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Abstract
This paper studies the budget-feasible mechanism design
over graphs, where a buyer wishes to procure items from
sellers, and all participants (the buyer and sellers) can only
directly interact with their neighbors during the auction cam-
paign. The problem for the buyer is to use the limited budget
to incentivize sellers to propagate auction information to their
neighbors, thereby more sellers will be informed of the auc-
tion and more item value will be procured. An impossibility
result shows that the large-market assumption is necessary.
We propose efficient budget-feasible diffusion mechanisms
for large markets that simultaneously guarantee individual ra-
tionality, budget-feasibility, strong budget-balance, incentive-
compatibility to report private costs and diffuse auction infor-
mation. Moreover, the proposed mechanisms achieve loga-
rithmic approximation that the total procured value is within a
logarithmic factor of the optimal solution. Compared to most
related budget-feasible mechanisms, which do not take the
individual interactions among sellers into account, our mech-
anisms can incentivize sellers to further propagate auction in-
formation to other potential sellers. Meanwhile, existing re-
lated diffusion mechanisms only focus on seller-centric auc-
tions and fail to satisfy the budget-feasibility of the buyer.

Introduction
Auction theory, as a common paradigm for multi-agent re-
source allocation (Krishna 2009), has enabled a wide range
of applications, e.g., wireless spectrum auctions (Huang,
Berry, and Honig 2006) and mobile crowdsourcing markets
(Feng et al. 2014). Much effort over past decades focused
on designing mechanisms to regulate trading behaviors in
markets, e.g., seller-centric auction when a seller sells items
to buyers, or buyer-centric/reverse auction when a buyer
procures items from sellers. Among the extraordinary pro-
gresses, the budget-feasible mechanism design in reverse
auctions was initially studied in (Singer 2010), where pay-
ments used to regulate behaviors should satisfy the budget
constraint. Many following works invest efforts to design
budget-feasible mechanisms (Chen, Gravin, and Lu 2011;
Dobzinski, Papadimitriou, and Singer 2011; Bei et al. 2012;
Singer 2012; Singer and Mittal 2013; Zhao, Li, and Ma
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2014; Anari, Goel, and Nikzad 2018). All these works as-
sume that sellers are reachable to the buyer and ready to join
the auction campaign. However, in reality, many potential
sellers will be unaware of the auction information if none of
their acquaintances propagates information to them.

In order to propagate auction information to more poten-
tial sellers, the buyer can adopt the traditional advertising
mechanisms. However, the high agency fee charged by the
third party platform might degrade the net revenue of the
buyer (Mehta 2000). Against this background, this paper
studies the social diffusion mechanisms over a graph. The
connections modeled in the graph might represent positive
individual interactions, which have been widely adopted for
information diffusion (Kempe, Kleinberg, and Tardos 2003),
information acquisition (Cebrian et al. 2012), and informa-
tion search (Watts, Dodds, and Newman 2002). With the lo-
cal positive interactions, social diffusion mechanisms can
bring a volume of potential sellers without any extra cost.
Taking the buyer’s budget constraint into account, the fol-
lowing natural question arises: Can we design a budget-
feasible mechanism which guarantees desirable economic
properties and stimulates involved sellers to propagate auc-
tion information to her neighbors over graphs, while guar-
anteeing a bounded total payment from the buyer?

For example, considering the questionnaire, a classic re-
search instrument for the organizer to gather information
from respondents especially in the social networks (Sara-
son et al. 1983), a critical requirement is to get sufficient
respondents. However, it is inefficient and costly for the or-
ganizer to notify all respondents by herself. A promising
way is to incentivize participated respondents to invite po-
tential people, e.g., their followers and friends. There may
be costs associated with finishing questionnaires, e.g., par-
ticipants’ time and privacy. It is common to give participants
monetary rewards to motivate the population. Moreover, the
organizer usually has a budget and cannot afford unlimited
monetary rewards. Therefore, such scenario calls for viable
budget feasible diffusion mechanisms.

In the budget-feasible mechanism design literature, al-
though there exists a general rule characterizing the truth-
ful bidding behavior in single-parameter domains (Myerson
1981), there is no general rule on how to incentivize sellers
to bid truthfully while at the same time to propagate auc-
tion information to their neighbors. On the other hand, the
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well-known VCG mechanism (Vickrey 1961; Clarke 1971;
Groves 1973) fails in budget-feasible mechanisms as an un-
limited payment may be incurred. Last but not least, the
VCG mechanism aims to maximize the total procured value
with a budget, which is NP-hard.

In the information diffusion mechanism design literature,
all critical participants whose invitations increase social wel-
fare will be rewarded (Li et al. 2017; Zhao et al. 2018;
Li et al. 2019; Kawasaki et al. 2020; Zhang, Zhao, and
Chen 2020). Existing diffusion mechanisms mainly focus on
seller-centric auctions where the seller incentivizes buyers to
diffuse the information and decides the final winners. While
in budget-feasible mechanism design, as a fundamental dif-
ference from the seller-centric auction, the payment used to
elicit truthful behaviour should satisfy the buyer’s budget
constraint. The payment scheme used to elicit truthfulness or
propagate the auction information in seller-centric auctions
cannot meet the budget-feasibility requirement in reversed
auctions as an unbounded payment may be incurred1. Re-
cently, (Shi et al. 2019) consider the budget constraint in in-
formation diffusion mechanisms, but they only focus on re-
warding agents to spread information via social connections,
not on auction problem of procuring items from sellers.

Our contributions can be summarized as follows.

• We first model a budget-feasible diffusion mechanism
over graphs where the buyer with a budget wants sell-
ers to propagate auction information to their neighbors,
which builds the bridge between budget-feasible mecha-
nisms and information diffusion mechanisms.

• We show that without the large market assumption, no
budget-feasible diffusion mechanisms can achieve an ap-
proximation ratio better than n (the number of sellers).

• By incorporating the large market assumption, we over-
come the non-approximability and design budget-feasible
diffusion mechanisms that guarantee desirable theo-
retical properties including budget feasibility, compu-
tational efficiency, individual rationality, truthfulness,
strong budget-balance, and logarithmic approximation.

Preliminaries
The Model
We consider an undirected graph consisting of a buyer a and
a set of n sellers S = {s1, s2, ..., sn} where buyer a wants
to procure items with a budgetB and each seller has a single
item to sell. Seller si has a cost ci and a value vi when sell-
ing her item to the buyer. In this paper, we consider the in-
complete information case where each seller’s cost ci is pri-
vately known by herself. Following previous budget-feasible
mechanisms (Singer 2010; Dobzinski, Papadimitriou, and
Singer 2011), we assume that each item’s value vj is com-
mon knowledge to the buyer ranging in [1, V ]. The objective
is for the buyer to maximize the total value of items procured
within the budget. Let A = {a, s1, ..., sn} denote the set
of all participants including the buyer and all sellers. Each

1A detailed comparison to existing mechanisms can be found
in Section: The Inefficiency of Existing Mechanisms.

seller si ∈ S has a set of neighbors ni ⊆ A\{si}with whom
si can exchange information directly. Specifically, the buyer
a’s neighbors are na(na 6= ∅). A seller can participate in the
auction if and only if one of her neighbors is informed of the
auction information and further propagates the information
to her. Initially, only na know that the buyer a wants to pro-
cure items. According to the types of items, we mainly con-
sider two cases: the homogeneous item setting where sell-
ers hold identical items, and the heterogeneous item setting
where sellers hold diverse items with different values.

We focus on the strategic scenario where sellers behave
strategically to maximize their own utilities. Each seller re-
ports cost c′i of her item that may be different from the real
cost ci. Additionally, seller si may reject to further propa-
gate the auction information to her neighbors or report false
neighbor set n′i ⊂ ni. Let ti = (ci, ni) denote the truthful
bid that si truthfully declares her cost and propagates the
auction information to all her neighbors, while bi = (c′i, n

′
i)

denotes the bid when si participates in the auction. Let
b = {b1, ..., bn} denote the bid profile of all sellers and b−i
denote the bid profile of all sellers except the seller si. The
bid profile b can also be represented by b = (bi, b−i).

Large Market Assumption: Informally speaking, a mar-
ket is large if the cost of a single item is very small com-
pared to the buyer’s budget B, i.e., ci � B. This assump-
tion is used in other large-market problems (Anari, Goel, and
Nikzad 2014) with application in crowdsourcing markets,
where there is a requester who has a limited budget (e.g.,
$500). The requester publishes a large quantity of micro-
tasks, like image labeling, content generation, and validating
recommendation engines. After finishing a micro-task, the
worker will get a tiny reward ($0.2) for cost compensation.
To improve the efficiency of crowdsourcing, the requester
can estimate the quantity of workers for better micro-task
pricing. Therefore, this paper also assumes that there is an
upper bound on the market size, i.e., |S| ≤ Nmax, which is
known by the buyer. We will show that the large market as-
sumption is necessary by proposing an impossibility result
at the beginning of Section .

The Mechanism: An auction mechanism M = (X,P )
consists of an allocation policy X = {xi}i∈S deciding win-
ners and a payment policy P = {pi}i∈S deciding how much
payment is paid to each seller. If si is selected as a win-
ner, xi(b) = 1, otherwise, xi(b) = 0. Let Sw denote the
set of winners. Given si’s bid bi, bid profile b and mech-
anism M = (X,P ), we define si’s utility as the differ-
ence between the payment she receives and her real cost, i.e.,
ui(bi, b,M) = pi−xi ·ci. The utility of the buyer is the total
value of items procured, i.e., ua(b,M) =

∑
1≤i≤n xi · vi.

If no ambiguity arises, ui(bi, b,M) and ua(b,M) will be
written as ui(bi) and ua, respectively.

A mechanism M is individual rational if the utility of
each seller is non-negative when she truthfully reports her
private information.

Definition 1. A mechanismM = (X,P ) is individual ra-
tional (IR) if ui(ti, (ti, b−i),M) ≥ 0, ∀si ∈ S.

We also consider the incentive compatibility or truth-
fulness property. Different from traditional graph-ignorant
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budget-feasible mechanism problems in (Singer 2010)
where truthfulness means that for each seller, truthfully re-
porting her cost is a dominant strategy. In our model, we also
need to consider sellers’ incentives to propagate the auction
information to their neighbors. Thus, we also require the de-
signed mechanism to guarantee that for each seller, reporting
her real cost and diffusing the auction information to all her
neighbors is a dominant strategy.
Definition 2. A mechanism M = (X,P ) is incen-
tive compatible (IC) or truthful if ui(ti, (ti, b−i),M) ≥
ui(bi, (bi, b′−i),M).

Note that b−i is replaced by b′−i on the right side of the
inequality. The reason is that if bid bi does not propagate the
auction information to all her neighbors, then some sellers,
who can get the information under bid ti, may not receive
the information under bid bi. Thus, under bi, the feasible bid
profile of sellers except si is changed from b−i to b′−i.

Given the payment policy, we define the budget feasibility
and strong budget-balance.
Definition 3. A mechanismM = (X,P ) is budget-feasible
if the total payment paid to sellers does not exceed the bud-
get, i.e.,

∑
1≤i≤n pi ≤ B.

Definition 4. A mechanismM = (X,P ) is strong budget-
balanced if the total payment charged from the buyer equals
the total payment paid to sellers.

The objective is to maximize the utility of the auction-
eer/buyer, i.e., maxua(b,M).
Definition 5. A mechanism M = (X,P ) is α-
approximation if the ratio between the optimal solution
where mechanism knows sellers’ true private information
and the solution by mechanismM is no greater than α.

The Inefficiency of Existing Mechanisms
There are two main directions for the truthful auction design
problem. One is to apply Vickrey-Clarke-Groves (VCG)
mechanisms. The other is to design truthful mechanisms via
Myerson’s theorem (Myerson 1981) to guarantee two prop-
erties, the monotonicity and the threshold payment. Next,
we show the inefficiencies of these two existing classes of
mechanisms in the budget-feasible diffusion problem.

The inefficiency of VCG mechanisms: (Li et al. 2017)
show that the classical VCG mechanism can incentivize auc-
tion information diffusion in seller-centric auctions and fur-
ther improve upon VCG mechanism on the revenue effi-
ciency. However, such kind of methods totally ignore the
budget-feasibility requirement and thus cannot be applied to
deal with the key challenge in budget-feasible mechanism
design2, as an unbounded payment may be incurred. For in-
stance, given the graph in Fig. 1, we consider a linear graph
with n > 2 sellers and a buyer a located at the left endpoint
of the line. The cost of seller sn−1 is 5ε while the costs of
the remaining sellers are ε. All sellers have identical value
vi = 1. In addition, the budget of the buyer is B = (n+2)ε.
The VCG mechanism will choose all sellers except sn−1 as

2Actually, VCG would also fail in the computational efficiency
as computing the optimal item allocation is NP-hard (Singer 2010).

𝑠!𝑠!"#𝑠$𝑠%𝑠#𝑎

𝜖 𝜖 𝜖 5𝜖 𝜖

𝑩 = (𝒏 + 𝟐)𝝐

Figure 1: An example showing the inefficiency of existing
mechanisms.

!!&#!!!!"#!%!#"
-#= - - - - -

!#"
-#

If !# does not spread the auction information

Figure 2: An example for the proof of Theorem 1.

winners since the total cost is within budgetB, and pay each
winner 4ε, which exceeds the budget B = (n+ 2)ε.

The inefficiency of graph-ignorant budget-feasible
mechanisms: In the traditional budget-feasible mechanisms
(Singer 2010; Chen, Gravin, and Lu 2011), which are based
on Myerson’s theorem, the proportional share allocation rule
is widely used to generate budget-feasible allocations and
elicit the truthfulness.

Proportional share allocation rule
• Sort sellers according to their non-decreasing costs

relative to their values.
• Allocate seller si to winner set Sw if ci

vi
≤

B∑
1≤h≤i vh

.

Assume that the last winner is sk, then the payment for
each winner si ∈ Sw will be vi·min{ ck+1

vk+1
, B∑

1≤h≤k vh
}. Ap-

plying the mechanism in (Singer 2010) to the graph in Fig.
1, all sellers with cost ε will be selected as winners and the
payment for each winner is min{5ε, B

n−1} =
B
n−1 . Seller s3

can reject to propagate the auction information to her neigh-
bors and then her payment now is B

3 which implies that she
can get more utility by manipulating the diffusion strategy.
Thus, such kind of mechanisms cannot incentivize sellers to
propagate the auction information to their neighbors.

Mechanism Design
In this section, we investigate budget-feasible diffusion
mechanisms. We start from the homogeneous item setting,
where sellers’ items have identical values, and then extend
it to the heterogeneous item setting. Before introducing our
mechanisms, we first show an impossibility result without
the large market assumption as follows,
Theorem 1. Without the large market assumption, no truth-
ful budget-feasible diffusion mechanisms can achieve an ap-
proximation ratio better than n.
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Proof. Assume that there exists a budget-feasible diffusion
mechanismM′ which can achieve (n−ε)-approximation ra-
tio, for any ε > 0. Suppose that sellers have identical values
vi = 1. As shown in Fig. 2, we consider an example where
there are n+1 sellers each with cost c = B

n in the linear net-
work. We have 0 < c1 = c ≤ B. It is clear that the optimal
solution can procure n items from sellers and each winner is
paid B

n . If s1 rejects to propagate the auction information to
her neighbor s2, no sellers after s1 can get the auction infor-
mation. Thus, seller s1 must be a winner with payment B to
ensure truthfulness (as s1 can bid any false cost no greater
than B without the large market assumption). The utility of
s1 now is u1 = B − c1. Recall that a seller obtains the
maximum utility when she reports real cost and propagates
the auction information to her neighbors in budget-feasible
diffusion mechanism M′. Thus, s1 should achieve at least
B − c1 utility to incentivize her to propagate the auction in-
formation to her neighbors. On one hand, if s1 is selected
as a winner when she propagates the auction information,
her payment should be B to obtain at least B − c1 utility.
M′ cannot procure one more item from other sellers due
to the budget constraint. On the other hand, if s1 is a loser,
her payment should be no smaller than the utility when she
propagates the information, which is B − c1. Thus,M′ can
procure at most one item from other sellers. For both cases,
MechanismM′ can only procure at most one item from sell-
ers, which contradicts with the assumption thatM′ achieves
(n− ε)-approximation.

Mechanism for the Homogeneous Item Setting
In this subsection, we introduce the budget-feasible diffu-
sion mechanism for the homogeneous item setting, called
Mechanism BDM-H. The high level idea is as follows. We
first generate a seller sequence from the graph according to
each seller’s distance to the buyer. Considering the budget
constraint, we divide the mechanism into multiple phases,
in each of which we set a target number of winners and a
fixed payment for each winner. In addition, to achieve bet-
ter utility on the buyer’s side, we aim to find more winners
with lower costs in the later phase by setting a larger target
number of winners and a lower fixed payment. The detailed
design is presented as follows.

Generate seller sequence: We first construct a seller se-
quence according to bid profile b. We calculate each seller’s
shortest distance to the buyer and sort sellers in the non-
decreasing order of the shortest distance with arbitrary tie-
breaking rule, denoted as a sequence O = 〈s1, s2, ..., sn〉.
Fig. 3 shows an example of seller sequence generation over
a graph. We use circles to represent sellers and the rectan-
gle to represent the buyer. The number in each circle is her
cost, and the pair consisting of a capital letter and a num-
ber indicates her index and the shortest distance. The num-
ber in the rectangle is the buyer’s budget. By sorting all
sellers’ shortest distances, we can get the seller sequence
O = 〈B,C,E,D,F,G, I,J,L,H,M,K〉.

Phase Division: We divide the winner selection process
into L = dlog2Nmaxe phases, each of which is allocated
with a partial budget B̂ = B

L . In the l-th phase, we set a fixed

2.5
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Figure 3: An example of a graph. We have 〈B,C,E〉 with
distance 1, 〈D,F,G, I,J,L〉 with distance 2, 〈H,M〉 with
distance 3 and 〈K〉 with distance 4.

payment τ lp and a target number of winners τ lw. Specifically,
we have τ lp ·τ lw = B̂ which can ensure that the partial budget
in each phase is not exceeded.

Winner selection and payment scheme: Now, we start
from the first phase, i.e., l = 1, by setting τ lp = B̂

2l−1 and
τ lw = 2l−1. In addition, we use τ cw to count the number of
sellers with costs no greater than τ lp in this phase, which is
initialized to be zero. Assume that we are now considering
seller si in the l-th phase. If c′i > τ lp, we continue to test the
next seller si+1. If c′i ≤ τ lp and τ cw < τ lw−1, the value of τ cw
increases by one and we go to the next seller si+1. If c′i ≤ τ lp
and τ cw = τ lw−1, the number of sellers with costs no greater
than τ lp in the l-th phase reaches 2l−1 after considering seller
si. This seller is also denoted as key sellerHl. We useH and
I(Hl) to denote the set of all key sellers and Hl’s position
in the seller sequence O, respectively. Once the value of τ lw
reaches 2l−1, sellers with costs no greater than τ lp in the l-th
phase will all be selected as winners and added into winner
set Sw, i.e., si ∈ Sw if i ∈ (I(Hk−1), I(Hk)] and c′i ≤ τ lp.
In addition, the payment to each of these winners in the l-th
phase is set with pi = τ lp =

B̂
2l−1 .

Then, we move to the (l + 1)-th phase where the fixed
payment will be reduced to half of the fixed payment of the
previous phase, i.e., τ l+1

p = 1
2τ

l
p = B̂

2l
, and we will try to

select twice as many winners as in the previous phase, i.e.,
τ l+1
w = 2τ lw = 2l. In addition, we set the value of τ cw to be

zero and continue to test the next seller si+1. We repeat this
process until no sufficient winners can be selected, that is,
after k phases, we cannot further find τk+1

w = 2k winners
whose bids are no greater than τk+1

p = B̂
2k

, i.e.,

|{h|c′h ≤ τk+1
p , h > I(Hk)}| < τk+1

w . (1)

Then, sellers after Hk are all losers. The payments for all
losers are zero, i.e., pi = 0 if si /∈ Sw. Note that we have
at least one key seller, i.e., k ≥ 1 because we can find at
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Algorithm 1: Mechanism BDM-H(B, b′, S,Nmax)
Input: B, b′, S, Nmax.
Output: P, Sw

1 P ← 0, X ← 0, Sw ← ∅,H ← ∅;
2 L← dlogNmax

2 e, B̂ ← B
L ;

3 Calculate the shortest distance for each seller and sort
all sellers in the non-decreasing order of the
distance, i.e., O = 〈s1, s2, ..., sn〉;

4 i← 1, l← 1;
5 while l ≤ L do
6 τ lp ← B̂

2l−1 , τ
l
w ← 2l−1, τ cw ← 0;

7 while i ≤ n, τ cw < τ lw do
8 if c′i ≤ τ lp then
9 τ cw ← τ cw + 1;

10 end
11 i← i+ 1;
12 end
13 if τ cw = τ lw then
14 Hl ← si−1,H ← H∪ {Hl};
15 for I(Hl−1) < h ≤ I(Hl) and c′h ≤ B̂

2l−1 do
16 ph ← B̂

2l−1 , xh ← 1, Sw ← Sw ∪ {sh};
17 end
18 l← l + 1
19 else
20 break;
21 end
22 end
23 return P, Sw

least one seller with cost no greater than B̂ in the first phase
according to the large market assumption.

Running example: We now show a running example of
Mechanism BDM-H using the graph in Fig. 3. Assume that
all sellers report real private information. The buyer’s budget
is B = 32 and the maximum number of sellers is Nmax =
16. Thus, we have L = log2 16 = 4 and B̂ = 8. We select
winners by the sequenceO as shown in Fig. 4. We start from
the first phase which tries to find τ1w = 20 sellers with costs
no greater than τ1p = B̂

20 = 8. It is clear that the first seller
with cost 2.5 marked by red box is selected as a winner and
her payment is τ1p = 8. In addition, she is also the first key
seller H1. Then, we consider the next phase to find τ2w =

21 sellers with costs no greater than τ2p = B̂
21 = 4. In this

phase, seller C and E marked by the blue box are winners
each paid τ2p = 4. And seller E is the second key seller H2.
Similarly, we can see sellers D, I,J,L are winners each with
payment τ3p = 2 in the third phase. Last, in the fourth phase,
we cannot find τ4w = 8 sellers with costs no greater than
τ4p = B̂

23 = 1. Thus, we finally have the winner set Sw =
{B,C,E,D, I,J,L} and three key sellersH = {B,E,L}.

Next, we analyze the theoretical performance of BDM-H.

Theorem 2. Mechanism BDM-H guarantees individual ra-
tionality, strong budget-balance, budget feasibility and com-

Seller . / 0 1 2 3 4 5 6 7 8 9
Cost *. ; < < < ; = <. *; < * < <. *; <. *

>' >( >)

Phase 1
?*' = @, ?+' = <

Phase 2
?*' = B, ?+' = *

Phase 3
?*' = *, ?+' = B

C = =

Figure 4: Running example of Mechanism BDM-H.

putational efficiency.

Before analyzing the truthfulness of Mechanism BDM-H,
we first introduce a useful lemma.

Lemma 1. The order of sellers before si (including si her-
self) in seller sequence O will not change if si misreports
her neighbors n′i ⊂ ni.

Proof. Let ρ(si), d(si) denote the shortest path and the cor-
responding distance from the buyer to seller si, respectively.
Note that the shortest distance of seller sj before si in seller
sequence O is no greater than d(si), i.e., d(sj) ≤ d(si). We
can find that si cannot be on the path ρ(sj), otherwise, we
can find a path from the buyer to si shorter than ρ(sj), which
leads to a contradiction. After si misreports her neighbors
n′i ⊂ ni, the number of paths from the buyer to sj will not
increase and the path ρ(sj) will still exist since si is not on
path ρ(sj). Thus, seller sj’ shortest distance to the buyer is
still d(sj). This implies that the order of sellers before si
will not change. Furthermore, sellers on path ρ(si) are all
before si and will still propagate the auction information to
si which means the position of si will also not change after
misreporting her neighbors. This finishes the proof.

Theorem 3. Mechanism BDM-H guarantees incentive-
compatibility/truthfulness.

Proof. To achieve more utility, seller si may propagate auc-
tion information to a subset of her neighbors n′i ⊂ ni and
report a false cost c′i 6= ci. It is clear that seller si’s posi-
tion in sequence O will not change by Lemma 1 even when
she chooses to propagate auction information to a subset of
neighbors n′i. Thus, si, regardless of which subset of neigh-
bors she reports, will still be considered at the same phase
as when she had reported the true set of neighbors. Assume
that si is considered in the l-th phase. When she is being
considered under reporting false neighbor set, the value of
target seller number τ lw, the fixed payment τ lp and the cur-
rent number of specified sellers τ cw are the same as when she
reports real cost and propagates auction information to all
her neighbors. Thus, it is easy to find that si cannot achieve
more utility by diffusing information to a subset of neigh-
bors. Thus, it remains to discuss the case that a seller bids
a false cost when she propagates the information to all her
neighbors. Based on the position of si in the sequenceO, we
consider the following cases:

Case 1: Seller si where I(Hl−1) < i ≤ I(Hl) and l ≤
k: Recall that BDM-H selects 2l−1 winners with bids no
greater than B̂

2l−1 from sellers between Hl−1 and Hl, and
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pays each winner B̂
2l−1 . We further consider two sub-cases,

whether si is a winner or not when she reports the true cost
and propagates the information to all her neighbors.

1) Seller si is a winner, i.e., ci ≤ B̂
2l−1 and pi = B̂

2l−1 :
Seller si would become a loser by bidding a higher cost
c′i >

B̂
2l

, leading to zero utility. If si bids a cost lower than
B̂

2l−1 , she is still a winner with the same payment B̂
2l−1 which

implies her utility will not increase. Thus, winners cannot
get more utilities by bidding false costs.

2) Seller si is a loser, i.e., ci > B̂
2l−1 and pi = 0: Seller si

is still a loser by bidding a higher cost c′i >
B̂

2l−1 . If she bids

a lower cost c′i ≤ B̂
2l−1 , she will be selected as a winner and

the payment is B̂
2l−1 which leads to negative utility. Thus,

losers also cannot get more utilities by bidding false costs.
Case 2: Seller si where i > I(Hk): Recall that all these

sellers are losers. Since Hk is the last key seller, there are
no 2k sellers with bids no greater than B̂

2k
. Given that seller

si reports real neighbor set ni, if ci ≤ B̂
2k

, si cannot be a

winner whatever she bids. If ci > B̂
2k

, she either is still a

loser or is a winner by bidding a lower cost c′i ≤ B̂
2k

with

payment B̂
2k

which leads to negative utility. Thus, any seller
si|i>I(Hk) cannot get more utility by bidding a false cost.

Thus, sellers have no incentive to bid false costs. There-
fore, Mechanism BDM-H guarantees the truthfulness.

Theorem 4. Mechanism BDM-H achieves 2(dlog2Nmaxe+
1)-approximation.

Proof. Let S′ and S′′ denote the set of sellers beforeHk (in-
cludingHk herself) and sellers afterHk, respectively. Mean-
while, we use S′′≺k and S′′�k to denote the set of sellers in
S′′ whose costs satisfy ci ≤ B̂

2k
and ci > B̂

2k
, respectively.

SinceHk is the last key seller, there are at most 2k − 1 sell-
ers whose costs are no greater than B̂

2k
, i.e., |S′′≺k| ≤ 2k − 1,

while the costs of the remaining sellers after Hk are greater
than B̂

2k
. Denote by OPTh and ALGh the optimal solution

and the solution of Mechanism BDM-H for the homoge-
neous item setting, respectively. According to the sellers’
positions in the sequence O, we consider two cases:

1) Sellers in S′ = {si|i ≤ I(Hk)}: It is clear that the
number of winners in S′ is

ALGh =
∑

1≤h≤k

2h−1 = 2k − 1. (2)

For the optimal solution, the best case is that costs of winners
in S′ are zero while losers’ costs are higher than B̂

2k−1 , i.e.,

ci = 0, ∀i ∈ S′ ∩ Sw and ci > B̂
2k−1 , ∀i ∈ S′ \ Sw. Thus,

OPTh might procure all winners in S′ with payment zero.
2) Sellers in S′′ = {si|i > I(Hk)}: For the best case,

the costs of sellers in S′′≺k and S′′�k are zero and B̂
2k

, respec-
tively. Within the budget B, the optimal solution OPTh can
procure at most 2k − 1 value from S′′k with cost zero and
B/ B̂

2k
= 2k · L value from S′′�k by paying each seller B̂

2k
.

=' =(
"9
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C.( consisting of C.,≺,( with costs ≤ 12
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Figure 5: Example of position ofH′k in the sequence O.

By combining these two cases, the optimal solution can
procure at mostOPTh ≤ 2(2k−1)+2kL = 2k+1−2+2kL.
Thus, OPTh

ALGh
≤ 2 + 2k·L

2k−1 ≤ 2(dlog2Nmaxe+ 1).

Recall that we use the upper bound Nmax of the market
size (denoted by N = |S|) as the input, where N ≤ Nmax.
In the real scenario, an estimated upper bound may be inac-
curate. We thus show that, even when Nmax is not that ac-
curate, the outputs of the mechanism has a small gap when
running over the inputNmax and real numberN . LetALGh
and ALG′h denote the solutions of BDM-H with the input
number Nmax and N of participants, respectively.

Theorem 5. The gap between ALGh and ALG′h is within
(8α− 1) where α = dlog2Nmaxe

dlog2Ne
.

Proof. We have L′ = dlog2Ne and B̂′ = B
L′ . It is easy to

find that L′ ≤ L and B̂′ ≥ B̂. Let S′w denote the winner
set in solution ALG′h. Assume that there are k key sellers in
solution ALGh. If L′ < k ≤ L, the number of key sellers of
ALG′h must be less than solution ALGh which implies that
ALG′h procures less value of items than solution ALGh.

If k ≤ L′, due to B̂′ ≥ B̂, there are at least k key sell-
ers in ALG′h and the k-th key seller H′k must be on the left
side of Hk, i.e., I(H′k) ≤ I(Hk) as shown in Fig. 5. For
ALGh, let Sl and Sw denote the loser and winner set, re-
spectively. The costs of losers between Hl−1 and Hl are
greater than B̂

2l−1 (l ≤ k). Thus, the costs of losers before

Hk are all greater than B̂
2k−1 . Note that all sellers after Hk

are also losers. Among these losers, there are at most 2k − 1

sellers with costs no greater than B̂
2k

while the costs of the

remaining losers are greater than B̂
2k

, since ALGh only has
k key sellers. Then, losers in ALGh can be divided into
two groups: losers with costs no greater than B̂

2k
denoted by

Sl,≺k, and the remaining losers with costs greater than B̂
2k

,
denoted by Sl,�k. All sellers consist of three groups: Sw,
Sl,≺k, Sl,�k, and we have |Sw| = 2k − 1, |Sl,≺k| ≤ 2k − 1.

Now, we analyze the maximum value ALG′h can procure
from sellers after H′k. Besides the sellers in Sw and Sl,≺k,
ALG′h can procure items from Sl,�k when the fixed pay-
ment is higher than B̂

2k
. Assume that there are at most x

phases whose fixed payments are higher than B̂
2k

after the

k-th phase, i.e., x = argmaxh≥1{ B̂′

2k+h−1 ≥ B̂
2k
} which im-

plies x = blog2 αc+ 1 where α = dlog2Nmaxe/dlog2Ne.
Then, the fixed payment in the (k + x + 1)-th phase will
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Algorithm 2: Mechanism BDM-G(B, b′, S,Nmax)
Input: B, b′, S, Nmax.
Output: P, Sw

1 β ← dlog2 V e;
2 Divide all sellers into β groups according to (3);
3 for each group Gj do
4 (Pj , S

j
w) = BDM-H(B, b, Gj , Nmax);

5 end
6 With probability 1

β , return (Pj , S
j
w);

be lower than B̂
2k

, and no sellers in Sl,�k can be selected as
winners in ALG′h after the (k + x)-th phase. Thus, the only
possible sellers to be selected as winners in ALG′h after the
(k+x)-th phase are from Sw∪Sl,≺k. Since the target number
of winners after the (k + x)-th phase is at least 2k+x ≥ 2k,
sellers in Sw ∪ Sl,≺k can only make the number of phases
increase by at most one since they contain at most 2(2k− 1)
sellers. Thus, there are at most k + x + 1 phases in ALG′h,
and we have ALG′h ≤

∑
l≤k+x+1 2

l−1 = 2k+x+1 − 1.

Therefore, we have ALG′h
ALGh

≤ 2k+x+1−1
2k−1 ≤ 8α− 1.

Mechanism for the Heterogeneous Item Setting
Now we extend the result to the general setting where sellers
hold heterogeneous items. The main challenge is that sell-
ers with valuable items should get higher payments which
makes it more difficult to ensure budget-feasibility.

We design a budget-feasible diffusion mechanism BDM-
G for the heterogeneous item setting. The idea is that we
try to transform the heterogeneous item setting problem into
multiple homogeneous item setting problems. Intuitively, we
divide all sellers into multiple groups so that each group of
sellers have similar values, and thus we can consider each
group of sellers as owning items of homogeneous value. The
mechanism proposed in the homogeneous item setting can
then be used to deal with each group of sellers.

We first divide all the sellers into β groups, denoted by
G = {G1, G2, ..., Gβ}, by their values of items where β =
dlog2 V e as follows,

G(si) =

{
Gj , if vi ∈ (2j−1, 2j ], 1 ≤ j ≤ β
G1, otherwise

(3)

where G(si) is the group seller si allocated to. Then, we
view that each seller in the same group owns the same value.
Thus, we call Mechanism BDM-H for the homogeneous set-
ting to deal with the sellers in the same group. Denote by
Sjw and Pj the output winners and the corresponding pay-
ment returned by Mechanism BDM-H on group Gj , i.e.,
(Pj , S

j
w) = BDM-H(B, b, Gj , Nmax). Last, we sample one

of the outputs from all groups with probability 1
β as the final

solution.
Next we analyze the theoretical performance of BDM-G.

Theorem 6. Mechanism BDM-G guarantees individual ra-
tionality, computational efficiency, strong budget balance,
budget feasibility and incentive compatibility.

Theorem 7. Mechanism BDM-G achieves (3 + 4L)β-
approximation in expectation where L = dlog2Nmaxe and
β = dlog2 V e.

Proof. Denote by OPTg and ALGg the optimal solution
and the solution of Mechanism BDM-G, respectively. In
groupGl, assume that there are kl key sellers. Thus, we have
2kl−1 winners in groupGl similar as in Equation (2). After
the last key seller, we have at most 2kl − 1 items with costs
no greater than B̂

2kl
and the remaining sellers are with costs

greater than B̂
2kl

according to Equation (1). The expected to-
tal value procured by Mechanism BDM-G is

ALGg =
1

β

∑
l≤β

∑
j∈Sl

w

vj ≥
1

β

∑
l≤β

2l−1 · (2kl − 1). (4)

Thus, we have
2βALGg ≥

∑
l≤β

2l · (2kl − 1). (5)

On one hand, in group Gl, OPTg can procure 2kl − 1
items from winners in ALGg with cost zero, and 2kl − 1

items whose costs are no greater than B̂
2kl

. On the other hand,

with budget B, OPTg can procure at most B/ B̂
2kl

= 2klL

items from sellers whose costs are greater than B̂
2kl

in Gl.
Then, OPTg can procure at most 2l · 2klL value from Gl
with budget B. Thus, OPTg can procure at most

OPTg ≤
∑
l≤β

∑
j∈Sl

w

vj +
∑
l≤β

2l(2kl − 1) +
∑
l≤β

2l · 2klL

≤ 3βALGg + Lβ ·
∑
l≤β 2

l · 2kl

β

= 3βALGg + Lβ ·
∑
l≤β(2

l · 2kl − 2l) + 2l

β

= (3β + 2Lβ) ·ALGg + L ·
∑
l≤β

2l

≤ (3β + 2Lβ)ALGg + 2LβALGg = (3 + 4L)β ·ALGg.
where the second and third inequalities are due to (5). There-
fore, we have OPTg

ALGg
≤ (3 + 4L)β.

Conclusion
In this paper, we consider the budget-feasible diffusion
mechanisms over graphs that can incentivize sellers to fur-
ther propagate auction information to the potential sellers
and satisfy the buyer’s budget constraint, simultaneously.
For the homogeneous item setting, we propose Mechanism
BDM-H, which selects winners by phases based on a gener-
ated seller sequence and controls the total payment at each
phase by setting a target number of winners and a fixed pay-
ment for each winner. We then extend the result to the het-
erogeneous item setting by proposing Mechanism BDM-G,
which transforms the heterogeneous item setting into mul-
tiple homogeneous item setting problems by putting sell-
ers with similar values into the same group. The designed
mechanisms can guarantee desirable properties like indi-
vidual rationality, budget-feasibility, strong budget-balance,
incentive-compatibility and logarithmic approximation.
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