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Abstract
We revisit the fundamental problem of predicting a binary
ground truth based on independent binary judgments pro-
vided by experts. When the accuracy levels of the experts
are known, the problem can be solved easily through maxi-
mum likelihood estimation. We consider, however, a setting
in which we are given only a ranking of the experts by their
accuracy. Motivated by the worst-case approach to handle the
missing information, we consider three objective functions
and design efficient algorithms for optimizing them. In par-
ticular, the recently popular distortion objective leads to an
intuitive new rule. We show that our algorithms perform well
empirically using real and synthetic data in collaborative fil-
tering and political prediction domains.

1 Introduction
Consider the task of predicting a binary ground truth G ∈
{0, 1} by aggregating independent binary judgments pro-
vided by n experts. This models a wide range of real-world
scenarios, where the judgments can be polls predicting the
outcome of an upcoming political or sports event, a user’s
reviews of previously watched movies, weather forecasts, or
juror opinions of a defendant’s guilt.

The judgment of expert i, denoted Xi, is assumed to
be a Bernoulli random variable, which coincides with the
ground truth with probability pi; this probability is referred
to as the accuracy of the expert. If p = (p1, . . . , pn) is
known, then the classical maximum likelihood estimation
approach chooses the ground truth estimate that maximizes
the likelihood of inducing the vector of expert judgments
X = (X1, . . . , Xn), i.e., the value of y ∈ {0, 1} that max-
imizes L[X;G = y,p] =

∏n
i=1 p

I[Xi=y]
i · (1 − pi)I[Xi 6=y],

where I is the indicator variable.
However, sometimes we may not know the exact values of

p1, . . . , pn; instead, we may only know a ranking of the ex-
pert judgments by accuracy. This may be the case when there
is metadata available about the judgments that is known to
be correlated with accuracy, but the exact nature of the cor-
relation is not known. For instance, if a pollster conducts
multiple polls over time, polls conducted closer to the date
of the event being predicted may be considered more ac-
curate than the ones conducted earlier; the same reasoning
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applies to weather forecasts. Similarly, polls conducted con-
currently may be ranked by their sample sizes. Sometimes,
experts may participate in a judgment contest (such as the
Good Judgment Project1), which may show their ranking by
accuracy on the leaderboard.

Motivated by such settings, we address the following
question in this work:

How should we aggregate n binary judgments ranked
by accuracy in order to predict a binary ground truth?

Note that the n binary judgments ordered by accuracy can
be represented as a bit-string of length n. Thus, we essen-
tially study aggregation rules which take a bit-string as input
and output a bit. Due to the fundamental nature of this set-
ting, the rules designed in this work may have applications
in other domains (see Section 6).

Our Contribution
Recall that the likelihood function L[X;G = y,p] depends
on p1, . . . , pn, i.e., on the accuracy of the experts. However,
we are given only partial information about these values,
namely, their ordering. To address this missing information,
we take a worst-case viewpoint. Specifically, let P denote
the set of all p which are consistent with the given ordering;
we define the following three natural objectives that serve
as proxies for the likelihood induced by a given estimate
y ∈ {0, 1}, and design algorithms to compute the estimate
optimizing these objectives.

1. Distortion: supp∈P L[X;G = 1−y,p]/L[X;G = y,p].
Note that this is worst-case ratio of the likelihood of the
estimate not chosen (1 − y) to the likelihood of the esti-
mate chosen (y). Our aim is to minimize this objective.

2. Optimistic likelihood: supp∈P L[X;G = y,p]. Maxi-
mizing this objective can be thought of as a natural ex-
tension of the maximum likelihood approach, where we
make an inference about p together with one about the
estimate y.

3. Pessimistic likelihood: infp∈P L[X;G = y,p]. Maxi-
mizing this objective can be thought of as maximizing the
worst-case likelihood.

1https://goodjudgment.com/
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In Section 3, we characterize the rules which optimize
these objectives, and show that they can be implemented in
polynomial time. In particular, the rules optimizing the first
two objectives are novel and elegant. In Section 4, we re-
strict our attention to a natural family of rules, which we re-
fer to as scoring rules. These rules assign monotonic weights
to judgments (i.e., judgments ranked higher by accuracy re-
ceive no less weight than those ranked lower), and return the
estimate with the highest total weight. We characterize the
scoring rules that optimize the three aforementioned objec-
tives among all scoring rules. In the full version2, we also
consider three other approaches, namely, an axiomatic ap-
proach, a Bayesian approach, and a randomized approach.

Finally, in Section 5, we empirically evaluate the perfor-
mance of the rules designed in this work against some base-
lines. The experiments use synthetic and real data in the do-
main of collaborative filtering, and real data in the domain
of political predictions. Overall, given their low information
requirements, our rules do remarkably well.

Related Work
Our paper contributes to a large body of work in computa-
tional social choice (Brandt et al. 2016). A central feature
that separates our setting from the vast majority of papers in
the area is that the judgments (or opinions, or preferences)
that are being aggregated are typically assumed to be anony-
mous, in the sense that individuals are indistinguishable.
However, it has been noted that there are important contexts
where anonymity leads to bad outcomes (Lang 2019).

Our setting is related to judgment aggregation (Endriss
2016), an area that also aggregates binary judgments. Typ-
ically, this literature does not assume the existence of a
ground truth, except for some work on epistemic judg-
ment aggregation (Hartmann and Sprenger 2012; Bozbay,
Dietrich, and Peters 2014; Terzopoulou and Endriss 2019).
While our model deals with only a single issue, judgment
aggregation focuses on problems arising from the aggrega-
tion of several logically related issues simultaneously.

In statistics there is influential work on the problem of
estimating the common mean of multiple normal distri-
butions (Cohen and Sackrowitz 1974; Jordan and Krish-
namoorthy 1996), where the unknown variance of each dis-
tribution can be seen as a measure of (in)accuracy. Our set-
ting is more closely related to the work of Ghosh, Kale, and
McAfee (2011), who, like us, consider a binary ground truth
(for each “item”), and binary judgments, each of which is
correct with some probability that depends on the expert’s
unknown accuracy. The central idea that distinguishes our
work from these papers is that we assume a known rank-
ing of the experts by accuracy. This assumption also guides
our choice of (worst-case) optimization objectives, which
are different from the statistical estimation problems con-
sidered in previous work.

Some of our main results pertain to the distortion ob-
jective. This objective was conceived in the context of
social-welfare maximization in voting settings (Procaccia

2Full version: www.cs.toronto.edu/ nisarg/papers/ranked-
binary-judgments.pdf

and Rosenschein 2006; Boutilier et al. 2015; Caragiannis
et al. 2017; Anshelevich et al. 2018), but several papers have
applied the idea to other problems such as matching, facility
location, and even traveling salesperson (Anshelevich and
Sekar 2016; Abramowitz and Anshelevich 2018; Anshele-
vich and Zhu 2018).

Our aggregation rules can be viewed as simple games
(Taylor and Zwicker 1999) where the experts are players,
and winning coalitions correspond to sets of experts such
that when all these experts report 1, then so does the aggre-
gation rule. The simple games literature has also studied lin-
ear simple games, which correspond to games with ranked
players. This literature includes characterization results for
weighted simple games (Taylor and Zwicker 1992), which
correspond to what we call scoring rules.

2 Model
For k ∈ N, let us denote [k] = {1, . . . , k}. Let G ∈ {0, 1}
denote an unknown binary ground truth. LetN = [n] denote
a set of experts. Each expert i ∈ N provides a binary judg-
ment Xi ∈ {0, 1}, which is a Bernoulli random variable
that is correct with probability pi, i.e., Pr[Xi = G] = pi.
We refer to X = (X1, . . . , Xn) as the judgment profile and
p = (p1, . . . , pn) as the accuracy profile.

In this work, we make two crucial assumptions regarding
X and p. First, we assume that the expert judgments (i.e.
X1, . . . , Xn) are independent. Second, we assume that each
expert is at least as accurate as a coin toss, i.e., pi > 1/2 for
each i ∈ N . For a discussion about relaxing these assump-
tions, see Section 6.

For y ∈ {0, 1}, the likelihood of observing X when the
ground truth is G = y can now be written as

L[X;G = y,p] =
∏n
i=1 p

I[Xi=y]
i · (1− pi)I[Xi 6=y],

where I denotes the indicator variable. If the accuracy pro-
file p is known, then a classical approach to aggregat-
ing the expert judgments would be to return the maximum
likelihood estimate (MLE) of the ground truth given by
argmaxy∈{0,1} L[X;G = y,p].

In this work, we assume that we do not know p. Instead,
we are given a ranking of the experts by their accuracy, and
we are interested in aggregating the expert judgments sub-
ject to this ordinal information. Without loss of generality,
assume that p1 > p2 > . . . > pn. Thus, expert 1 is the
most accurate, while expert n is the least accurate. Let Pn =
{p : 1 > p1 > . . . > pn > 1/2} denote the set of feasible ac-
curacy profiles. Note that Pn contains the accuracy profile
p = (1, . . . , 1), under which the likelihood of any non-
unanimous judgment profile X is zero, regardless of the es-
timate y. This makes some of our objectives not well-defined
or uninteresting. Of course, in practice, no judgment is per-
fectly accurate. To circumvent this hypothetical inconsis-
tency, we define Pεn = {p : 1− ε > p1 > . . . > pn > 1/2},
analyze the aggregation rules optimizing our objectives de-
fined with respect to Pεn, and then take the limit ε → 0.
In the limit, these rules “converge”, in the sense that they
become fixed once ε is small enough. When the objective
is well-defined directly with respect to Pn, we avoid taking
this longer route.
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Formally, our input is the bit-string X ∈ {0, 1}n, where
we refer to X1 as the most accurate bit and Xn as the least
accurate. An aggregation function is denoted f : {0, 1}n →
{0, 1,⊥}, where ⊥ denotes a tie.3 We will alternatively rep-
resent a tie as the function returning {0, 1} instead of ⊥.

We are also interested in a natural family of aggregation
functions that we refer to as scoring rules. A scoring rule
fw is parametrized by a weight vector w = (w1, . . . , wn) ∈
Rn>0, where wi is the weight associated with the i-th most
accurate bit. Given input X , fw returns the bit with the high-
est total weight, i.e., argmaxy∈{0,1}

∑n
i=1 wi · I[Xi = y].

This definition is inspired by that of a prominent family of
voting rules called positional scoring rules, which includes
well-known rules such as plurality and Borda count.

3 Worst-Case Optimal Aggregation Rules
Given incomplete information about the accuracy profile p,
we cannot compute the MLE, since different accuracy pro-
files p consistent with the given ordinal information may in-
duce different likelihoods. Our approach is to define an ob-
jective function that summarizes the likelihoods induced by
all feasible p and optimize it; we consider three proposals.

Distortion
Informally, given an objective function and ordinal informa-
tion about cardinal inputs to the function, the distortion ap-
proach selects an outcome minimizing the ratio between the
optimal objective value and the objective value under the se-
lected outcome, in the worst case over all cardinal inputs
consistent with the given ordinal information. The objec-
tive we are interested in is the likelihood function L, and
we are given ordinal information about p (specifically, that
p ∈ Pn). Given a judgment profile X , the distortion of
ground truth estimate y ∈ {0, 1} is then defined as

dist(y;X) = sup
p∈Pn

max (L[X;G = 0,p],L[X;G = 1,p])

L[X;G = y,p]

= sup
p∈Pn

L[X;G = 1− y,p]
L[X;G = y,p]

.

Here, the second equality is due to the fact that with G =
y, the ratio is always 1, which can also be achieved with
G = 1 − y at p1 = . . . = pn = 1/2 (which makes the
likelihoods given both possible ground truths equal). Hence,
the worst case is achieved with G = 1− y in the numerator.
Given this definition, the distortion-optimal estimate is y∗ ∈
argmaxy∈{0,1} dist(y;X).

We borrow the idea of distortion from the voting litera-
ture, where the goal is to select a candidate maximizing to-
tal voter happiness, but only voters’ ranked preferences (and
not the exact intensities) are known. Distortion offers a prior-
independent evaluation of candidates; a candidate minimiz-
ing distortion is the best choice given only the information
available.

This objective requires attention to the technicality men-
tioned in Section 2. Let p = (1, . . . , 1) ∈ Pn, and consider a

3Allowing ties does not significantly alter most of our results;
we discuss some of the implications of ties in later sections.

profile X in which not all judgments agree. Then L[X;G =
0,p] = L[X;G = 1,p] = 0, making distortion undefined.
Hence, we use Pεn = {p : 1− ε > p1 > . . . > pn > 1/2} to
redefine the distortion as

distε(y;X) = sup
p∈Pεn

L[X;G = 1− y,p]
L[X;G = y,p]

.

The distortion-optimal rule fdist is defined as fdist(X) =
limε→0 argminy∈{0,1} dist

ε(y;X). Interestingly, we show
that the estimate y minimizing distε(y;X) is independent of
ε, making the limit unnecessary. First, we define a quantity
that we will later show to be closely related to distortion.
Definition 1. Given X ∈ {0, 1}n, the strength sX(y) of
estimate y is the maximum difference between the number
of occurrences of y and that of 1−y in any prefix of X , i.e.,

sX(y) = max
k∈[n]∪{0}

∑k
i=1 {I[Xi = y]− I[Xi = 1− y]} .

Lemma 1. For ε ∈ (0, 1/2), n ∈ N, X ∈ {0, 1}n, and
y ∈ {0, 1}, we have distε(y;X) =

(
1−ε
ε

)sX(1−y)
.

Proof. Fix y ∈ {0, 1}. Given a sequence p, we say that it
has a jump at i ∈ [n− 1] if pi > pi+1.

We first show that in the definition of distε(y;X), the
supremum over p is achieved at an accuracy profile with at
most one jump. Let p be a vector with the minimum jumps at
which the supremum is achieved. Suppose for contradiction
that it has at least two jumps, and let k and j be indices such
that pk > pk+1 = . . . = pj > pj+1.

Define p1 and p2 such that p1i = p2i = pi for i ∈ [n] \
{k + 1, . . . , j}, p1i = pk for i ∈ {k + 1, . . . , j}, and p2i =
pj+1 for i ∈ {k + 1, . . . , j}. That is, in p1, we shift the
block (pk+1, . . . , pj) up and make it equal to pk, and in p2,
we shift it down and make it equal to pj+1.

We show that at least one of these two vectors must yield
an approximation ratio no better than that at p, and is there-
fore also a point where the supremum is achieved; this is a
contradiction because they both have one fewer jump than
p. To see why the claim is true, let a = pk, b = pk+1 =
. . . = pj , and c = pj+1. Thus, a > b > c > 1/2. Denoting
S = {k + 1, . . . , j}, we have that

L[X;G = 1− y,p]
L[X;G = y,p]

=
∏

i∈[n]\S

p
I[Xi=1−y]
i · (1− pi)I[Xi=y]

p
I[Xi=y]
i · (1− pi)I[Xi=1−y]

×
∏
i∈S

bI[Xi=1−y] · (1− b)I[Xi=y]

bI[Xi=y] · (1− b)I[Xi=1−y]

=
∏

i∈[n]\S

p
I[Xi=1−y]
i · (1− pi)I[Xi=y]

p
I[Xi=y]
i · (1− pi)I[Xi=1−y]

×
(

b
1−b

)∑
i∈S(I[Xi=1−y]−I[Xi=y])

.

In the last expression, as b > 1/2, we have b/(1 − b) > 1.
Thus, if the exponent of b/(1 − b) is non-positive, then de-
creasing b to c does not decrease the expression, and the ex-
pression changes from the approximation ratio at p to that
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at p2. Similarly, if the exponent is non-negative, then in-
creasing b to a does not decrease the expression, and the
expression changes from the approximation ratio at p to that
at p1. Hence, at least one of p1 and p2 achieves a ratio at
least as high as p, as desired.

We have established that the supremum is achieved at
some p which has at most one jump. Then, there exist
a, b ∈ [1/2, 1 − ε] with a > b and an index k ∈ [n] ∪ {0}
such that pi = a for all i 6 k and pi = b for all i > k.
Note that allowing k = 0 and k = n permits zero jumps. We
show that we can let a = 1 − ε and b = 1/2 without loss of
generality. The approximation ratio at this p is given by(

a
1−a

)∑k
i=1(I[Xi=1−y]−I[Xi=y])

×
(

b
1−b

)∑n
i=k+1(I[Xi=1−y]−I[Xi=y])

.

The exponent of a/(1 − a) must be non-negative (other-
wise decreasing a to b would strictly increase the approxi-
mation ratio). Hence, increasing a to 1− ε does not decrease
the approximation ratio. Similarly, we can let b = 1/2.

We have thus established that the supremum is achieved
at p such that for some k ∈ [n] ∪ {0}, pi = 1− ε for i 6 k
and pi = 1/2 for i > k. Thus, the distortion of y given X is

distε(y;X) = max
k∈[n]∪{0}

(
1−ε
ε

)∑k
i=1(I[Xi=1−y]−I[Xi=y])

,

which is
(
1−ε
ε

)sX(1−y)
, as desired.

We can immediately obtain a characterization of the
distortion-optimal estimate y∗ ∈ {0, 1} by observing that
argminy∈{0,1} sX(1− y) = argmaxy∈{0,1} sX(y) and ap-
plying Lemma 1: The distortion-optimal estimate is the es-
timate with the greatest strength in X .
Theorem 1. For any ε ∈ (0, 1/2), n ∈ N, and X ∈ {0, 1}n,

fdist(X) = argmin
y∈{0,1}

distε(y;X) = argmax
y∈{0,1}

sX(y),

where fdist is the distortion-optimal rule. Further, this can
be computed in linear time.

Note that in case of both estimates having equal strength,
the result also implies that their distortion will be equal.

A notable property of fdist is that if more than n/3 most
accurate judgments or more than 2n/3 least accurate judg-
ments are identical, then that will be the output of fdist, re-
gardless of the remaining judgments.

Other Objectives
We now turn our attention to two other objectives, namely
maximization of optimistic and pessimistic likelihoods. Re-
call that the reason we cannot directly compute the MLE
argmaxy∈{0,1} L[X;G = y,p] is because we do not know
the exact accuracy profile p. Instead, we know that p ∈ Pn.
Given this, we define the optimistic and pessimistic likeli-
hoods by taking the best case and the worst case over the
choice of p, respectively.

The optimistic likelihood L↑ of observing X when
the ground truth is G = y is L↑[X;G = y] =

Algorithm 1: OPT-LIKELIHOOD

Input: Judgment profile X ∈ {0, 1}n, y ∈ {0, 1}
Output: Optimistic likelihood L↑[X;G = y]
if n = 1 then

return 1I[X1=y] · (1/2)I[X1 6=y]

end
[Find the prefix of X with the highest density of y]
i← index maximizing (1/i) ·

∑i
j=1 I[Xj = y],

breaking ties in favor of larger indices
d← (1/i) ·

∑i
j=1 I[Xj = y]

r ← max {d, 1/2}
L← OPT-LIKELIHOOD((Xi+1, . . . , Xn), y)

return
(
rd(1− r)1−d

)i · L
supp∈Pn L[X;G = y,p]. The optimistic MLE rule which
maximizes this objective, denoted fMLE↑, is given by
fMLE↑(X) = argmaxy∈{0,1} L↑[X;G = y]. We can view
fMLE↑ as simply performing a joint maximum likelihood
estimation over (y,p) ∈ {0, 1} × Pn, and returning the y
component of the resulting estimate.4

We begin by presenting an algorithm that calculates the
optimistic likelihood of an estimate y ∈ {0, 1} given a judg-
ment profile X . The algorithm repeatedly identifies a prefix
of X with the highest density of y, and imputes that the ac-
curacies of judgments in that prefix are equal to this density.
The following is proved in the full version.
Theorem 2. Algorithm 1 calculates the optimistic likelihood
L↑[X;G = y] in polynomial time. Thus, the aggregation
rule fMLE↑ can be implemented in polynomial time.

We illustrate Algorithm 1 by an example.
Example 1. Let us consider running OPT-LIKELIHOOD
with X = (0, 1, 1, 1, 0, 1, 1, 0, 0, 1) and y = 1.

The first iteration selects i = 4 (i.e. prefix (0, 1, 1, 1)) be-
cause the density of y = 1 in this prefix is 3/4, and this is the
highest density in any prefix. This leads to d = r = 3/4. The
second iteration selects i = 3 (i.e. prefix (0, 1, 1)), leading to
d = r = 2/3. The final iteration selects the remaining string,
and sets d = 1/3 but r = 1/2.

Thus, p = (3/4, 3/4, 3/4, 3/4, 2/3, 2/3, 2/3, 1/3, 1/3, 1/3) is the
accuracy profile leading to the optimistic likelihood of(

3

4

3
4

· 1
4

1
4

)4

·

(
2

3

2
3

· 1
3

1
3

)3

·

(
1

2

1
3

· 1
2

2
3

)3

.

We now turn our attention to maximizing the pessimistic
likelihood L↓. If we define it as L↓[X;G = y] =
infp∈Pn L[X;G = y,p], then we run into the issue dis-
cussed in Section 2: the pessimistic likelihood of any non-
unanimous X becomes 0 under both values of y due to the
accuracy profile p = (1, . . . , 1) ∈ Pn, leading to unneces-
sary ties. Hence, we again consider Pεn instead of Pn, de-
fine Lε↓[X;G = y] = infp∈Pεn L[X;G = y,p], and define

4This is also equivalent to computing the maximum a posteriori
estimate (MAP) when we are given a uniform prior over p. For
computing MAP given other priors, see the full version.
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the pessimistic MLE rule, denoted fMLE↓, as fMLE↓(X) =
limε→0 argmaxy∈{0,1} Lε↓[X;G = y]. When compared to
fMLE↑, fMLE↓ is more in line with a worst-case approach.
Unlike in the case of distortion, the choice of y does not turn
out to be independent of ε, but as we see in the proof of
Theorem 3, the rule converges once ε < 2−n.

The next result identifies fMLE↓ analytically. This is pos-
sible because the accuracy profile resulting in the pessimistic
likelihood always consists of only 1 − ε and 1/2. This is
in contrast to the one leading to the optimistic likelihood,
which, as Example 1 demonstrates, can be more complex.
The following is proved in the full version.
Theorem 3. The pessimistic MLE rule fMLE↓, given a judg-
ment profile X , outputs the majority judgment; if tied, it out-
puts the opposite of the least accurate judgment (i.e. 1−Xn).

4 Optimal Scoring Rules
We now turn our attention to a natural class of aggregation
rules, scoring rules. Specifically, we are interested in how
well we can optimize certain objectives when we are re-
stricted to this class of functions. There are two clear ambi-
guities about scoring rules that we must take into account.
First, for many choices of objectives, there is no scoring
rule which is instance optimal, i.e., at least as good as ev-
ery other scoring rule on all possible judgment profiles. To
handle this, we modify our goal slightly and instead choose
scoring rules that are optimal in the worst case. Next, is the
issue of ties. In this case we’ll take a pessimistic view (in
line with our worst case objective goals) and say that when
a scoring rule outputs a tie, the value of the objective in this
instance will be the worse of the two outcomes.
Theorem 4. For any ε ∈ (0, 1/2) and n ∈ N, the
scoring rule given by w∗ = (1, . . . , 1, 0, . . . , 0) with ex-
actly 2bn/3c + 1 ones minimizes the worst case distortion
maxX∈{0,1}n dist

ε(fw(X);X) over all possible scoring
rules parametrized by w ∈ Rn>0.

Proof. Fix ε ∈ (0, 1/2) and n ∈ N. Recall that minimizing
the distortion, distε(y;X) is equivalent to minimizing the
strength of the unchosen judgment, sX(1− y).

First, we’ll show that no rule f (scoring or otherwise) can
guarantee sX(1−f(X)) < bn/3c for all X ∈ {0, 1}n. This
will imply maxX∈{0,1}n sX(1 − fw(X)) > bn/3c for all
w ∈ Rn>0. To see this, we construct X ∈ {0, 1}n such that
both sX(0) and sX(1) are at least bn/3c. Consider the judg-
ment profile Xs = (1, . . . , 1, 0, . . . , 0) with bn/3c ones and
n − bn/3c zeros. On the prefix of the first bn/3c judgments,
there are bn/3c more 1s than there are 0s. Thus, the strength
of 1 is at least bn/3c. On the other hand, on the entire profile,
there are (n − bn/3c) − bn/3c > n − 2n

3 > bn/3c more 0s
then 1s. Hence, the strength of 0 is at least bn/3c, as desired.

Next, we show that sX(1 − fw∗(X)) 6 bn/3c for all
judgment profiles X ∈ {0, 1}n. Qualitatively, fw∗ simply
picks the majority bit of the first 2bn/3c + 1 bits. Note that
since 2bn/3c + 1 is odd, there is always a majority bit and
thus fw∗ will never output a tie.

Let X ∈ {0, 1}n and, without loss of generality, sup-
pose fw∗(X) = 1. We show that sX(0) 6 bn/3c.

Since fw∗ chose 1, there cannot be a majority of 0s
in the first 2bn/3c + 1 bits. Hence, 0 occurs at most
bn/3c times in this prefix. This implies that for k 6
2bn/3c + 1,

∑k
i=1 {I[Xi = 0]− I[Xi = 1]} 6 bn/3c. Next,

since 1 has a majority among the first 2bn/3c + 1 bits,∑2bn/3c+1
i=1 {I[Xi = 0]− I[Xi = 1]} 6 −1. or k > 2bn/3c+

1, ∑k
i=1 {I[Xi = 0]− I[Xi = 1]}

6
∑k
i=2bn/3c+2 {I[Xi = 0]− I[Xi = 1]} − 1

6 k − (2bn/3c+ 1)− 1

6 n− (2bn/3c+ 1)− 1

= n− (3bn/3c+ 2) + bn/3c
6 n− n+ bn/3c = bn/3c.

So, for all k ∈ {0} ∪ [n],
∑k
i=1 {I[Xi = 0]− I[Xi = 1]} 6

bn/3c, and hence sX(0) 6 bn/3c as desired.

Other Objectives
We also investigate optimal scoring rules with respect to the
optimistic and pessimistic MLE rules fMLE↑ and fMLE↓.
It is easy to see that maximizing the optimistic (resp. pes-
simistic) likelihood of the chosen estimate is equivalent to
minimizing the optimistic (resp. pessimistic) likelihood of
the unchosen estimate; thus, we can also view fMLE↑ and
fMLE↓ as minimizing the optimistic and pessimistic likeli-
hoods of the unchosen estimate, respectively. This connec-
tion holds only because we are looking for the optimal rule
within the family of all possible rules; however, when we
look for the optimal rule within the family of scoring rules,
we have to consider four — not two — objectives.

Definition 2. We define optimal scores w↑◦,w
↑
×,w

↓
◦,w

↓
× as

• w↑◦ ∈ argmaxw∈Rn>0
minX L↑[X;G = fw(X)]

• w↑× ∈ argminw∈Rn>0
maxX L↑[X;G = 1− fw(X)]

• w↓◦ ∈ argmaxw∈Rn>0
minX L↓[X;G = fw(X)]

• w↓× ∈ argminw∈Rn>0
maxX L↓[X;G = 1− fw(X)].

For example, w↑◦ maximizes the optimistic likelihood of
its chosen answer in the worst case. For this rule it suffices
to always choose the most accurate expert’s judgment:

Theorem 5. The score w↑◦ = (1, 0, . . . , 0) is optimal.
For the cases based on pessimistic likelihood (both max-

imizing it for the chosen answer and minimizing it for the
unchosen answer), characterizing the optimum scoring rule
is easy, since the optimum rule we identified in Theorem 3
can be represented as a scoring rule.

Theorem 6. Scores w↓◦ = w↓× = (1, . . . , 1, 1/2) are optimal
for ε 6 2−n, and coincide with the rule of Theorem 3.

Note that in the scoring vectors of Theorem 6, the 1/2
component could be replaced with any value strictly be-
tween 0 and 1 without changing the aggregation rule. In gen-
eral, throughout this section, the scoring rules we identify
are optimal but not uniquely optimal (cf. Definition 2).
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The remaining case, w↑×, that is minimizing the optimistic
likelihood of the unchosen answer, is less straightforward.
Using a linear program, we have obtained optimal scores
w↑× for n 6 20; these are cataloged in the full version. For
general n, w↑× is unknown, but in the full version we also
show that there exists an optimal scoring rule that is nonin-
creasing, for all n.

5 Experiments
In this section we assess through computer simulations the
quality of decisions made by our aggregation functions in
the context of two example applications.

Collaborative Filtering
Consider a set of agents N , a set of issues I , and a partially
observed binary matrix (xij)i∈N,j∈I . We interpret an entry
xij ∈ {0, 1} as the decision of agent i on issue j (for exam-
ple, reviewer i bids on paper j). In each run of the experi-
ment, we randomly select an entry of the matrix, hide it, and
use several algorithms to guess its value. An algorithm is
successful if it guesses correctly. We repeat the experiment
1,000 times to assess the average accuracy of the algorithms.

We use our aggregation functions to predict hidden values
in a matrix as follows. For an agent i ∈ N , let R(i) be the
set of issues j such that the entry xij is observed. Given a
hidden entry xij∗ we first identify the set of agents k ∈ N
for which the value xkj∗ is observed. Second, we rank those
agents by their similarity to i. Formally, we define the sim-
ilarity score of two agents i and k as sim(i, k) = |{j ∈
R(k) ∩ R(i):xij = xkj}|/|R(k) ∩ R(i)|, that is the frac-
tion of issues on which i and k agreed among all issues for
which we have data from both agents. We rank the agents k
in the descending order of their similarity score with i. Thus,
we assume that more similar agents are better predictors of
the hidden decision xij∗ of agent i. We truncate the list of
agents to the first half (we use this heuristic since our al-
gorithms where designed for the case where p > 1/2). The
ranked decisions by agents on issue j∗ then form the input to
the aggregation functions from Sections 3 and 4 and to the
Bayesian algorithm from full version (with a prior estimated
from the data).

We compare our algorithms with three standard Recom-
mender Systems algorithms for matrix completion, imple-
mented in the fancyimpute python library5: MatrixFactor-
ization (MF), Iterative SVD (ISVD), and Soft Impute (SI).
We evaluate the rules on two datasets from the PrefLib li-
brary (Mattei and Walsh 2013), and on a synthetic dataset.

Sushi. This dataset contains information about individu-
als’ preferences on various types of sushi. There are 100
types of sushi, and each individual assigns scores from
{1, . . . , 4} to 10 randomly selected sushi sets. We filter
only those individuals who assigned 4 different scores to
the sets (there are 2737 such agents), and convert their
preferences to binary judgments as follows. For a fixed
value of d ∈ {3, 4} we set the decision of an agent i for
sushi j to 1 if i assigns to j the score at least equal to d;

5https://github.com/iskandr/fancyimpute

the decision is 0 if the corresponding score is lower than d.
Note that only 10% of entries of this matrix are observed.

Conference Bidding (CONF). This dataset contains re-
viewers’ bids on papers at a major computer science con-
ference. We convert the reviewers’ bids to their binary
judgments over papers by setting the decision to one if
they bid “yes” for a paper (d = Y) or by setting it to
one if they bid “yes” or “maybe” for a paper (d = M).
Additionally, we hide an h fraction of randomly selected
entries in the matrix (h ∈ {0.5, 0.8, 0.9}).

Synthetic Model (SYNT) Each agent and each issue is rep-
resented by a d-dimensional vector of attributes (d ∈
{5, 10}). For each agent and each issue we sample the
value of each attribute independently and uniformly from
[−1, 1]. An agent i decides 1 on an issue j if the dot
product of their corresponding attribute vectors is posi-
tive. Otherwise i decides 0. We hide an h fraction of ran-
domly selected entries in the matrix (h ∈ {0.5, 0.8, 0.9}).

Political Predictions
We use a dataset from FiveThirtyEight of polling data from
the 2016 US Presidential Election. We convert this data into
a binary format by choosing a threshold, the mean of the
number of votes the candidate received over all polls in that
state, then reporting 1 if the poll was above this threshold
and 0 if it was below. In addition, we assume that polls’ ac-
curacies are sorted by their recency, that is later polls are
more accurate than earlier ones.

We run an experiment for each US state and each candi-
date. The ground truth is taken to be whether the true num-
ber of votes the candidate received in the general election
was above or below the threshold. We then analyze our al-
gorithms: given the sorted binary polling data, do they cor-
rectly predict the ground truth? For each state and candidate,
algorithms get a score of 1 for getting the ground truth cor-
rectly, 0 for being incorrect, and 1/2 for a tie. The algorithms’
overall scores are their average over all states. Note that for
a few states, there is no polling data for a certain candidate
in which case the state was not included in the score. This
is why the scores are not all multiples of 1/50. Finally, since
older data may be inaccurate and could even hurt accuracy,
we compare two settings: using all available polls and re-
stricting the algorithms to polls conducted on or after Octo-
ber 1, 2016. The election took place on November 8, 2016.

Results
Representative results of our experiments for selected values
of the parameters are summarized in Table 1.

1. The scoring rules using vectors w↑× and w↑◦ are subopti-
mal: for most datasets the distortion-optimal rule achieved
better accuracies than these rules (the only exception is
JOHNSON-ALL, where fdist performed worse than w↑×).
Similarly, fMLE↓ performed (slightly) better than fdist
on only two datasets (CLINTON-OCT and CONF (d =
M, h = 0.9)), and for several other datasets it produced
significantly worse results.

2. fdist, fMLE↑, and the scoring rule using w∗ perform com-
parably well, though each excelled in different datasets.
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fdist fMLE↑ fMLE↓ sc (w∗) sc (w↑×) sc (w↑◦) Bayesian MT ISVD SI

SUSHI (d = 3) 65.3 66.6 65.2 65.5 62.4 57.0 48.8 50.1 57.5 49.5
SUSHI (d = 4) 68.6 69.4 67.2 70.1 67.9 63.3 57.6 60.4 63.3 66.7

CONF (d = M, h = 0.5) 94.8 94.8 94.8 94.8 90.3 94.8 94.8 96.5 94.5 96.8
CONF (d = M, h = 0.8) 95.3 95.2 95.3 95.3 92.0 95.3 95.2 93.0 91.0 93.5
CONF (d = M, h = 0.9) 95.1 94.6 95.2 95.2 92.3 91.9 90.5 92.0 94.6 95.6
SYNT (h = 0.8, d = 10) 76.5 73.4 73.7 68.1 64.6 74.2 77.1 46.0 87.0 73.5
SYNT (h = 0.8, d = 5) 85.4 84.0 83.4 81.5 78.8 85.5 90.1 49.0 91.5 89.0
SYNT (h = 0.5, d = 5) 89.9 91.2 88.9 87.7 86.7 89.9 92.4 94.0 94.1 92.0

CLINTON-ALL 83.3 82.4 74.5 86.3 52.9 78.4 84.3 − − −
JOHNSON-ALL 68.4 79.6 51.0 79.6 73.5 55.1 85.7 − − −
TRUMP-ALL 90.2 92.2 82.4 90.2 53.9 90.2 94.1 − − −
CLINTON-OCT 86.3 82.4 88.2 86.3 52.9 78.4 72.5 − − −
JOHNSON-OCT 80.6 81.6 77.6 71.4 73.5 55.1 71.4 − − −
TRUMP-OCT 92.2 92.2 92.2 92.2 53.9 90.2 98.0 − − −

Table 1: Summary of the experiments comparing accuracies (given as percentages) of aggregation functions. In each row, the
best performing algorithms are bolded; those that perform within 1 and 2 percentage points of the best algorithm are shaded dark
grey and light grey, respectively. Simulations for parameter values omitted in the table led to qualitatively similar conclusions.
We use sc(w) to denote the scoring rule parametrized by the vector w.

3. For many datasets the Bayesian algorithm outperforms
the rules with worst-case guarantees, yet there are in-
stances (such as SUSHI) where the Bayesian algorithm is
much worse. If we could pick the best response out of
those produced by the Bayesian algorithm and fMLE↑ (or
fdist), we would always obtain high-quality results.

4. For some datasets, notably SUSHI, our algorithms out-
perform standard algorithms for matrix completion. For
other datasets, the Bayesian algorithm is comparable to
the matrix-completion algorithms. This is promising since
our algorithms use less information.

5. In the political domain our best rules produced consider-
ably more accurate predictions than simply trusting the
most accurate (most recent) predictions (w↑◦).

We can compare these experimental results to a setting
in which the true accuracies of the experts are known. For
example, if we take 10 experts and sample their accuracies
uniformly from (0.5, 0.7), then the maximum likelihood es-
timate using both the judgments along with the expert accu-
racies recovers the ground truth in 76.7% of cases. On the
other hand, knowing simply the judgments ordered by accu-
racies, fdist predicts correctly in 76.1% of cases, fMLE↑ in
74.1%, and fMLE↓ in 74.6%.

6 Discussion
Our setting boils down to the design of Boolean functions
that take a string of bits as input and output a single bit —
with the twist that the order of bits matters, in that earlier bits
are given greater importance. We view this as a fundamental
problem, and there are many ways to approach it. In addition
to the objectives and algorithms described in Sections 3 and
4, we present three additional approaches in the full version:
axiomatic, Bayesian, and randomized .

One might ask whether the assumption that pi > 1/2 for
all i ∈ N can be relaxed. If the identities of experts with
pi < 1/2 are known, we can simply flip their judgments and
reverse their order (as the flipped judgment of the least accu-
rate expert is now the most accurate). Interestingly, our prob-
lem now becomes that of aggregating two strings of judg-
ments, ordered by accuracy, into a single bit. This problem is
potentially richer than ours because there is no information
on the relative accuracy of experts associated with two dif-
ferent strings. An even more general setup simply provides
a partial order of the experts by accuracy.

Another natural variant of our setting is one where, in-
stead of binary judgments, experts provide real-valued judg-
ments in, say, [0, 1], and the goal is to aggregate them to
return a single real number in [0, 1]. Interestingly, given a
binary aggregation rule f from our work, one can compute
the greatest value x ∈ [0, 1] such that converting expert judg-
ments to binary depending on whether they are at least x and
feeding them to f gives output 1; this is well-defined when
f satisfies a natural monotonicity condition. We leave such
directions for future work.
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