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Abstract

Network games provide a natural machinery to compactly
represent strategic interactions among agents whose payoffs
exhibit sparsity in their dependence on the actions of oth-
ers. Besides encoding interaction sparsity, however, real net-
works often exhibit a multi-scale structure, in which agents
can be grouped into communities, those communities fur-
ther grouped, and so on, and where interactions among such
groups may also exhibit sparsity. We present a general model
of multi-scale network games that encodes such multi-level
structure. We then develop several algorithmic approaches
that leverage this multi-scale structure, and derive sufficient
conditions for convergence of these to a Nash equilibrium.
Our numerical experiments demonstrate that the proposed ap-
proaches enable orders of magnitude improvements in scala-
bility when computing Nash equilibria in such games. For ex-
ample, we can solve previously intractable instances involv-
ing up to 1 million agents in under 15 minutes.

Introduction
Strategic interactions among interconnected agents are com-
monly modeled using the network, or graphical, game for-
malism (Kearns, Littman, and Singh 2001; Jackson and
Zenou 2015). In such games, the utility of an agent de-
pends on his own actions as well as those by its network
neighbors. Many variations of games on networks have
been considered, with applications including the provision
of public goods (Allouch 2015; Buckley and Croson 2006;
Khalili, Zhang, and Liu 2019; Yu et al. 2020), security (Hota
and Sundaram 2018; La 2016; Vorobeychik and Letchford
2015), and financial markets (Acemoglu et al. 2012).

While network games are a powerful modeling frame-
work, they fail to capture a common feature of human or-
ganization: groups and communities. Indeed, investigation
of communities, or close-knit groups, in social networks is
a major research thread in network science. Moreover, such
groups often have a hierarchical structure (Clauset, Moor,
and Newman 2008; Girvan and Newman 2002). For ex-
ample, strategic interactions among organizations in a mar-
ketplace often boil down to interactions among their con-
stituent business units, which are, in turn, comprised of in-
dividual decision makers. In the end, it is those lowest-
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Figure 1: An illustration of a multi-scale (3-level) network.

level agents who ultimately accrue the consequences of
these interactions (for example, corporate profits would ul-
timately benefit individual shareholders). Moreover, while
there are clear interdependencies among organizations, in-
dividual utilities are determined by a combination of indi-
vidual actions of some agents, together with aggregate deci-
sions by the groups (e.g., business units, organizations). For
example, an employee’s bonus is determined in part by their
performance in relation to their co-workers, and in part by
how well their employer (organization) performs against its
competitors in the marketplace.

We propose a novel multi-scale game model that gener-
alizes network games to capture such hierarchical organi-
zation of individuals into groups. Figure 1 offers a stylized
example in which three groups (e.g., organizations) are com-
prised of 2-3 subgroups each (e.g., business units), which
are in turn comprised of 2-5 individual agents. Specifically,
our model includes an explicit hierarchical network struc-
ture that organizes agents into groups across a series of lev-
els. Further, each group is associated with an action which
deterministically aggregates the decisions by its constituent
agents. The game is grounded at the lowest level, where the
agents are associated with scalar actions and utility func-
tions that have modular structure in the strategies taken at
each level of the game. For example, in Figure 1, the utility
function of an individual member aj of level-3 group a(3)

3 is
a function of the strategies of (i) aj’s immediate neighbors
(represented by links between pairs of filled-in circles), (ii)
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aj’s level-2 group and its network neighbor (the small hol-
low circles), and (iii) aj’s level-3 group, a(3)

3 (large hollow
circle) and its network neighbors, a(3)

1 and a(3)
2 .

Our next contribution is a series of iterative algorithms
for computing pure strategy Nash equilibria that explicitly
leverage the proposed multi-scale game representation. The
first of these simply takes advantage of the compact game
representation in computing equilibria. The second algo-
rithm we propose offers a further innovation through an it-
erative procedure that alternates between game levels, treat-
ing groups themselves as pseudo-agents in the process. We
present sufficient conditions for the convergence of this al-
gorithm to a pure strategy Nash equilibrium through a con-
nection to Structured Variational Inequalities (He, Yang, and
Wang 2000), although the result is limited to games with two
levels. To address the latter limitation, we design a third it-
erative algorithm that now converges even in games with an
arbitrary number of levels.

Our final contribution is an experimental evaluation of the
proposed algorithms compared to best response dynamics.
In particular, we demonstrate orders of magnitude improve-
ments in scalability, enabling us to solve games that cannot
be solved using a conventional network game representation.
Related Work: Network games have been an active area
of research; see e.g., surveys by Jackson and Zenou (2015)
and Bramoullé and Kranton (2016). We now review the most
relevant papers.

Conditions for the existence, uniqueness and stabil-
ity of Nash equilibria in network games under general
best responses are studied in (Parise and Ozdaglar 2019;
Naghizadeh and Liu 2017; Scutari et al. 2014; Bramoullé,
Kranton, and D’amours 2014). Variational inequalities (VI)
are used in these works to analyze the fixed point and con-
traction properties of the best response mappings. It is iden-
tified in (Parise and Ozdaglar 2019; Naghizadeh and Liu
2017; Scutari et al. 2014) that when the Jacobian matrix
of the best response mapping is a P-matrix or is positive
definite, a feasible unique Nash equilibrium exists and can
be obtained by best-response dynamics (Scutari et al. 2014;
Parise and Ozdaglar 2019).

In this paper, we extended the analysis of equilibrium and
best responses for a conventional network game to that in
a multi-scale network game, where the utility functions are
decomposed into separable utility components to which best
responses are applied separately. This is similar to the gener-
alization from a conventional VI problem to an SVI problem
(He, Yang, and Wang 2000; He 2009; He and Yuan 2012;
Bnouhachem, Benazza, and Khalfaoui 2013) problem.

Previous works on network games that involve group
or community structure focus on finding such structures;
e.g., community detection in networks using game theo-
retic methods have been studied in (Mcsweeney, Mehrotra,
and Oh 2017; Newman 2004; Alvari, Hajibagheri, and Suk-
thankar 2014).

By contrast, our work focuses on analyzing a network
game with a given group/community structure, and using the
structure as an analytical tool for the analysis of equilibrium
and best responses.

Preliminaries
A general normal-form game is defined by a set of agents
(players) I = {1, . . . , N}, with each agent ai having an ac-
tion/strategy space Ki and a utility function ui(xi,xxx−i) that
i aims to maximize; xi ∈ Ki and x−i denotes the actions by
all agents other than i. We term the collection of strategies
of all agents xxx a strategy profile. We assume Ki ⊂ R is a
compact set.

We focus on computing a Nash equilibrium (NE) of a
normal-form game, which is a strategy profile with each
agent maximizing their utility given the strategies of others.
Formally, xxx∗ is a Nash equilibrium if for each agent i,

x∗i ∈ argmax
xi∈Ki

ui(xi,xxx
∗
−i). (1)

A network game encodes structure in the utility functions
such that they only depend on the actions by network neigh-
bors. Formally, a network game is defined over a weighted
graph (I, E), with each node an agent and E is the set of
edges; the agent’s utility ui(xi,xxx−i) reduces to ui(xi,xxxIi),
where Ii is the set of network neighbors of i, although we
will frequently use the former for simplicity.

An agent’s best response is its best strategy given the ac-
tions taken by all the other agents. Formally, the best re-
sponse is a set defined by

BRi(xxx−i, ui) = argmax
xi

ui(xi,xxx−i). (2)

Whenever we deal with games that have a unique best re-
sponse, we will use the singleton best response set to also
refer to the player’s best response strategy (the unique mem-
ber of this set).

Clearly, a NE of a game is a fixed point of this best
response correspondence. Consequently, one way to com-
pute a NE of a game is through best response dynamics
(BRD), which is a process whereby agents iteratively and
asynchronously (that is, one agent at a time) take the others’
actions as fixed values and play a best response to them.

We are going to use this BRD algorithm as a major build-
ing block below. One important tool that is useful for ana-
lyzing BRD convergence is Variational Inequalities (VI). To
establish the connection between NE and VI we assume the
utility functions ui, ∀i = 1, . . . , N , are continuously twice
differentiable. LetK =

∏N
i=1Ki and define F : RN → RN

as follows:

F (xxx) :=

(
− Oxi

ui(xxx)

)N

i=1

. (3)

Then xxx∗ is said to be a solution to VI(K,F ) if and only if

(xxx− xxx∗)TF (xxx∗) ≥ 0, ∀xxx ∈ K . (4)

In other words, the solution set to VI(K,F ) is equivalent to
the set of NE of the game. Now, we can define the condition
that will guarantee the convergence of BRD.

Definition 1. The PΥ condition: We denote αi(F ) =
infxxx∈K ||OiFi||2, βi,j(F ) = supxxx∈K ||OjFi||2, i 6= j. The
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Υ matrix generated from F : RN → RN is given as follows

Υ(F ) =


α1(F ) −β1,2(F ) · · · −β1,N (F )
−β2,1(F ) α2(F ) · · · −β2,N (F )

...
...

. . .
...

−βN,1(F ) −βN,2(F ) · · · αN (F )

 ,
If Υ(F ) is a P-matrix, that is, if all of its principal minors
have a positive determinant, then we say F satisfies the PΥ

condition.

Theorem 1. (Scutari et al. 2014) If F satisfies the PΥ con-
dition, then F is strongly monotone onK, and VI(K,F ) has
a unique solution. Moreover, BRD converges to the unique
NE from an arbitrary initial state.

A Multi-Scale Game Model
Consider a conventional network (graphical) game with the
set I of N agents situated on a network G = (I, E), each
with a utility function ui(xi,xxxIi), with Ii the set of i’s neigh-
bors, I the full set of agents/nodes and E the set of edges
connecting them.1 Suppose that this network G exhibits the
following structure and feature of the strategic dependence
among agents: agents can be partitioned into a collection of
groups {Sk}, where k is a group index, and an agent ai in
the kth group (i.e., ai ∈ Sk) has a utility function that de-
pends (i) on the strategies of its network neighbors in Sk,
and (ii) only on the aggregate strategies of groups other
than k (see, e.g., Fig. 1). Further, these groups may go on to
form larger groups, whose aggregate strategies impact each
other’s agents, giving rise to a multi-scale structure of the
network. This kind of structure is very natural in a myriad
of situations. For example, members of criminal organiza-
tions take stock of individual behavior by members of their
own organization, but their interactions with other organiza-
tions (criminal or otherwise) are perceived in group terms
(e.g., how much another group has harmed theirs). A similar
multi-level interaction structure exists in national or ethnic
conflicts, organizational competition in a market place, and
politics. Indeed, a persistent finding in network science is
that networks exhibit a multi-scale interaction structure (i.e.,
communities, and hierarchies of communities) (Girvan and
Newman 2002; Clauset, Moor, and Newman 2008).

We present a general model to capture such multi-scale
structure. Formally, an L-level structure is given by a hier-
archical graph structure {G(l)} for each level l, 1 ≤ l ≤ L,
where G(l) = ({S(l)

k }k, E(l)) represents the level-l struc-
ture. The first component, {S(l)

k }k prescribes a partition,
where agents in level l − 1 form disjoint groups given by
this partition; each group is viewed as an agent in level l,
denoted as a(l)

k . Notationally, while both a(l)
k and S(l)

k bear
the superscript (l), the former refers to a level-l agent, while
the latter is the group (of level-(l − 1) agents) that the for-
mer represents. The set of level-l agents is denoted by I(l)

and their total number N (l). The second component, E(l), is

1The edges are generally weighted, resulting in a weighted ad-
jacency matrix on which the utility depends.

a set of edges that connect level-l agents, encoding the de-
pendence relationship among the groups they represent. This
structure is anchored in level 1 (the lowest level), where sets
S

(1)
k are singletons, corresponding to agents ak in the game,

who constitute the set I .
To illustrate, the multi-scale structure shown in Fig. 1 is

given by G(1) = G = ({S(1)
k }k = I, E(1) = E), as well

as how level-1 agents are grouped into level-2 agents, how
level-2 agents are further grouped into level-3 agents, and
the edges connecting these groups at each level.

It should be obvious that the above multi-scale represen-
tation of a graphical game is a generalization of a conven-
tional graphical game, as any such game essentially corre-
sponds to a L = 1 multi-scale representation. On the other
hand, not all conventional graphical games have a meaning-
ful L > 1 multi-scale representation (with non-singleton
groups of level-1 agents); this is because our assumption that
an agent’s utility only depends on the aggregate decisions
by groups other than the one they belong to implies certain
properties of the dependence structure. For the remainder of
this paper we will proceed with a given multi-scale structure
defined above, while in the supplementary material we out-
line a set of conditions on a graphical game G that allows us
to represent it in a (non-trivial) multi-scale fashion.

Since the resulting multi-scale network is strictly hierar-
chical, we can define a direct supervisor of agent a(l)

i in
level-l to be the agent a(l+1)

k corresponding to the level-
(l + 1) group k that the former belongs to. Similarly, two
agents who belong in the same level-l group k are (level-l)
group mates. Finally, note that any level-1 agent ai belongs
to exactly one group in each level l. We index a level-l group
to which ai belongs by kil.

In order to capture the agent dependence on aggregate ac-
tions, we define an aggregation function σ(l)

k for each level-l
group k that maps individual actions of group members to
R (a group strategy). Specifically, consider a level-l group
S

(l)
k with level-(l−1) agents in this group playing a strategy

profile xxx
S

(l)
k

. The (scalar) group strategy, which is also the
strategy for the corresponding level-(l + 1) agent, is deter-
mined by the aggregation function,

x
(l)
k = σ

(l)
k (xxx

S
(l)
k

). (5)

A natural example of this is linear (e.g., agents respond
to total levels of violence by other criminal organizations):
σ

(l)
k (xxx

S
(l)
k

) =
∑

i∈S(l)
k

x
(l)
i .

The L-level structure above is captured strategically by
introducing structure into the utility functions of agents. Let
Ikil

denote the set of neighbors of level-l group k to which
level-1 agent ai belongs; i.e., this is the set of level-l groups
that interact with agent ai’s group. This level-1 agent’s util-
ity function can be decomposed as follows:

ui(xi,xxx−i) =
L∑

l=1

u
(l)
kil

(
x

(l)
kil
,xxx

(l)
Ikil

)
. (6)

In this definition, the level-l strategies x(l)
k are implicitly

functions of the level-1 strategies of agents that comprise the
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Algorithm 1: BRD Algorithm
Initialize the game,
t = 0, xi(0) = (xxx0)i, i = 1, · · · , N ;

while not converged do
for i = 1:N do

xi(t+ 1) = BRi(xxx−i(t), ui)
end
t← t+ 1

end

group, per a recursive application of Eqn. (5). Consequently,
the utility is an additive function of the hierarchy of group-
level components for increasingly (with l) abstract group of
agents. Note that conventional network games are a special
case with only a single level (L = 1).

To illustrate, if we consider just two levels (a collection
of individuals and groups to which they directly belong), the
utility function of each agent ai is a sum of two components:

ui(xi,xxx−i) = u
(1)
ki1

(
x

(1)
ki1
,xxx

(1)
Iki1

)
+ u

(2)
ki2

(
x

(2)
ki2
,xxx

(2)
Iki2

)
.

In the first component, x(1)
ki1

= xi, since level-1 groups cor-

respond to individual agents, whereas xxx(1)
Iki1

is the strategy
profile of i’s neighbors belonging to the same group as i,
given by E(1). The second utility component now depends
only on the aggregate strategy x(2)

ki2
of the group to which

i belongs, as well as the aggregate strategies of the groups
with which i’s group interacts, given by E(2).

Algorithms and Analysis
Consider the BRD algorithm (formalized in Algorithm 1)
in which we iteratively select an agent who plays a best re-
sponse to the strategy of the rest from the previous iteration.

The conventional BRD algorithm operates on the “flat-
tened” utility function which evaluates utilities explicitly as
functions of the strategies played by all agents ai ∈ I . Our
goal henceforth is to develop algorithms that take advantage
of the special multi-scale structure and enable significantly
better scalability than standard BRD, while preserving the
convergence properties of BRD.

Taking Advantage of Multi-Scale Utility
Representation
The simplest way to take advantage of the multi-scale rep-
resentation is to directly leverage the structure of the util-
ity function in computing best responses. Specifically, the
multi-scale utility function is more compact than one that
explicitly accounts for the strategies of all neighbors of i
(which includes all of the players in groups other than the
one i belongs to). This typically results in a direct compu-
tational benefit to computing a best response. For example,
in a game with a linear best response, this can result in an
exponential reduction in the number of linear operations.

Algorithm 2: Multi-Scale BRD (MS-BRD)
Initialize the game,
t = 0, x

(1)
i (0) = (xxx0)i, i = 1, . . . , N

for l = 2:L do
for k = 1:N (l) do

xxx
(l)
k (0) = σ

(l)
k (xxx

S
(l)
k

(0));

end
end
while not converged do

for i = 1:N (Level-1) do
x

(1)
i (t+ 1) = BRi(xxx

(1)
−i (t), ui)

end
for l = 2:L do

for k = 1:N (l) do
xxx

(l)
k (t+ 1) = σ

(l)
k (xxx

S
(l)
k

(t+ 1));

end
end
t← t+ 1;

end

The resulting algorithm, Multi-Scale Best-Response Dy-
namics (MS-BRD), which takes advantage of our utility rep-
resentation is formalized as Algorithm 2. The main differ-
ence from BRD is that it explicitly uses the multi-scale util-
ity representation: in each iteration, it updates the aggregated
strategies at all levels for the groups to which the most re-
cent best-responding agent belongs. Since MS-BRD simply
performs operations identical to BRD but efficiently, its con-
vergence is guaranteed under the same conditions (see The-
orem 1). Next, we present iterative algorithms for computing
NE that take further advantage of the multi-scale structure,
and study their convergence.

Taking Advantage of Multi-Scale Strategic
Dependence Structure
In order to take full advantage of the multi-scale game struc-
ture, we now aim to develop algorithms that treat groups
explicitly as agents, with the idea that iterative interactions
among these can significantly speed up convergence. Of
course, in our model groups are not actual agents in the
game: utility functions are only defined for agents in level
1. However, note that we already have well-defined group
strategies – these are just the aggregations of agent strategies
at the level immediately below, per the aggregation func-
tion (5). Moreover, we have natural utilities for groups as
well: we can use the corresponding group-level component
of the utility of any agent in the group (note that these are
identical for all group members in Eqn. (6)). However, using
these as group utilities will in fact not work: since ultimately
the game is only among the agents in level 1, equilibria of
all of the games at more abstract levels must be consistent
with equilibrium strategies in level 1. On the other hand,
we need to enforce consistency only between neighboring
levels, since that fully captures the across-level interdepen-
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dence induced by the aggregation function. Therefore, we
define the following pseudo-utility functions for agents at
levels other than 1, with agent k in level l corresponding to
a subset of agents from level l − 1:

û
(l)
k = u

(l)
k

(
x

(l)
k ,xxx

(l)
Ik

)
− L(l,l−1)

k

(
x

(l)
k , σ

(l)
k (xxx

S
(l)
k

)

)
− L(l,l+1)

k

(
σ

(l+1)
k (xxx

S
(l+1)
k

), x
(l+1)
k

)
. (7)

The first term is the level-l component of the utility of any
level-1 agent in group k. The second and third terms model
the inter-level inconsistency loss that penalizes a level-l
agent a(l)

k , where L(l,l+1)
k and L

(l,l−1)
i penalize its incon-

sistency with the level-(l + 1) and level-(l − 1) entities re-
spectively. In general, L(l,l+1)

k is a different function from
L

(l+1,l)
k ; we elaborate on this further below.
The central idea behind the second algorithm we propose

is simple: in addition to iterating best response steps at level
1, we now interleave them with best response steps taken by
agents at higher levels, which we can since strategies and
utilities of these pseudo-agents are well defined. This algo-
rithm is similar to the augmented Lagrangian method in op-
timization theory, where penalty terms are added to relax an
equality constraint and turn the problem into one with sep-
arable operators. We can decompose this type of problem
into smaller subproblems and solve the subproblems sequen-
tially using the alternating direction method (ADM) (Yuan
and Li 2011; Bnouhachem, Benazza, and Khalfaoui 2013).
The games at adjacent levels are coupled through the equal-
ity constraints on their action profiles given by Eqn (5), and
the penalty functions are updated before starting a new iter-
ation. The full algorithm, which we call Separated Hierar-
chical BRD (SH-BRD), is provided in Algorithm (3).

The penalty updating rule in iteration t of Algorithm (3)
is:

1. For l = 2, . . . , L, i = 1, . . . , N (l)

L
(l,l−1)
i

(
x

(l)
i , σ

(l)
i (xxx

S
(l)
i

(t+ 1))

)
= h

(l)
i

[
x

(l)
i − σ

(l)
i (xxx

S
(l)
i

(t+ 1)) + λ
(l)
i (t)

]2

. (8)

2. For l = 1, . . . , L − 1; i = 1, . . . , N (l), where a(l)
i ∈

S
(l+1)
k

L
(l,l+1)
k

(
σ

(l+1)
k (xxx

S
(l+1)
k

), x
(l+1)
k (t)

)
= h

(l+1)
k

[
σ

(l+1)
k (xxx

S
(l+1)
k

)− x(l+1)
k (t)− λ(l+1)

k (t)

]2

.

(9)

3. For l = 2, . . . , L, i = 1, . . . , N (l)

λ
(l)
i (t+ 1)

= λ
(l)
i (t)− h(l)

i

[
σ

(l)
i (xxx

S
(l)
i

(t+ 1))− x(l)
i (t+ 1)

]
.

(10)

When updating, all other variables are treated as fixed, and
λλλ(l)(0), h(l)

i > 0 are chosen arbitrarily.

Algorithm 3: Separated Hierarchical BRD (SH-
BRD)

Initialize the game,
t = 0, x

(1)
i (0) = (xxx0)i, i = 1, . . . , N (0)

for l = 2:L do
for k = 1:N (l) do

xxx
(l)
k (0) = σ

(l)
k (xxx

S
(l)
k

(0));

end
end
while not converged do

for l = 1:L do
for i = 1:N (l) (l to l − 1 Penalty Update, if
l > 1) do

Update L(l,l−1)
i

end
for i = 1:N (l) (l to l + 1 Penalty Update, if
l < L) do

Update L(l,l+1)
k , where a(l)

i ∈ S
(l+1)
k

end
for i = 1:N (l) (Best Response) do

x
(l)
i (t+ 1) = BRi

(
σ

(l)
i (xxx

S
(l)
i

(t+ 1)),

xxx
(l)
Ii

(t), x
(l+1)
k (t), û

(l)
i

)
end

end
t← t+ 1;

end

Unlike MS-BRD, the convergence of the SH-BRD al-
gorithm is non-trivial. To prove it, we exploit a connection
between this algorithm and Structured Variational Inequali-
ties (SVI) with separable operators (He 2009; He and Yuan
2012; Bnouhachem, Benazza, and Khalfaoui 2013). To for-
mally state the convergence result, we need to make several
explicit assumptions.

Assumption 1. The functions u(l)
i , ∀l = 1, . . . , L, ∀i =

1, . . . , N (l−1) are twice continuously differentiable.

Assumption 2. −O
x
(l)
i
u

(l)
i are monotone ∀l =

1, . . . , L, ∀i = 1, . . . , N (l−1). The solution set of
O

x
(l)
i
u

(l)
i = 0, ∀l = 1, . . . , L, ∀i = 1, . . . , N (l−1) is

nonempty, with solutions in the interior of the action spaces.
Let F (l) be defined as in Equation (3) for each level-l

pseudo-utility.

Assumption 3. F (l) satisfy the PΥ condition.
Note that these assumptions directly generalize the condi-

tions required for the convergence of BRD to our multi-scale
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pseudo-utilities. The following theorem formally states that
SH-BRD converges to a NE for 2-level games.

Theorem 2. Suppose L = 2. If Assumptions 1 and 3 hold,
SH-BRD converges to a NE, which is unique.

The full proof of this theorem, which makes use of the
connection between SH-BRD and SVI, is provided in the
Supplement due to space constraint. The central issue, how-
ever, is that there are no established convergence guarantees
for ADM-based algorithms for SVI with 3 or more separa-
ble operators. Alternative algorithms for SVI can extend to
the case of 3 operators using parallel operator updates with
regularization terms, but no approaches exist that can handle
more than 3 operators (He 2009). We thus propose an algo-
rithm for iteratively solving multi-scale games that uses the
general idea from SH-BRD, but packs all levels into two
meta-levels. The two meta-levels each has to be comprised
of consecutive levels. For example, if we have 5 levels, we
can have {1, 2, 3} and {4, 5} combinations, but not {1, 2, 4}
and {3, 5}. Upon grouping levels together to obtain a meta-
game with only two meta-levels, we can apply what amounts
to a 2-level version of the SH-BRD. This yields an algo-
rithm, which we call Hybrid Hierarchical BRD (HH-BRD),
that now provably converges to a NE for an arbitrary number
of levels L given assumptions 1-3.

As presenting the general version of HH-BRD involves
cumbersome notation, we illustrate the idea by presenting it
for a 4-level game (Algorithm 4). The fully general version
is deferred to the Supplement. In this example, the objectives
of the meta-levels are defined as

û
(sl1)
i = u

(1)
i + u

(2)
ki2
− L(sl1,sl2)

ki3

(
σ

(3)
ki3

(xxx
S

(3)
ki3

), x
(3)
ki3

)
,

û
(sl2)
ki3

= u
(3)
ki3

+ u
(4)
ki4
− L(sl2,sl1)

ki3

(
x

(3)
ki3
, σ

(3)
ki3

(xxx
S

(3)
ki3

)

)
.

Theorem 3. Suppose Assumptions 1-3 hold Then HH-BRD
finds the unique NE.

Proof Sketch. We first “flatten” the game within each meta-
level to obtain an effective 2-level game. We then use The-
orem 2 to show this 2-level game converges to the unique
NE of the game under SH-BRD. Finally, we prove that SH-
BRD and HH-BRD have the same trajectory given the same
initialization, thus establishing the convergence for HH-
BRD. For full proof see Supplement.

HH-BRD combines the advantages of both MS-BRD and
SH-BRD: not only does it exploit the sparsity embedded
in the network topology, but it also avoids the convergence
problem of SH-BRD when the number of levels is higher
than three. Indeed, there is a known challenge in the re-
lated work on structured variational inequalities that con-
vergence is difficult when we involve three or more oper-
ators (He 2009), which we leverage for our convergence re-
sults, with operators mapping to levels in our multi-scale
game representation. One may be concerned that HH-BRD
pseudocode appears to involve greater complexity (and more
steps) than SH-BRD. However, this does not imply greater

Algorithm 4: Hybrid Hierarchical BRD
Initialize the game,
t = 0, x

(1)
i (0) = (xxx0)i, i = 1, . . . , N (0)

for l = 2:4 do
for k = 1:N (l) do

xxx
(l)
k (0) = σ

(l)
k (xxx

S
(l)
k

(0));

end
end
while not converged do

for k = 1:N (3) (Meta-Level-1 Penalty Update) do
Update L(sl1,sl2)

k
end
for i = 1 : N (1) (Level-1) do

x
(1)
i (t+ 1) =

BRi

(
xxx

(1)
Ii

(t),xxx
(2)
Iki2

(t), x
(3)
ki3

(t), û
(sl1)
i

)
end
for j = 1:N (2) (Level-2) do

xxx
(2)
j (t+ 1) = σ

(2)
j (xxx

S
(2)
j

(t+ 1))

end
for k = 1:N (3) (Meta-Level-2 Penalty Update) do

Update L(sl2,sl1)
k

end
for k = 1 : N (3) (Level-3) do

x
(3)
k (t+ 1) = BRi

(
σ

(3)
k (xxx

S
(3)
k

(t+ 1)),xxx
(3)
Ik

(t),

xxx
(4)
−p(t), û

(sl2)
k

)
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(3)
k ∈ S(4)

p )

end
for p = 1:N (4) (Level-4) do

xxx
(4)
p (t+ 1) = σ

(4)
p (xxx

S
(4)
p

(t+ 1))

end
t← t+ 1;

end

algorithmic complexity, but is rather due to our greater elab-
oration of the steps within each super level. Indeed, as
our experiments below demonstrate, the superior theoreti-
cal convergence of HH-BRD also translates into a concrete
computational advantage of this algorithm.

Numerical Results and Analysis
In this section, we numerically compare the three algorithms
introduced in Section , as well as the conventional BRD. We
only consider settings which satisfy Assumptions 1-3; con-
sequently, we focus comparison on computational costs. We
use two measures of computational cost: floating-point op-
erations (FLOPs) in the case of games with a linear best
response (a typical measure for such settings), and CPU
time for the rest. All experiments were performed on a ma-
chine with A 6-core 2.60/4.50 GHz CPU with hyperthreaded
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Size BRD MS-BRD SH-BRD

302 (2.51±0.18)×106 (1.03±0.07)×105 (9.81±0.81)×104

502 (2.53±0.18)×107 (5.33±0.04)×105 (4.35±0.07)×105

1002 (4.46±0.32)×108 (4.36±0.31)×106 (3.56±0.29)×106

2002 (6.73±0.58)×109 (3.48±0.29)×107 (2.79±0.21)×107

5002 (2.84±0.21)×1011(5.69±0.41)×108 (4.04±0.29)×108

Table 1: Convergence and complexity (flops) comparison
with linear best response under multiple initialization.

cores, 12MB Cache, and 16GB RAM.
Games with a Linear Best Response (GLBRs) GLBRs
(Bramoullé, Kranton, and D’amours 2014; Candogan,
Bimpikis, and Ozdaglar 2012; Miura-Ko et al. 2008) feature
utility functions such that an agent’s best response is a linear
function of its neighbors’ actions. This includes quadratic
utilities of the form

ui(xi, xIi) = ai + bixi +

(∑
j∈Ii

gijxj

)
xi − cix2

i , (11)

since an agent’s best response is:

BRi(xIi , ui) =

∑
j∈Ii gijxj

2ci
− bi.

We consider a 2-level GLBR and compare three algo-
rithms: BRD (baseline), MS-BRD, and HS-BRD (note that
in 2-level games, HH-BRD is identical to HS-BRD, and
we thus don’t include it here). We construct random 2-level
games with utility functions based on Equation (11). Specif-
ically, we generalize this utility so that Equation (11) repre-
sents only the level-1 portion, u(1)

i , and let the level-2 utili-
ties be

u
(2)
k (xk,xxxIk) = x

(2)
k

∑
p 6=k

vkpx
(2)
p

for each group k. At every level, the existence of a link be-
tween two agents follows the Bernoulli distribution where
Pexist = 0.1. If a link exists, we then generate a parame-
ter for it. The parameters of the utility functions are sam-
pled uniformly in [0, 1] without requiring symmetry. Please
refer to Supplement for further details. Results comparing
BRD, MS-BRD, and SH-BRD are shown in Table 1. We
observe dramatic improvement in the scalability of using
MS-BRD compared to conventional BRD. This improve-
ment stems from the representational advantage provided
by multi-scale games compared to conventional graphical
games (since without the multi-scale representation, we have
to use the standard version of BRD for equilibrium compu-
tation). We see further improvement going from MS-BRD
to SH-BRD which makes algorithmic use of the multi-scale
representation.
Games with a Non-Linear Best Response Next, we study
the performance of the proposed algorithms in 2- and 3-level
games, with the same number of groups in each level (we

Size BRD MS-BRD SH-BRD

302 1.50±0.05 1.02±0.02 0.54±0.01

502 26.70±0.36 3.70±0.14 1.81±0.04

1002 1512±9 23.81±0.69 12.10±0.13

2002 > 18000 287.2±5.4 133.6±2.5

5002 nan 5485±13 2524±10

Table 2: CPU times on a single machine on 2-Level games
with general best response functions; all times are in sec-
onds.

Size BRD MS-BRD SH-BRD

302 1.21±0.04 0.63± 0.01 0.037±0.003

502 23.88±0.16 1.99±0.04 0.079±0.004

1002 1461±14 15.49±0.24 0.304±0.006

2002 > 18000 192.0±1.2 1.87±0.05

5002 nan 4258±56 s 28.79±0.37

Table 3: CPU times on a single machine for 2-Level, lin-
ear/nonlinear best-response games; all times are in seconds.

systematically vary the number of groups). Since SH-BRD
and HH-BRD are identical in 2-level games, the latter is
only used in 3-level games. All results are averaged over
30 generated sample games. The non-linear best response
fits a much broader class of utility functions than the lin-
ear best response. The best responses generally don’t have
closed-form representations. In this case, we can’t use lin-
ear equations to find the best response and instead have to
apply gradient-based methods. In our instances, the utility
with non-linear best responses is generated by adding an ex-
ponential cost term to the utility function used in GLBRs.
Please refer to Supplement for further details.

Table 2 shows the CPU time comparison between all algo-
rithms. The scalability improvements from our proposed al-
gorithms are substantial, with orders of magnitude speedup
in some cases (e.g., from ∼ 25 minutes for the BRD base-
line, down to ∼ 12 seconds for SH-BRD for games with
10K agents). Furthermore, BRD fails to solve instances with
250K agents, which can be solved by SH-BRD in∼ 42 min.
Again, we separate here the representational advantage of
multi-scale games, illustrated by MS-BRD, and algorithmic
advantage that comes from SH-BRD. Note that SH-BRD,
which takes full advantage of the multi-scale structure, also
exhibits significant improvement over MS-BRD, yielding a
factor of 2-3 reduction in runtime.

Our next set of experiments involves games in which
level-1 utility has a linear best response, but level-2 utility
has a non-linear best response. The results are shown in Ta-
ble 3. We see an even bigger advantage of SH-BRD over
the others: it is now typically orders of magnitude faster
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Size BRD MS-BRD SH-BRD HH-BRD

103 1.23±0.03 0.59±0.01 0.76±0.03 0.43±0.02

203 696.0±8.7 3.78±0.09 6.05±0.08 3.35±0.09

303 > 18000 15.70±0.11 25.13±0.14 13.39±0.11

503 nan 68.59±0.75 138.8±1.1 57.98±0.69

1003 nan 1126±6 2343±21 877.1±11.5

Table 4: CPU times in seconds on a single machine on 3-
Level, general best response games; all times are in seconds.

than even MS-BRD, which is itself an order of magnitude
faster than BRD. For example, in games with 250K agents,
in which BRD fails to return a solution, MS-BRD takes
more than 1 hour to find a solution, whereas SH-BRD finds
a solution in under 30 seconds.

Finally, Table 4 presents the results of HH-BRD in games
with > 2 levels compared to SH-BRD, which does not
provably converge in such games. In this case, HH-BRD
outperforms the other alternatives, with up to 22% improve-
ment over MS-BRD; indeed, we find that SH-BRD is con-
siderably worse even than MS-BRD.

Conclusions and Future Directions
We proposed a novel representation of games that have
a multi-scale network structure. These generalize network
games, but with special structures that agent utilities are ad-
ditive across the levels of hierarchy, with utility at each level
depending only on the aggregate strategies of other groups.
We present several iterative algorithms that make use of the
multi-scale game structure, and show that they converge to
a pure strategy Nash equilibrium under similar conditions as
for best response dynamics in network games. Our exper-
iments demonstrate that the proposed algorithms can yield
orders of magnitude scalability improvement over conven-
tional best response dynamics. Our multi-scale algorithms
can reveal to what extent one’s group affiliation impacts
one’s strategic decision making, and how strategic interac-
tions among groups impact strategic interactions among in-
dividuals.

While the issue of multi-scale networks abounds in the
network science literature (e.g., hierarchical clustering, etc.),
the “multi-scale” part is primarily concerned with commu-
nity structure in networks, rather than modeling how how
communities interact, which is critical for us in describing
a formal multi-scale structure for games. Thus a very im-
portant future direction is to identify and obtain relevant
field data for experiments, and create realistic benchmarks
for multi-scale games. This would involve identifying ways
to obtain data about how communities (and not just indi-
viduals) interact. Once we have the ability to collect data
about interactions at multiple scales (e.g., among members
and among groups), we can apply our algorithms to such
multi-scale networks. To use criminal networks (criminal or-
ganizations and their members) as an example, given game

models constructed with the help of domain expertise, we
can:

1. compute equilibria predicting, say, criminal activity as a
function of structural changes to organizations;

2. infer utility models from observational data at multiple
scales;

3. study policies (including strengthening or weaken-
ing connections between agents or groups, endowing
agents/groups with more resources (lower costs of effort),
etc.) that would induce more desirable equilibrium out-
comes.
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