
Necessarily Optimal One-Sided Matchings

Hadi Hosseini,1 Vijay Menon,2 Nisarg Shah,3 Sujoy Sikdar 4

1 College of Information Sciences and Technology, Penn State University
2 David R. Cheriton School of Computer Science, University of Waterloo

3 Department of Computer Science, University of Toronto
4 Department of Computer Science, Binghamton University

hadi@psu.edu, vijay.menon@uwaterloo.ca, nisarg@cs.toronto.edu, ssikdar@binghamton.edu

Abstract

We study the classical problem of matching n agents to n
objects, where the agents have ranked preferences over the
objects. We focus on two popular desiderata from the match-
ing literature: Pareto optimality and rank-maximality. Instead
of asking the agents to report their complete preferences,
our goal is to learn a desirable matching from partial pref-
erences, specifically a matching that is necessarily Pareto op-
timal (NPO) or necessarily rank-maximal (NRM) under any
completion of the partial preferences. We focus on the top-
k model in which agents reveal a prefix of their preference
rankings. We design efficient algorithms to check if a given
matching is NPO or NRM, and to check whether such a
matching exists given top-k partial preferences. We also study
online algorithms for eliciting partial preferences adaptively,
and prove bounds on their competitive ratio.

1 Introduction
Resource allocation is a fundamental problem in artificial
intelligence and multi-agent systems. One particular type
of resource allocation deals with assigning a number of in-
divisible objects to agents according to their preferences.
These problems have given rise to a wide array of research
in economics (Moulin 2004) and theoretical computer sci-
ence (Manlove 2013).

The focus of our work is the special case of allocat-
ing n objects to n agents (so each agent is matched to a
single object), which models many real-world applications
(see, e.g., (Hylland and Zeckhauser 1979; Abdulkadiroğlu
and Sönmez 1999)). For instance, imagine allocating office
spaces to faculty members in a building. Instead of asking
each faculty member to report a full preference ranking over
the available offices, the department head may ask them to
reveal their top choices, and then, if need be, she may ask
individual faculty members to reveal their next best choices,
and so on. The goal is to come up with a matching that nec-
essarily satisfies some form of “economic efficiency” while
asking as few queries as possible. That is, it must satisfy the
economic efficiency property regardless of the parts of the
preferences that were not elicited, because otherwise some
faculty may find the final matching undesirable.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What form of economic efficiency might one want for a
matching? Luckily, decades of research in matching theory
offers two prominent desiderata: Pareto optimality (Shapley
and Scarf 1974; Cirillo 2012) and rank-maximality (Irving
2003; Irving et al. 2006). Informally, Pareto optimality re-
quires that no other matching be able to make some agents
better off without making any agent worse off. Despite its
wide use, Pareto optimality may be a weak guarantee in
many practical settings. Hence, a stronger guarantee called
rank-maximality is often used in practical applications such
as assigning papers to referees (Garg et al. 2010), assign-
ing rented resources to customers (Abraham et al. 2006),
and assigning students to schools (Abraham 2009). Infor-
mally, rank-maximality requires matching as many agents
to their top choice as possible, subject to that matching as
many agents to their second choice as possible, and so on.

The study of these axioms, along with axioms of fairness
and incentive-compatibility, has led to the design of elegant
rules such as random priority and probabilistic serial (Bo-
gomolnaia and Moulin 2001; Che and Kojima 2010), which
have been made easily accessible by not-for-profit endeav-
ors such as MatchU.ai (www.matchu.ai). However, in many
real-life situations, one rarely has access to complete pref-
erences which can simply be fed to these rules. More often
than not, the problem at hand is to come up with a desirable
matching of agents to objects with only partial information
about agents’ preferences. While the role of partial prefer-
ences has been well-explored in the sister problem known as
two-sided matching (Rastegari et al. 2013; Liu et al. 2014),
in which agents are matched to other agents (for example
matching roommates, kidney donors to patients, or men to
women), it has been significantly understudied for one-sided
matching. This is the primary focus of our work. In particu-
lar, we consider the following three research questions.

Given partial preferences, can we efficiently check if
a given matching is NPO or NRM? Can we efficiently
check if an NPO or NRM matching exists (and if so,
find one)? How much online elicitation of preferences
is needed to find an NPO or NRM matching?

Our Results
We study the next-best query model which allows, in each
query, asking one agent to reveal her next best choice. Par-
tial preferences elicited under this model are referred to as

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5481

top-k preferences as each agent reveals a prefix of her pref-
erence ranking consisting of the top k items (where k can
be different for each agent). As mentioned above, our goal
is to design online algorithms that ask few queries and learn
a matching that is necessarily Pareto optimal or necessar-
ily rank-maximal w.r.t. the elicited partial preferences. We
study their performance in terms of their competitive ra-
tio (Borodin and El-Yaniv 2005).

Note that these algorithms need to check if there already
exists a matching that is NPO or NRM w.r.t. the elicited pref-
erences in order to decide if further elicitation is required.
Along the way, it is also useful to know if a given matching
is NPO or NRM w.r.t. the given partial preferences. Thus,
we also study these two questions for NPO and NRM.

For necessary Pareto optimality, we show that checking
whether a given matching is NPO reduces to computing the
maximum weight matching in a bipartite graph, which can
be solved efficiently. We also show that there exists an NPO
matching if and only if there exists a matching that matches
at least n − 1 agents to objects they have revealed, where n
is the number of agents; this can be checked in polynomial-
time, and if this is the case, our algorithm efficiently finds
an NPO matching. Our main result is an online algorithm
for finding an NPO matching that has a competitive ratio of
O(
√
n). By proving a matching lower bound, we show that

our algorithm is asymptotically optimal.
For necessary rank-maximality, we design efficient al-

gorithms for checking whether a given matching is NRM.
For checking whether an NRM matching exists; unlike in
the case of NPO, these questions do not seem to reduce to
checking a simple analytical condition. In the supplemen-
tary material, we show that a simple characterization can be
obtained in the special case where each agent has revealed
exactly the same number of objects. For online elicitation,
we show a constant lower bound on the competitive ratio,
and conjecture that the optimal competitive ratio is in fact
constant, unlike in the case of NPO.

Related Work
The problem of matching n agents to n objects models a
number of scenarios and is well-studied, sometimes as the
house allocation or one-to-one object allocation problem
(e.g., (Hylland and Zeckhauser 1979; Abdulkadiroğlu and
Sönmez 1998; Abraham et al. 2004; Irving 2003)). There are
two approaches to learning a desirable matching given only
partial information about agents’ preferences. One approach
is to consider the worst case scenario over missing prefer-
ences; imposing a property X in the worst case leads to the
“necessarily X” concept. This concept has been considered
in other contexts such as in voting (Xia and Conitzer 2011)
and in one-sided matching problems where an agent may
be assigned to more than one good (Bouveret, Endriss, and
Lang 2010; Aziz et al. 2015, 2019b). However, in the latter
case, even having access to agents’ full preference rankings
over individual goods is not sufficient for checking Pareto
optimality, which leads Aziz et al. (2019b) to consider NPO
given full rankings. In contrast, in our one-to-one matching
setting, full preference rankings over individual goods are
sufficient to check whether a given matching is PO, which

leads us to consider partial (top-k) rankings.
Another approach is to assume that the underlying prefer-

ences are drawn from a known distribution (Rastegari et al.
2013), and consider the probability of satisfying X (Aziz
et al. 2019a). We note that asking whether a matching satis-
fiesX with probability 1 often coincides with the “necessar-
ily X” concept.

We focus on the top-k model of partial preferences, which
is commonly used in the literature (Aziz, Walsh, and Xia
2015; Drummond and Boutilier 2013). However, there are
also other interesting models; one such model is where the
information available regarding each agent’s preferences is
in the form of a set of pairwise comparisons among ob-
jects (Aziz et al. 2019a). In general, the goal of this line of
work is to make matching algorithms more practically rele-
vant, to which our work contributes.

Other than economic efficiency, researchers have also fo-
cused on notions of fairness and incentive-compatibility in
matching agents to objects, which has led to the design of
rules such as random priority and probabilistic serial (Bo-
gomolnaia and Moulin 2001; Abdulkadiroğlu and Sönmez
1998; Hosseini, Larson, and Cohen 2018). A related line
of research considers two-sided matching markets, where
agents are matched to other agents. Working with partial
preferences is well-explored in such markets (Rastegari et al.
2013; Liu et al. 2014).

2 Preliminaries
Let N = {a1, · · · , an} denote the set of agents and O =
{o1, · · · , on} be the set of objects. We use [k] to denote the
set {1, . . . , k}. Thus, for i ∈ [n], ai and oi represent agent
and object i respectively. A matching of agents to objects is
a bijection M : N → O. We sometimes refer to a matching
as a collection of pairs {(ai,M(ai) | i ∈ [n])} and use M
to denote the set of all possible matchings.

Each agent ai ∈ N has an underlying linear orderRi over
O, where a linear order overO is a transitive, antisymmetric,
and total relation on O. We use L(O) to denote the set of all
linear orders over O, and refer to R = (R1, · · · , Rn) ∈
L(O)n as a (complete) preference profile. Additionally, for
i, j, k ∈ [n], if ai prefers oj to ok according to Ri, then we
denote this by oj �Ri ok or ok ≺Ri oj .

We formally describe two notions of economic efficiency,
namely Pareto optimality and rank-maximality.

Definition 1 (Pareto optimality). Given a preference pro-
file R = (R1, . . . , Rn), a matching M is said to be Pareto
optimal w.r.t. R if no other matching can make an agent
happier without making some other agent less happy, i.e.,
if ∀M ′ ∈M : (∃ai ∈ N,M ′(ai) �Ri M(ai))⇒(
∃aj ∈ N,M ′(aj) ≺Rj

M(aj)
)
.

Definition 2 (rank-maximality). Given a preference profile
R and a matching M , let the signature of M w.r.t. R, de-
noted sigR(M), be the tuple (x1, . . . , xn), where x` is the
number of (ai, oj) ∈M such that oj is the `th most preferred
choice of ai. We say that (x1, . . . , xn) �sig (x′1, . . . , x

′
n) if

∃k ∈ [n] such that xk > x′k and xi = x′i for all i < k; this
is the lexicographic comparison of signatures. A matching

5482

M is rank-maximal w.r.t. R if sigR(M) is maximum un-
der �sig. In words, a matching is rank-maximal if it matches
max. number of agents to their top choice, subject to that the
max. number of agents to their second choice, and so on.

Partial Preferences
In this paper, we study a partial preference model called top-
k preferences, in which each agent i may reveal a prefix of
her preference ranking, that is, a ranking of her ki most fa-
vorite objects for some ki ∈ [n]. Specifically, agent i may
reveal Pi which is a linear order over some L ⊆ O such
that any object in L are preferred to any object in L \ O by
the agent; we say that agent i has revealed object o in Pi

if o ∈ L. Also, we sometimes use |Pi| = |L| = ki to de-
note the size of Pi, i.e., the number of objects revealed in Pi.
We refer to P = (P1, . . . , Pn) as a top-k preference profile
and say that a linear order Ri is consistent with Pi if, for all
j, k ∈ [n], oj �Pi

ok ⇒ oj �Ri
ok. We use C(Pi) to denote

the set of linear orders over O that are consistent with Pi,
and C(P) to denote C(P1)× . . .× C(Pn).

Given a top-k preference profile P = (P1, · · · , Pn), we
use rev(P) to denote the set of all pairs (ai, oj) such that ai
has revealed object oj in Pi, and unrev(P) to denote (N ×
O) \ rev(P). Throughout, whenever we refer to the size of a
matching M w.r.t. to P , we mean |M ∩ rev(P)|.

We are interested in the notion of “necessarily efficient”
matchings, which are guaranteed to satisfy an efficiency no-
tion such as Pareto optimality or rank-maximality given only
a top-k preference profile (Gaspers et al. 2014; Xia and
Conitzer 2011; Aziz, Walsh, and Xia 2015).
Definition 3 (necessary Pareto optimality (NPO) and nec-
essary rank-maximality (NRM)). Given a top-k preference
profile P , a matching M is said to be necessarily Pareto op-
timal (resp. necessarily rank-maximal) w.r.t. P if it is Pareto
optimal (resp. rank-maximal) w.r.t. any profile of linear or-
ders that is consistent with P , i.e., for any R ∈ C(P).

Query Model and Elicitation
We consider algorithms that can elicit preferences by ask-
ing agents to reveal their “next-best” objects—meaning if
the agent has already revealed their k−1 most preferred ob-
jects, then it asks the agent to reveal their k-th most preferred
object. We formally define this query model below.
Definition 4 (next-best query model). For ai ∈ N and k ∈
[n], query Q(ai, k), which asks agent ai to reveal the object
in the k-th position in her preference list, is a valid query in
the next-best query model if queryQ(ai, j) has already been
made for all j ∈ [k − 1].

We are interested in online elicitation algorithms that find
NPO or NRM matchings in the next-best query model and
measure their performance against an all-powerful optimal
algorithm. An all-powerful optimal algorithm is a hypothet-
ical offline algorithm that can identify the minimum number
of queries of the form Q(ai, j) that are sufficient to guar-
antee an NPO or NRM matching. That is, for i ∈ [n] and
ki ∈ [n], the optimal algorithm can minimize

∑
i∈[n] ki,

and can claim that asking every agent i for their top-ki or-
der, Pi, is sufficient to compute a matching that is NPO or

NRM w.r.t. all consistent completions of P = (P1, . . . , Pn).
We say that an online elicitation algorithm is α-competitive
(or, equivalently, it achieves a competitive ratio of α) if the
number of queries it requires to ask in the worst-case across
all possible instances is at most α · OPT, where OPT is the
number of queries asked by the optimal algorithm.

3 Necessarily Pareto Optimal Matchings
We begin, in Section 3, by presenting an algorithm that de-
termines if a given matching is NPO w.r.t. to a profile of
top-k preferences. Following this, we provide a useful char-
acterization for when NPO matchings exist. This in turn is
used in Section 3 in designing an elicitation algorithm that
is 2(
√
n + 1)-competitive. We also show that no elicitation

algorithm can achieve a competitive ratio of o(
√
n), estab-

lishing our algorithm as asymptotically optimal.

Determining Whether a Matching is NPO
We present a polynomial time algorithm to determine
whether a given matching M is NPO w.r.t. a profile of top-k
preferences P . The algorithm proceeds in two steps: In Step
1, we build a directed graph G = (N,E), where E consists
of directed edges (ai, aj) such that M(aj) �Ri M(ai) un-
der some Ri ∈ C(Pi). That is, there exists an edge when
agent i prefers the object allocated to agent j over her own
under some completion of her partial preferences. In Step 2,
we efficiently check if this directed graph admits a cycle. If
it does, matching M is not NPO; otherwise, it is NPO.

Theorem 1. Given a top-k preference profile P and a
matching M , there is a polynomial time algorithm to check
if M is NPO w.r.t. P .

Proof. We claim that the algorithm described above—
formally presented as Algorithm 1 in the full version (Hos-
seini et al. 2020)—is such an algorithm. First, let us prove
its correctness. The key observation, which the reader can
easily verify, is that the graph G constructed in Step 1 con-
tains an edge (ai, aj) if and only if there exists a completion
Ri ∈ C(Pi) under which M(aj) �Ri M(ai). This includes
edges (ai, aj) for which M(aj) �Pi M(ai) is already true
under the top-k preference order Pi.

Suppose the algorithm returns NO. Then, G has a cycle.
LetC be one such cycle. Construct a matching,M ′, fromM
as follows: if agent i has an outgoing edge (ai, aj) ∈ C in
the cycle, set M ′(ai) = M(aj), and if agent i is not part of
cycle C, then set M ′(ai) = M(ai). It is easy to verify that
M ′ is a matching.

Let R = (R1, . . . , Rn) ∈ C(P) be a completion such that
if agent i has an outgoing edge (ai, aj) ∈ C in the cycle,
then Ri ∈ C(Pi) satisfies M ′(ai) = M(aj) �Ri

M(ai),
and otherwise Ri ∈ C(Pi) is chosen arbitrarily. Then, it is
easy to see that for each agent i who is a part of cycle C, we
have M ′(ai) �Ri M(ai), and for every remaining agent i,
we have M ′(ai) = M(ai). Thus, M ′ Pareto-dominates M
under the completion R ∈ C(P), which implies that M is
not NPO w.r.t. P , as desired.

Conversely, suppose M is not NPO w.r.t. P . Hence, there
exists a matching M ′ and a completion R ∈ C(P) such

5483

that M ′ Pareto-dominates M under R. We claim that G
must have a cycle, and the algorithm therefore must re-
turn NO. To see this, consider the graph G′ = (N,E′)
where, for ai 6= aj , (ai, aj) ∈ E′, if M ′ assigns to agent
i the object that was assigned to agent j under M , i.e., if
M ′(ai) = M(aj) 6= M(ai). Note that in G′, each agent i
either has exactly one incoming and one outgoing edge, or
no incident edges. Hence, G′ is a union of disjoint cycles. In
particular, G′ has at least one cycle.

However, since M ′ Pareto-dominates M under R, for ev-
ery edge (ai, aj) ∈ E′, we have that M ′(ai) = M(aj) �Ri

M(ai). Hence, by the observation above, edge (ai, aj) must
also exist in G. Thus, G′ is a subgraph of G. Since G′ has at
least one cycle, so does G, as desired.

Finally, Algorithm 5 runs in polynomial time because
constructing G and checking whether G has a cycle can be
done in O(n2) time (the latter using depth-first search).

At a high level, correctness of the algorithm follows from
the observation that if there is a cycle in the directed graph
constructed above, then one can construct a complete pref-
erence profile R ∈ C(P) such that each agent in the cy-
cle strictly prefers the object allocated to the next agent in
the cycle under M . Then, trading objects along this cycle
would result in a matching M ′ that, under this completion
R, Pareto-dominates M , establishing that M is not NPO.

Computing an NPO Matching, When It Exists
Next, we find a necessary and sufficient condition for a given
top-k preference profile P to admit an NPO matching. In
the case that an NPO matching exists, we also provide an
algorithm to compute one in polynomial time.

Theorem 2. A top-k preference profile P admits an NPO
matching if and only if there is a matching of size at least
n−1 w.r.t.P . Moreover, there is a polynomial time algorithm
to determine whether a top-k preference profile admits an
NPO matching, and to compute an NPO matching if it exists.

Proof. (⇒) Consider a top-k preference profile P that ad-
mits an NPO matching M . Suppose for the sake of con-
tradiction that there is no matching w.r.t. P that is of size
larger than n − 2. Then, |M ∩ rev(P)| ≤ n − 2, which
implies that there are at least two agents, w.l.o.g. agents
a1 and a2, who are matched to objects they have not re-
vealed under P . It is easy to see that one can now construct
a completion R ∈ C(P) such that M(a2) �R1 M(a1) and
M(a1) �R2 M(a2). Under this completion, exchanging the
objects assigned to a1 and a2 would Pareto-dominate M ,
contradicting the fact that M is NPO w.r.t. P .
(⇐) Let P be a top-k preference profile such that there ex-
ists a matching of size at least n − 1 w.r.t. P . Construct a
weighted bipartite graph G = (N ∪O, rev(P)), where each
edge (ai, oj) ∈ rev(P) has weight equal to the rank of oj in
Pi. Let M be a matching of min. weight among all match-
ings of max. cardinality in G. Note that |M | ≥ n− 1.

Let us first consider the case when |M | = n. If so, then
it is easy to see that M is an NPO matching w.r.t. P . This
is because any matching that Pareto-dominates M in any

completion R ∈ C(P) must have size n w.r.t. P as well and
a strictly lower weight than M , which is a contradiction.

Now, consider the case when |M | = n − 1. So exactly
one agent and one object are not matched. Without loss of
generality, suppose these are an and on. Construct a match-
ing M̂ of our problem by adding (an, on) to M . Thus,
|M̂ ∩ rev(P)| = |M | = n − 1. We wish to show that M̂
is NPO. Suppose for the sake of contradiction that there ex-
ists a matching M ′ which Pareto dominates M̂ w.r.t. some
completion R ∈ C(P). Hence, M ′ must assign each agent
an object she prefers (under R) at least much as what she
receives under M̂ , and at least one agent a strictly better
(underR) object than what she receives under M̂ . Thus,M ′,
when viewed as a matching in G, must have cardinality n−1
and weight at most the weight of M . Further, weight of M ′
is equal to the weight of M only if M ′ assigns each agent
ai 6= an the same object that M̂ assigns. However, any two
matchings that differ must differ in the assignment to at least
two agents. Hence, we have that M ′ is a matching in G with
cardinality n− 1 and weight strictly less than the weight of
M , which is a contradiction.

Now, we provide a polynomial-time algorithm to compute
an NPO matching, when it exists. From the argument above,
it is sufficient to be able to compute a min-weight max-
cardinality matching M of the graph G. This can be done in
polynomial time using the Hungarian algorithm (Munkres
1957). Then, if |M | = n, the algorithm returns M , and if
|M | = n − 1, the algorithm returns M̂ by adding the un-
matched agent-object pair.

Elicitation to Compute an NPO Matching
In this section we turn to the question of elicitation. As men-
tioned in Section 2, we use the next-best query model, and
informally our main goal is to understand how to elicit as
little information as possible in order to compute an NPO
matching. Towards this end, we first prove, in Theorem 3,
a lower bound that shows that any elicitation algorithm has
a competitive ratio of Ω(

√
n). Due to space constraints, the

proof appears in the full version (Hosseini et al. 2020).
Theorem 3. In the next-best query model, if there exists an
α-competitive elicitation algorithm for finding a necessarily
Pareto optimal matching, then α ∈ Ω(

√
n).

A natural strategy to elicit preferences is to simultane-
ously ask all the n agents to reveal their next best object
until the point at which the designer has enough information
to compute an NPO matching. Recall that we can check the
latter condition at every step by leveraging our Theorem 2
from Section 3. Although this approach is natural, it is not
difficult to see that it results in a competitive ratio of Ω(n).

Let us describe the high-level idea of our algorithm (Al-
gorithm 1), although the exact details vary slightly in the
algorithm in order to optimize the competitive ratio. We fol-
low the aforementioned naı̈ve approach of asking all agents
to report their next best object only up to a point where we
can match at least n −

√
n agents to objects they have re-

vealed. At that point, we compute one such matching, focus
on the unmatched agents (at most

√
n of them), and then

5484

Input: A profile of top-k preferences P = (P1, . . . , Pn), a set
of agents N , and a set of objects O.

Output: An NPO matching
1: for each i ∈ [n], initialize Pi = ∅
2: M← ∅; k ← 1; s← |M|
3: while s < (n− 1) do
4: if s ≤ (n− 1)−min({k − 1,

√
n}) then

5: for each i ∈ [n] do
6: o← Q(ai, |Pi|+ 1)
7: update Pi by adding object o at position |Pi|+1
8: end for
9: else if s > (n− 1)−min({k − 1,

√
n}) then

10: U ← the set of unmatched agents inM
11: for each i ∈ U do
12: o← Q(ai, |Pi|+ 1)
13: update Pi by adding object o at position |Pi|+1
14: end for
15: end if
16: k ← k + 1
17: M← max. matching in G (N ∪O, rev(P))
18: s← |M|
19: end while
20: use algorithm described in Theorem 2 to return a matching

that is NPO w.r.t. P = (P1, · · · , Pn)

Algorithm 1: A 2(
√
n+1)-competitive elicitation algorithm

just ask these agents for their next best object until there is
a matching of size at least n − 1, which, by Theorem 2, is
a sufficient condition for the existence of an NPO matching.
Once we know an NPO matching exists, we use the poly-
nomial time algorithm from Theorem 2 to find one. This
strategy, with the details optimized, results in an improved
competitive ratio of 2(

√
n+ 1), which, given Theorem 3, is

asymptotically optimal.
Theorem 4. Algorithm 1 is a 2(

√
n + 1)-competitive elici-

tation algorithm in the next-best query model for computing
a necessarily Pareto optimal matching.

In order to prove this result, we first introduce the follow-
ing notation. We maintain a graph G = (N ∪ O, rev(P)),
where P denotes the top-k preference profile elicited so far.
Let sj denote the size of the maximum matching in this
graph during the j-th iteration of line 3. Next, let m denote
the number of times lines 4–8 are run in Algorithm 1. Note
that m ≥ 1 (since s1 = 0 and hence lines 4–8 are executed
at least during the first iteration), and that the total number
of iterations of the algorithm is m + 1 (since the ‘else if’,
i.e., lines 9–15 is executed just once). Also, note that for
all j ∈ [m], sj is also the size of the maximum matching
when all agents have revealed their top (j − 1) objects in
Algorithm 1. Finally, for j ∈ [m], let Xj denote the num-
ber of agents who are asked at least j queries by the optimal
algorithm. Now, we have the following claim, whose proof
appears in the full version (Hosseini et al. 2020).
Claim 1. For every j ∈ [m], Xj ≥ (n− sj − 1).

Equipped with the notations and the claim above, we can
now prove our theorem.

Proof of Theorem 4. Let ALG denote the number of queries

asked in Algorithm 1 and m be as defined above. Since the
algorithm asks n queries during each time lines 4–8 is run
and it asks at most (n− sm+1) · (n−m) queries during the
execution of lines 9–15 (the first term is maximum number
of agents in set U in line 10 and the second arises from the
fact that all these agents have revealed their top m prefer-
ences), we have that

ALG ≤ n ·m+ (n− sm+1) · (n−m)

< n ·m+ (min({m,
√
n}) + 1) · (n−m), (1)

where the second step follows from the fact that (n −
sm+1) < (1 + min({m,

√
n})) (see line 9 in Algorithm 1).

Next, let OPT denote the number of queries asked by the
optimal algorithm. From Claim 1 we know that Xj , which
is the number of agents who are asked at least j queries by
the optimal algorithm, is at least (n− sj − 1). Therefore,

OPT ≥ m ·Xm +
m−1∑
j=1

(m− j) · (Xm−j −Xm−j+1)

= Xm +Xm−1 + · · ·+X1

≥ n− 1 +

m∑
j=2

(n− sj − 1)

(using Claim 1 and the fact that s1 = 0)
≥ n− 1 + (m− 1) · (n− sm − 1)

(since ∀j ∈ [m], sj ≤ sj+1)

≥ n− 1 + (m− 1) ·min({m− 1,
√
n}), (2)

where the final inequality follows from the fact that (n −
1 − sm) ≥ min({m − 1,

√
n}) (see line 4 in Algorithm 1).

Therefore, using (1) and (2), we have

ALG
OPT

≤ n ·m+ (min({m,
√
n}) + 1) · (n−m)

n− 1 + (m− 1) ·min({m− 1,
√
n})

≤ 2(min({m,
√
n}) + 1),

where the last inequality follows by using n ≥ 2, m ≥ 1,
and by considering the cases m ≤

√
n and m >

√
n.

4 Necessarily Rank-Maximal Matchings
In the previous section, we devised algorithms for comput-
ing an NPO matching when one exists and when given a
top-k preference profile, and for eliciting a small amount
of information to determine such matchings. Here, we fo-
cus on rank-maximality, which is a stronger notion of eco-
nomic efficiency than Pareto optimality and widely used in
real-world applications (see, e.g., (Garg et al. 2010; Abra-
ham et al. 2006; Abraham 2009)). To illustrate this notion,
consider the top-k preference profile P with three agents,
where P1 = o1 � o2 � o3, P2 = o1 � o2 and P3 = o1.
The matching M = {(a1, o3), (a2, o2), (a3, o1)} is NPO,
but not NRM. To see this, consider the completion R of P ,
where R1 = o1 � o2 � o3, R2 = o1 � o2 � o3, and
R3 = o1 � o3 � o2. While M has signature (1, 1, 1) under
R, matching M ′ = {(a1, o1), (a2, o2), (a3, o3)} has a better
signature (1, 2, 0) under R. In fact, it is easy to verify that
M ′ is NRM w.r.t. P .

5485

We begin, in Section 4, by presenting an algorithm that
determines whether a given matching is necessarily rank-
maximal (NRM) w.r.t. a given top-k preference profile. In
Section 4, we build upon this algorithm to design another
algorithm that decides if a given top-k preference profile ad-
mits an NRM matching, and computes one if it does. Finally,
we turn to the elicitation question, where we provide a lower
bound on the competitive ratio of any elicitation algorithm
that returns an NRM matching. We first introduce necessary
additional definitions and notations.

Definition 5 (rank-maximality w.r.t. top-k preferences).
Given a top-k preference profile P and a matching M , let
the signature of M w.r.t. P , denoted sigP (M), be the tu-
ple (x1, . . . , xn), where x` is the number of (ai, oj) ∈
M ∩ rev(P) such that oj is the `th most preferred choice
of ai. We say that (x1, . . . , xn) �sig (x′1, . . . , x

′
n) if there

exists a h ∈ [n] such that xh > x′h and xi = x′i for all
i < h; this is the lexicographic comparison of signatures. A
matching M is rank-maximal w.r.t. P if sigP (M) is maxi-
mum under�sig. In plain words, a matching is rank-maximal
w.r.t. partial preference profile P if it maximizes the num-
ber of agents matched to their top choice, subject to that the
number of agents matched to their second choice, and so on.

Definition 6 (Extended signature). Following Definition 2,
we define the extended signature of a matching M w.r.t. P ,
denoted extsigP (M), to be the tuple (x1, . . . , xn), where,
for all i ∈ [n − 1], xi is defined as in sigP (M), while xn
counts not only the number of agents matched to their nth

choice revealed in P , but also the number of agents matched
to an object they did not reveal in P .

Definition 7 (Optimal signature). Given a top-k preference
profile P over a subset of agents S ⊆ N and a subset of ob-
jects T ⊆ O, as well as a set of “forbidden” pairs F ⊆ S×T ,
letM(S, T, F) denote the set of all matchingsM that match
agents in S to objects in T and satisfy M ∩ F = ∅. We
define sigopt

P (S, T, F) = supM∈M(S,T,F),R∈C(P) sigR(M).
Informally, this is the best possible signature that any match-
ing can achieve under any completion of P while avoiding
pairings from F . We use arg sigopt

P (S, T, F) to denote the
matching M ∈ M(S, T, F) that obtains this best signature
under some completion R ∈ C(P). Note that sometimes we
use sigopt

P to denote sigopt
P (N,O, ∅).

Determining Whether a Matching is NRM
At a high level, our algorithm to determine if a given match-
ing M is NRM under a given top-k preference profile P
works as follows. It leverages the fact that given any S ⊆ N ,
T ⊆ O, and F ⊆ S × T , we can efficiently compute
sigopt

P (S, T, F). Algorithm 2 formally describes how to do
this; the proof of its correctness is in the full version.

Given this, our algorithm first checks ifM has size at least
n− 1 w.r.t. P ; this is necessary for M to even be NPO w.r.t.
P , as the proof of Theorem 2 shows. If M has size n w.r.t.
P , then we argue that its signature w.r.t. P (which is the
same as its signature w.r.t. any completion R of P) must be
sigopt

P . On the other hand, suppose M has size n−1 w.r.t. P ,
with (ai, oj) ∈M ∩unrev(P) being the pair where an agent

Input: A top-k preference profile P over a set of agents S ⊆
N and a set of objects T ⊆ O, and F ⊆ S × T .

Output: sigopt
P (S, T, F) and arg sigopt

P (S, T, F)
1: For all ai ∈ S, let ki ← |Pi|
2: P ′ ← weak order profile which matches P on the

preferences revealed under P , and for every (ai, oj) ∈
unrev(P), has object oj at position ki + 1 in P ′

i

3: Create a bipartite graph G = (S ∪ T,E), where E =
S × T \ F , and each edge (ai, oj) ∈ E is labelled with `
if oj appears in position ` in P ′

i .
4: M ← compute a rank-maximal matching of G using the

algorithm by Irving et al. (2006)
5: return sigP ′(M) and M

Algorithm 2: Algorithm to compute sigopt
P (S, T, F) and

arg sigopt
P (S, T, F).

Input: A top-k preference profile P , a set of agents N , a set
of objects O, and a matching M .

Output: Is M NRM w.r.t. P ?
1: c← |M ∩ rev(P)|.
2: if c = n and sigP (M) = sigopt

P then
3: return YES
4: else if c = n− 1 then
5: Pick (ai, oj) ∈M ∩ unrev(P) . this is unique since

M has cardinality n− 1 w.r.t. P .
6: if sigP (M) �sig sigopt

P (N \ {ai}, O \ {oj}, ∅) and
extsigP (M) �sig sigopt

P (N,O, {(ai, oj)}) then
7: return YES
8: end if
9: end if

10: return NO

Algorithm 3: Algorithm to check if a given matching is
NRM given a top-k preference profile.

is matched to an object she did not reveal under P . Then,
we argue that two conditions need to be met: (a) to ensure
that another matching M ′ with (ai, oj) ∈ M ′ cannot have
a better signature under any completion R, we require that
the signature of M w.r.t. P be at least as good as sigopt

P (N \
{ai} , O \ {oj} , ∅), and (b) to ensure that another matching
M ′ with (ai, oj) /∈M ′ cannot have a better signature under
any completion R, we require that the extended signature of
M w.r.t. P be at least as good as sigopt

P (N,O, {(ai, oj)}).
Algorithm 3 formalizes this and the proof of its correctness
(claimed below) appears in the full version.

Theorem 5. Given a top-k preference profile P and a
matching M , there exists a polynomial-time algorithm that
determines if M is NRM w.r.t. P .

Computing an NRM matching, When It Exists
The results from Section 4 are key to devising an algorithm
that determines if a given top-k preference profile admits an
NRM matching and computes one if it does. Specifically,
note again that a matching that is NRM w.r.t. a top-k prefer-
ence profile P must have size at least n− 1 w.r.t. P . If there
is an NRM matching of size n w.r.t. P , then we argue that it

5486

Input: A top-k preference profile P , agents N , and objects O.
Output: Returns an NRM matching if P admits one, and re-

turns NO otherwise.
1: M ′ ← rank-maximal matching w.r.t. P
2: if |M ′ ∩ rev(P)| = n and sigP (M) = sigopt

P then
3: return M ′

4: else
5: for (ai, oj) ∈ unrev(P) do
6: X ← rank-maximal matching of N \ {ai} to O \
{oj} w.r.t. P

7: M ′ ← X ∪ {(ai, oj)}
8: if M ′ is NRM w.r.t. P , then return M ′

9: end for
10: end if
11: return NO

Algorithm 4: Algorithm to check if an NRM matching exists
given a top-k preference profile.

must be rank-maximal w.r.t. P and have signature sigopt
P . We

can check this efficienty using the results from Section 4.
If there is an NRM matching of size n − 1 w.r.t. P with
(ai, oj) ∈M ∩ unrev(P), then we argue that M \ {(ai, oj)}
must be a rank-maximal matching of N \ {ai} to O \ {oj}
w.r.t. P . By iterating over all agent-object pairs (ai, oj), we
can again check this efficiently. Algorithm 4 formalizes this
and the next result proves its correctness.
Theorem 6. Given a top-k preference profile P , there exists
a polynomial-time algorithm that returns a necessarily rank-
maximal matching if one exists, and returns NO otherwise.

Proof. We want to show that P admits an NRM matching
if and only if Algorithm 4 returns a matching (i.e. does not
return NO). Moreover, in case that the algorithm returns a
matching, we want to show that it is in fact NRM w.r.t. P .
(⇒) Let M be an NRM matching w.r.t. P . Then, it must be
NPO w.r.t. P . Hence, as we show in the proof of Theorem 2,
M must have size at least n− 1 w.r.t. P . So, we again have
the following two cases. EitherM is a perfect matching w.r.t.
P , which we refer to as Case (a) below, orM is of size n−1
w.r.t. P , which we refer to as Case (b) below.

Case (a). Observe that sigP (M) = sigR(M) for all
R ∈ C(P) since M is a perfect matching w.r.t. P . Second,
note that sigP (M) = sigopt

P , since otherwise it follows from
the definition of sigopt

P that there is a matching M ′ and a
completion R ∈ C(P) such that sigR(M ′) �sig sigR(M) =
sigP (M), which in turn contradicts the fact that M is NRM
w.r.t. P . Finally, it is easy to see that sinceM has size nw.r.t.
P and it is NRM w.r.t. P , it has to be rank-maximal w.r.t. to
P . Combining these observations, we have that any match-
ing M ′ that is a rank-maximal matching w.r.t. P must have
size n and the same signature (under P) as sigopt

P . Hence, the
check in line 2 will succeed, and the algorithm will return
matching M ′, which is NRM w.r.t. P .

Case (b). Let (ai, oj) ∈ M ∩ unrev(P). As in Case (a),
we can argue that M \ {(ai, oj)} is NRM w.r.t. P among all
matchings that match N \ {ai} to O \ {oj}. Let X be any
matching of N \{ai} to O \{oj} that is rank-maximal w.r.t.
P . Then, this implies that X ∪ {(ai, oj)} is also an NRM

matching. Observe that this is precisely the condition that
is checked in line 8 of Algorithm 4. Hence, the algorithm
returns an NRM matching w.r.t. P in this case too.
(⇐) Suppose P does not have an NRM matching. Note that
Algorithm 4 returns a matching only under two cases. First
is when there is a matching M ′ such that M ′ is of size n
w.r.t. P and has the same signature as sigopt

P . Note that if such
a matching exists, then it is easy to see from the definition
of sigopt

P and the fact that M ′ is a perfect matching w.r.t. P
that it has to be NRM w.r.t. P , which in turn contradicts our
assumption that P does not have an NRM.

The other case is when Algorithm 4 returns a matching in
line 8, and here, the proof trivially follows from Theorem 5,
which proves the correctness of Algorithm 3.

Finally, one can see that Algorithm 4 runs in polynomial
time since Algorithms 2 and 3 run in polynomial time.

Elicitation to Compute an NRM Matching
We are now ready to consider the question of eliciting infor-
mation to compute an NRM matching. Below we provide a
lower bound on the competitive ratio of any elicitation algo-
rithm (the proof is in the full version (Hosseini et al. 2020)).
Theorem 7. In the next-best query model, for n ≥ 2, if there
exists an α-competitive elicitation algorithm for finding a
necessarily rank-maximal matching, then α ≥ 4

3 −
2
n , if n is

even, and α ≥ 4
3 −

20
9n−3 , if n is odd.

Note that our lower bound converges to 4
3 as n goes to

infinity. So, a natural question is whether one can design
an online algorithm to compute an NRM matching that has
constant competitive ratio. We conjecture that this should be
possible, but leave it as an open problem for future work.

5 Discussion
As discussed in Section 4, the most immediate open question
that stems from our work is to design an online elicitation
algorithm to compute an NRM matching, and analyze its
competitive ratio. In particular, we believe that there exists
an algorithm with a constant competitive ratio.

Note that our online algorithm to compute an NPO match-
ing from Section 3 is a constructive procedure, and uses our
result that the existence of an NPO matching can be reduced
to a simple analytical condition. Given that such a simple
condition seems out of reach for the case of NRM, it may
be interesting to explore a different approach to designing
an online algorithm to compute an NRM matching. For ex-
ample, one can train a machine learning model to select
which agent to query next as a function of the preferences
elicited so far. At each step, we can first use this algorithm
to make one more query, and then call our efficient algorithm
to check if the elicited preference reveal an NRM matching.
It would be interesting to study if this approach can lead to
a low competitive ratio, at least in practice.

More broadly, the literature on learning a desirable match-
ing of agents to objects from partial preferences or historical
data is still in its infancy, and many interesting directions,
such as studying other models of partial preferences or other
models of querying agents, remain unexplored.

5487

Acknowledgments
Hadi Hosseini acknowledges support from NSF grant
#1850076. Nisarg Shah was partially supported by an
NSERC Discovery grant. We thank Lirong Xia and the
anonymous reviewers for their very helpful comments and
suggestions.

References
Abdulkadiroğlu, A.; and Sönmez, T. 1998. Random serial
dictatorship and the core from random endowments in house
allocation problems. Econometrica 66(3): 689–701.

Abdulkadiroğlu, A.; and Sönmez, T. 1999. House allocation
with existing tenants. Journal of Economic Theory 88(2):
233–260.

Abraham, D.; Chen, N.; Kumar, V.; and Mirrokni, V. S.
2006. Assignment problems in rental markets. In Proceed-
ings of the Second International Workshop on Internet and
Network Economics (WINE), 198–213. Springer.

Abraham, D. J. 2009. Matching markets: Design and anal-
ysis. Ph.D. thesis, University of Glasgow.

Abraham, D. J.; Cechlárová, K.; Manlove, D. F.; and
Mehlhorn, K. 2004. Pareto optimality in house allocation
problems. In Proceedings of the Fifteenth International
Symposium on Algorithms and Computation (ISAAC), 3–15.

Aziz, H.; Biro, P.; de Haan, R.; and Rastegari, B. 2019a.
Pareto optimal allocation under compact uncertain prefer-
ences. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI), volume 33, 1740–1747.

Aziz, H.; Biró, P.; Lang, J.; Lesca, J.; and Monnot, J. 2019b.
Efficient reallocation under additive and responsive prefer-
ences. Theoretical Computer Science 790: 1–15.

Aziz, H.; Gaspers, S.; Mackenzie, S.; and Walsh, T. 2015.
Fair assignment of indivisible objects under ordinal prefer-
ences. Artificial Intelligence 227: 71–92.

Aziz, H.; Walsh, T.; and Xia, L. 2015. Possible and neces-
sary allocations via sequential mechanisms. In Proceedings
of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence (IJCAI), 468–474.

Bogomolnaia, A.; and Moulin, H. 2001. A new solution
to the random assignment problem. Journal of Economic
theory 100(2): 295–328.

Borodin, A.; and El-Yaniv, R. 2005. Online computation
and competitive analysis. Cambridge University Press.

Bouveret, S.; Endriss, U.; and Lang, J. 2010. Fair Division
under Ordinal Preferences: Computing Envy-Free Alloca-
tions of Indivisible Goods. In Proceedings of Nineteenth
European Conference on Artificial Intelligence (ECAI), vol-
ume 215, 387–392.

Che, Y.-K.; and Kojima, F. 2010. Asymptotic equivalence of
probabilistic serial and random priority mechanisms. Econo-
metrica 78(5): 1625–1672.

Cirillo, R. 2012. The Economics of Vilfredo Pareto. Rout-
ledge.

Drummond, J.; and Boutilier, C. 2013. Elicitation and ap-
proximately stable matching with partial preferences. In
Proceedings of the Twenty-Third international Joint confer-
ence on Artificial Intelligence (IJCAI), 97–105. AAAI Press.
Garg, N.; Kavitha, T.; Kumar, A.; Mehlhorn, K.; and Mestre,
J. 2010. Assigning papers to referees. Algorithmica 58(1):
119–136.
Gaspers, S.; Naroditskiy, V.; Narodytska, N.; and Walsh, T.
2014. Possible and necessary winner problem in social polls.
In Proceedings of the Thirteenth International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
613–620.
Hosseini, H.; Larson, K.; and Cohen, R. 2018. Investigating
the characteristics of one-sided matching mechanisms under
various preferences and risk attitudes. Autonomous Agents
and Multi-Agent Systems 32(4): 534–567.
Hosseini, H.; Menon, V.; Shah, N.; and Sikdar, S. 2020.
Necessarily Optimal One-Sided Matching. arXiv preprint
arXiv:2007.09079 .
Hylland, A.; and Zeckhauser, R. 1979. The efficient alloca-
tion of individuals to positions. Journal of Political Econ-
omy 87(2): 293–314.
Irving, R. W. 2003. Greedy matchings. Technical Report
TR-2003-136, University of Glasgow .
Irving, R. W.; Kavitha, T.; Mehlhorn, K.; Michail, D.; and
Paluch, K. E. 2006. Rank-maximal matchings. ACM Trans-
actions on Algorithms (TALG) 2(4): 602–610.
Liu, Q.; Mailath, G. J.; Postlewaite, A.; and Samuelson, L.
2014. Stable matching with incomplete information. Econo-
metrica 82(2): 541–587.
Manlove, D. 2013. Algorithmics of matching under prefer-
ences, volume 2. World Scientific.
Moulin, H. 2004. Fair division and collective welfare. MIT
press.
Munkres, J. 1957. Algorithms for the assignment and trans-
portation problems. Journal of the Society for Industrial and
Applied Mathematics 5(1): 32–38.
Rastegari, B.; Condon, A.; Immorlica, N.; and Leyton-
Brown, K. 2013. Two-sided matching with partial informa-
tion. In Proceedings of the Fourteenth ACM Conference on
Electronic Commerce (EC), 733–750.
Shapley, L.; and Scarf, H. 1974. On cores and indivisibility.
Journal of Mathematical Economics 1(1): 23–37.
Xia, L.; and Conitzer, V. 2011. Determining Possible and
Necessary Winners Given Partial Orders. Journal of Artifi-
cial Intelligence Research (JAIR) 41: 25–67.

5488

