a case analysis for the position of v in the
instance of GCIRCUIT.

1. If v is not an output node of any gate, then rows 2k−1, 2k
have at most two “1”s due to the out-degree limit.

2. If v is an output node of GH or G′=, it serves as the in-
put node for at most one gate, guaranteed by the previous
construction in Algorithm 4. Thus, rows 2k − 1, 2k still
have at most two “1”s there.

3. If v is an output node of any other type of gate, by the
item 1 of Observation 3, row 2k has at most two “1”s.
Algorithm 4 only inserts new G′= gates, so v cannot be
a newly inserted node, and it should have been processed
by Algorithm 4. Therefore, the row 2k − 1 will also have
at most two “1”s in it.

Remark 1. Even though our constructions in this section
could accumulate errors, like copy networks and the sub-
routine GENCONST, the total error is accumulated linearly
in terms of the number of gates for the GCIRCUIT instance
(V, T).

Recall that |T | ≤ |V | = K, and ε = 1/K3 for the origi-
nal proof about the PPAD-hardness result of the GCIRCUIT

problem. Thus we could take ε′ = 1/n4 = 1/(2K)
4 in the

problem of calculating ε′-approximate well-supported Nash
equilibrium in (2, 2)-sparse win-lose polymatrix game, and

Algorithm 5 Very Sparse Win-Lose Polymatrix Game

Input: Number of players n, the payoff matrix P.
1: Initialize r[i]← 0, ∀i ∈ [2n], S ← [n].
2: flag← true
3: while flag is true do
4: flag← false
5: for all l ∈ [2n] do
6: Suppose l is one of actions of player v.
7: if v /∈ S then
8: continue
9: end if

10: Denote l′ as the other action of player v.
11: if r[l] + Count(P, l) ≤ r[l′] then
12: /* l is dominated by l′ */
13: flag← true
14: x∗l ← 0, x∗l′ ← 1
15: for all j ∈ [2n],P[l′][j] = 1 do
16: r[j]← r[j] + 1
17: end for
18: S ← S\{v}, clear the rows and the columns of

player v in P as zero.
19: end if
20: end for
21: end while
22: for all player v ∈ S do
23: Let l, l′ be the two actions of player v.
24: x∗l , x

∗
l′ ← 1

2
25: end for
26: return x∗

use it to recover an Kε′ < ε approximate solution of the
GCIRCUIT problem.

Algorithm
To complement our hardness result, we propose a simple and
efficient algorithm inspired by (Chen, Deng, and Teng 2006)
for both (1, n) and (n, 1)-SWLP games.

The algorithm maintains a set S of players whose strategy
hasn’t been decided yet, the payoff matrix P, the array r[l],
and the partial strategy profile x∗. In which, r[l] is the min-
imum utility for choosing action i respect to partial strategy
profile x∗.

In each round, the algorithm looks for the weakly dom-
inant strategy. Specifically, let Count(P, l) be the sub-
procedure which counts the number of “1”s in the column
l of P. If l, l′ are the two actions of a player v ∈ S and
r[l] + Count(P, l) ≤ r[l′], then action l is dominated by
action l′. We could now safely let player v choose l′ with
probability 1, remove v from S, update the array r, and clear
the rows and the columns of player v in P as zero.

When there is no dominant strategy left, the algorithm
will set probability 1

2 to each of the actions of any player
v ∈ S. The details are formally summarized in Algorithm 5.

Time Complexity. One can easily check that the time
complexity of Algorithm 5 is bounded by O(n3). By us-

5562

ing a better implementation for function “Count”, we could
further optimize the total running time to O(n2).

Analysis for the (n, 1)-SWLP Case
When reaching the line 21 in Algorithm 5, for any player
v /∈ S, its strategy must be the best response under strategy
profile x∗, because she chooses the dominant strategy during
the Algorithm 5. For any other player v ∈ S, we have the
following claim.

Claim 1. Suppose line 21 in Algorithm 5 has just been ex-
ecuted, then for any player v ∈ S, we have Count(P, l) =
Count(P, l′) = 1, where l, l′ are the two actions of v.

Proof. Recall the definition of (n, 1)-sparse matrix, we
know that Count(P, l) ≤ 1 for any l ∈ [2n]. Thus, we have
three possible cases to consider:

1. If Count(P, l) = Count(P, l′) = 0, then there is no un-
certainties left. We could know which of l, l′ is the domi-
nated strategy by comparing r[l], r[l′] in line 11 of Algo-
rithm 5. Thus v is not in S in this case.

2. If Count(P, l) = 0,Count(P, l′) = 1, we could still
know which of l, l′ is the dominated in line 11 of Algo-
rithm 5. More specifically, if 1 + r[l′] ≤ r[l], then l′ is
dominated. Otherwise we have 0 + r[l] ≤ r[l′], then l is
dominated. Thus v is not in S in this case.

3. If Count(P, l) = Count(P, l′) = 1, we must have r[l] =
r[l′] = 0. This case is possible.

With the claim above, we know that the utility of any ac-
tion of any player v ∈ S is 1

2 , thus any player v ∈ S also
chooses its best response, and x∗ is indeed a Nash equilib-
rium.

Analysis for the (1, n)-SWLP Case
The correctness of the player v /∈ S is the same. We now
have the condition that each row has at most one of “1” in-
stead, and we could get a generalization of Claim 1 in this
case.

Claim 2. Suppose reaching line 21 in Algorithm 5, then for
any player v ∈ S, we have the following two possibilities:

1. Count(P, l) = Count(P, l′) = 1 and r[l] = r[l′];
2. Count(P, l) = 0,Count(P, l′) = 2 and r[l] = r[l′] + 1,

where l, l′ are the actions of v.

Proof. With the same argument as in the proof of
Claim 1, we could rule out the case Count(P, l) =
0,Count(P, l′) = 0 and Count(P, l) = 0,Count(P, l′) =
1, i.e. we’ll only have the case of Count(P, l) +
Count(P, l′) ≥ 2.

By double-counting the “1”s in P, we have the following
inequality

2 |S| ≥
∑
u∈S

Count(P, lu) + Count(P, l′u) ≥ 2 |S| ,

where lu, l′u are the actions of player u. The first inequal-
ity follows from the fact that each row have at most one of
“1” and there are 2 |S| rows haven’t been cleared to zero in
P. Since both inequalities are actually tight, we must have
Count(P, lu) + Count(P, l′u) = 2 for any player u ∈ S.

Now consider the relationship between r[l] and r[l′] in
this case. If Count(P, l) = Count(P, l′) = 1, then r[l] =
r[l′]. Otherwise l or l′ with smaller r will be dominated.

If Count(P, l) = 0,Count(P, l′) = 2, then r[l] = r[l′]+
1. Otherwise l will be dominated if r[l] < r[l′] + 1 and l′
will be dominated if r[l] > r[l′] + 1.

It’s not difficult to check that in both cases of Claim 2,
player v ∈ S will have the same utility for both of its actions.
Therefore x∗ is indeed a Nash equilibrium.

Conclusions
In this paper, we study a very simple class of polymatrix
games, Sparse Win-Lose Polymatrix (SWLP) games, whose
payoff matrix is almost a zero matrix, with very few ones in
each column and row. Our main result is a new dichotomy
theorem for SWLP games: A PPAD-harness of equilibrium
computation in (2, 2)-SWLP games and an efficient algo-
rithm of finding an exact Nash equilibrium in (1, n) and
(n, 1)-SWLP games. The hardness result weakens the pre-
dictability of Nash equilibria in multi-player games.

Our result should also be of independent interest in com-
plexity theory. A polymatrix game is the starting point in the
complexity of market equilibrium and other succinct games.
Where people used the hardness of polymatrix games be-
fore, one may try to use ours instead and may potentially get
some new interesting results.

Rather than posing new open problems, we restate the
problem of whether approximating a Nash equilibrium in
constant Sparse Win-Lose Bimatrix games is tractable. It
seems that we cannot bypass the barriers using our tech-
niques, since all previous hardness results in bimatrix games
need some base game enforcing that the probabilities of any
two consecutive actions should be equal. In contrast, it is a
natural property in polymatrix games.

Acknowledgements
This work is supported by Science and Technology Innova-
tion 2030 –“New Generation Artificial Intelligence” Major
Project (No. 2018AAA0100901), National Natural Science
Foundation of China (No. 62002017) and Beijing Institute
of Technology Research Fund Program for Young Scholars.
We thank Yurong Chen for valuable discussions. Liu and Li
contributed equally to this work. Zhengyang Liu is the cor-
responding author.

References
Addario-Berry, L.; Olver, N.; and Vetta, A. 2007. A Polyno-
mial Time Algorithm for Finding Nash Equilibria in Planar
Win-Lose Games. J. Graph Algorithms Appl. 11(1): 309–
319. doi:10.7155/jgaa.00147.

5563

Babichenko, Y.; Papadimitriou, C.; and Rubinstein, A. 2016.
Can Almost Everybody Be Almost Happy? In Proceedings
of the 2016 ACM Conference on Innovations in Theoreti-
cal Computer Science, ITCS ’16, 1–9. New York, NY, USA:
Association for Computing Machinery.

Barman, S.; Ligett, K.; and Piliouras, G. 2015. Approxi-
mating nash equilibria in tree polymatrix games. In Interna-
tional Symposium on Algorithmic Game Theory, 285–296.
Springer.

Bilò, V.; and Mavronicolas, M. 2019. The Complexity of
Computational Problems about Nash Equilibria in Symmet-
ric Win-Lose Games. CoRR abs/1907.10468.

Chen, X.; and Deng, X. 2006. Settling the Complex-
ity of Two-Player Nash Equilibrium. In 2006 47th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS’06), 261–272.

Chen, X.; Deng, X.; and Teng, S.-H. 2006. Sparse games are
hard. In International Workshop on Internet and Network
Economics, 262–273. Springer.

Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the com-
plexity of computing two-player Nash equilibria. J. ACM
56(3).

Chen, X.; Durfee, D.; and Orfanou, A. 2015. On the Com-
plexity of Nash Equilibria in Anonymous Games. In Pro-
ceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’15, 381–390. New York, NY,
USA: Association for Computing Machinery.

Chen, X.; Paparas, D.; and Yannakakis, M. 2017. The Com-
plexity of Non-Monotone Markets. Journal of the ACM
(JACM) 64(3): 20.

Chen, X.; Teng, S.-H.; and Valiant, P. 2007. The Approxi-
mation Complexity of Win-Lose Games. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, 159–168. USA: Society for Indus-
trial and Applied Mathematics.

Codenotti, B.; Leoncini, M.; and Resta, G. 2006. Efficient
Computation of Nash Equilibria for Very Sparse Win-Lose
Bimatrix Games. In Azar, Y.; and Erlebach, T., eds., Al-
gorithms - ESA 2006, 14th Annual European Symposium,
Zurich, Switzerland, September 11-13, 2006, Proceedings,
volume 4168 of Lecture Notes in Computer Science, 232–
243. Springer. doi:10.1007/11841036\ 23.

Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The complexity of computing a Nash equilibrium.
SIAM Journal on Computing 39(1): 195–259.

Datta, S.; and Krishnamurthy, N. 2011. Some Tractable
Win-Lose Games. In Ogihara, M.; and Tarui, J., eds., The-
ory and Applications of Models of Computation - 8th An-
nual Conference, TAMC 2011, Tokyo, Japan, May 23-25,
2011. Proceedings, volume 6648 of Lecture Notes in Com-
puter Science, 365–376. Springer. doi:10.1007/978-3-642-
20877-5\ 36.

Deligkas, A.; Fearnley, J.; and Savani, R. 2017. Computing
constrained approximate equilibria in polymatrix games. In

International Symposium on Algorithmic Game Theory, 93–
105. Springer.
Deligkas, A.; Fearnley, J.; and Savani, R. 2020. Tree Poly-
matrix Games Are PPAD-Hard. In Czumaj, A.; Dawar,
A.; and Merelli, E., eds., 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020),
volume 168 of Leibniz International Proceedings in Infor-
matics (LIPIcs), 38:1–38:14. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.
Deligkas, A.; Fearnley, J.; Savani, R.; and Spirakis, P.
2017. Computing approximate Nash equilibria in polyma-
trix games. Algorithmica 77(2): 487–514.
Garcia, C.; Lemke, C.; and Luethi, H. 1973. Simplicial Ap-
proximation of an Equilibrium Point for Non-Cooperative
N-Person Games. In Mathematical Programming, 227–260.
Academic Press.
Howson Jr, J. T. 1972. Equilibria of polymatrix games. Man-
agement Science 18(5-part-1): 312–318.
Janovskaya, E. B. 1968. Equilibrium points in polymatrix
games. Latvian Mathematical Collection .
Kuhn, H. W. 1961. An Algorithm for Equilibrium Points
in Bimatrix Games. Proceedings of the National Academy
of Sciences of the United States of America 47(10): 1657–
1662.
Lemke, C. E.; and J. T. Howson, J. 1964. Equilibrium Points
of Bimatrix Games. Journal of the Society for Industrial and
Applied Mathematics 12(2): 413–423.
Lipton, R. J.; Markakis, E.; and Mehta, A. 2003. Playing
Large Games Using Simple Strategies. In Proceedings of the
4th ACM Conference on Electronic Commerce, EC ’03, 36–
41. New York, NY, USA: Association for Computing Ma-
chinery.
Liu, Z.; and Sheng, Y. 2018. On the Approximation of Nash
Equilibria in Sparse Win-Lose Games. In McIlraith, S. A.;
and Weinberger, K. Q., eds., Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-
18), 1154–1160. AAAI Press.
Nash, J. 1951. Non-cooperative Games. Annals of Mathe-
matics 54(2): 286–295.
Nash, J. F. 1950. Equilibrium points in n-person games.
Proc. of the National Academy of Sciences 36: 48–49.
Ortiz, L. E.; and Irfan, M. T. 2017. Tractable Algorithms
for Approximate Nash Equilibria in Generalized Graphical
Games with Tree Structure. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17,
635–641. AAAI Press.
Papadimitriou, C. H. 1994. On the Complexity of the Par-
ity Argument and Other Inefficient Proofs of Existence. J.
Comput. Syst. Sci. 48(3): 498–532.
Rubinstein, A. 2015. Inapproximability of Nash equilib-
rium. In Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing, 409–418. ACM.
Savani, R.; and von Stengel, B. 2006. Hard-to-Solve Bima-
trix Games. Econometrica 74(2): 397–429.

5564

Shapley, L. S. 1974. A note on the Lemke-Howson algo-
rithm, 175–189. Berlin, Heidelberg: Springer Berlin Hei-
delberg.
Wilson, R. 1971. Computing equilibria of n-person games.
SIAM Journal on Applied Mathematics 21(1): 80–87.

5565

